1
|
Hu J, Song Y, Zhang Y, Yang P, Chen S, Wu Z, Zhang J. Catalpol Enhances Osteogenic Differentiation of Human Periodontal Stem Cells and Modulates Periodontal Tissue Remodeling in an Orthodontic Tooth Movement Rat Model. Drug Des Devel Ther 2024; 18:4943-4960. [PMID: 39525045 PMCID: PMC11546164 DOI: 10.2147/dddt.s482969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose This study examines the effects and mechanisms of catalpol (CAT) on the proliferation and osteogenic differentiation of cultured human periodontal ligament stem cells (hPDLSCs) in vitro and assesses the impact of CAT on periodontal remodeling in vivo using an orthodontic tooth movement (OTM) model in rats. Methods hPDLSCs were cultured in a laboratory setting, and their proliferation and osteogenic differentiation were assessed using the Cell-counting Kit-8 (CCK-8), Alizarin Red Staining (ARS), quantitative calcium assay, alkaline phosphatase (ALP) staining and activity assay, and immunofluorescence assay. Additionally, the expression of collagen type 1 (COL-1), ALP, and runt-related transcription factor-2 (RUNX-2) was evaluated through qRT-PCR and Western blot analysis. To verify the function of the estrogen receptor-α (ER-α)-mediated phosphatidylinositol-3-kinase-protein kinase B (PI3K/AKT) pathway in this mechanism, LY294002 (a PI3K signaling pathway inhibitor) and the ER-α specific inhibitor methyl-piperidine-pyrazole (MPP) were used. The osteogenic markers ER-α, AKT, and p-AKT (phosphoprotein kinase B) were identified through Western blot analysis. Eighteen male Sprague-Dawley rats were assigned to two groups randomly: a CAT group receiving CAT and a control group receiving an equivalent volume of saline. Micro-computed tomography (micro-CT) analysis was employed to evaluate tooth movement and changes in alveolar bone structure. Morphological changes in the periodontal tissues between the roots were investigated using hematoxylin and eosin (HE) staining and tartaric-resistant acid phosphatase (TRAP) staining. The expression of COL-1, RUNX-2, and nuclear factor-κB (NF-κB) ligand (RANKL) was assessed through immunohistochemical staining (IHC) to evaluate periodontal tissue remodeling. Tests were analyzed using GraphPad Prism 8 software. Differences among more than two groups were analyzed by one-way or two-way analysis of variance (ANOVA) followed by the Tukey's test. Values of p < 0.05 were regarded as statistically significant. Results In vitro experiments demonstrated that 10 μM CAT significantly promoted the proliferation, ALP activity, and calcium nodule formation of hPDLSCs, with a notable increase in the expression of COL-1, ALP, RUNX-2, ER-α, and p-AKT. The PI3K/AKT pathway was inhibited by LY294002, and further analysis using MPP suggested that ER-α mediated this effect. In vivo, experiments indicated that CAT enhanced the expression of COL-1 and RUNX-2 on the tension side of rat tooth roots, reduced the number of osteoclasts on the compression side, inhibited RANKL expression, and suppressed OTM. Conclusion CAT can promote hPDLSCs proliferation and osteogenic differentiation in vitro through the ER-α/PI3K/AKT pathway and enhance periodontal tissue remodeling in vivo using OTM models. These findings suggest the potential for the clinical application of catalpol in preventing relapse following OTM.
Collapse
Affiliation(s)
- Jing Hu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, People’s Republic of China
| | - Yang Song
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, People’s Republic of China
| | - Yuxing Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, People’s Republic of China
| | - Peng Yang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, People’s Republic of China
| | - Siyu Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, People’s Republic of China
| | - Zhaoyan Wu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, People’s Republic of China
| | - Jun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
2
|
Wang M, Liu Y, Gui H, Ma G, Li B, Zhang Z, Yu G, Wu A, Xu X, Zhang D. ED-71 ameliorates bone regeneration in type 2 diabetes by reducing ferroptosis in osteoblasts via the HIF1α pathway. Eur J Pharmacol 2024; 969:176303. [PMID: 38211715 DOI: 10.1016/j.ejphar.2023.176303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
Eldecalcitol (ED-71), a novel active form of vitamin D, shows potential in treating osteoporosis. However, its underlying mechanisms of action remain to be determined. This study aimed to investigate the effect of ED-71 on bone regeneration and to illustrate its mode of action. The in-vitro model was developed using rat primary osteoblasts cultured under high-glucose conditions, and these cells were treated with ED-71. Additionally, an in vivo model of cranial bone defects was established in type 2 diabetic rats, and ED-71 was administered by gavage. The results demonstrated that ED-71 prevented osteoblast cell death, enhanced rat primary osteoblasts' osteogenic capacity, and attenuated the overexpression of hypoxia-inducible factor 1α (HIF1α) induced by high glucose levels. Furthermore, ED-71 increased glutathione peroxidase 4 (GPX4) levels and inhibited ferroptosis in response to hyperglycemic stimulation. Notably, interference with the HIF1α activator and ferroptosis activator Erastin significantly reduced the therapeutic effects of edetate osteolysis. These findings were further tested in vivo experiments. These results suggest that ED-71 activates the HIF1α pathway in vivo and in vitro, effectively relieving the ferroptosis induced by high glucose. Significantly, ED-71 may improve osteogenic disorders caused by diabetes.
Collapse
Affiliation(s)
- Maoshan Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan, 250012, China.
| | - Yingxue Liu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan, 250012, China.
| | - Houda Gui
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan, 250012, China.
| | - Gaoqiang Ma
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan, 250012, China.
| | - Binyang Li
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan, 250012, China.
| | - Zhanwei Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan, 250012, China.
| | - Gyeonghwi Yu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan, 250012, China.
| | - Ailin Wu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan, 250012, China.
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan, 250012, China.
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan, 250012, China.
| |
Collapse
|
3
|
Wu J, Li X, Nie H, Shen Y, Guo Z, Huihan Chu C, Cai K, Tang C. Phytic acid promotes high glucose-mediated bone marrow mesenchymal stem cells osteogenesis via modulating circEIF4B that sponges miR-186-5p and complexes with IGF2BP3. Biochem Pharmacol 2024; 222:116118. [PMID: 38467376 DOI: 10.1016/j.bcp.2024.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/26/2023] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Diabetes-related hyperglycemia inhibits bone marrow mesenchymal stem cell (BMSC) function, thereby disrupting osteoblast capacity and bone regeneration. Dietary supplementation with phytic acid (PA), a natural inositol phosphate, has shown promise in preventing osteoporosis and diabetes-related complications. Emerging evidence has suggested that circular (circ)RNAs implicate in the regulation of bone diseases, but their specific regulatory roles in BMSC osteogenesis in hyperglycemic environments remain elucidated. In this study, in virto experiments demonstrated that PA treatment effectively improved the osteogenic capability of high glucose-mediated BMSCs. Differentially expressed circRNAs in PA-induced BMSCs were identified using circRNA microarray analysis. Here, our findings highlight an upregulation of circEIF4B expression in BMSCs stimulated with PA under a high-glucose microenvironment. Further investigations demonstrated that circEIF4B overexpression promoted high glucose-mediated BMSC osteogenesis. In contrast, circEIF4B knockdown exerted the opposite effect. Mechanistically, circEIF4B sequestered microRNA miR-186-5p and triggered osteogenesis enhancement in BMSCs by targeting FOXO1 directly. Furthermore, circEIF4B inhibited the ubiquitin-mediated degradation of IGF2BP3, thereby stabilizing ITGA5 mRNA and promoting BMSC osteogenic differentiation. In vivo experiments, circEIF4B inhibition attenuated the effectiveness of PA treatment in diabetic rats with cranial defects. Collectively, our study identifies PA as a novel positive regulator of BMSC osteogenic differentiation through the circEIF4B/miR-186-5p/FOXO1 and circEIF4B/IGF2BP3/ITGA5 axes, which offers a new strategy for treating high glucose-mediatedBMSCosteogenic dysfunction and delayed bone regeneration in diabetes.
Collapse
Affiliation(s)
- Jin Wu
- Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu Province 210029, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu Province 210029, China
| | - Xiang Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu Province 210029, China; Department of Oral and Maxillofacial Surgery Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu Province 210029, China
| | - Hepeng Nie
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu Province 210029, China; Department of General Dentistry Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu Province 210029, China
| | - Yue Shen
- Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu Province 210029, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu Province 210029, China
| | - Zixiang Guo
- Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu Province 210029, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu Province 210029, China
| | - Catherine Huihan Chu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu Province 210029, China; Department of Orthodontics Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu Province 210029, China
| | - Kunzhan Cai
- Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu Province 210029, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu Province 210029, China
| | - Chunbo Tang
- Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu Province 210029, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu Province 210029, China.
| |
Collapse
|
4
|
Hussein N, Meade J, Pandit H, Jones E, El-Gendy R. Characterisation and Expression of Osteogenic and Periodontal Markers of Bone Marrow Mesenchymal Stem Cells (BM-MSCs) from Diabetic Knee Joints. Int J Mol Sci 2024; 25:2851. [PMID: 38474098 DOI: 10.3390/ijms25052851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents a significant health problem globally and is linked to a number of complications such as cardiovascular disease, bone fragility and periodontitis. Autologous bone marrow mesenchymal stem cells (BM-MSCs) are a promising therapeutic approach for bone and periodontal regeneration; however, the effect of T2DM on the expression of osteogenic and periodontal markers in BM-MSCs is not fully established. Furthermore, the effect of the presence of comorbidities such as diabetes and osteoarthritis on BM-MSCs is also yet to be investigated. In the present study, BM-MSCs were isolated from osteoarthritic knee joints of diabetic and nondiabetic donors. Both cell groups were compared for their clonogenicity, proliferation rates, MSC enumeration and expression of surface markers. Formation of calcified deposits and expression of osteogenic and periodontal markers were assessed after 1, 2 and 3 weeks of basal and osteogenic culture. Diabetic and nondiabetic BM-MSCs showed similar clonogenic and growth potentials along with comparable numbers of MSCs. However, diabetic BM-MSCs displayed lower expression of periostin (POSTN) and cementum protein 1 (CEMP-1) at Wk3 osteogenic and Wk1 basal cultures, respectively. BM-MSCs from T2DM patients might be suitable candidates for stem cell-based therapeutics. However, further investigations into these cells' behaviours in vitro and in vivo under inflammatory environments and hyperglycaemic conditions are still required.
Collapse
Affiliation(s)
- Nancy Hussein
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds LS9 7TF, UK
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Josephine Meade
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds LS9 7TF, UK
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Reem El-Gendy
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds LS9 7TF, UK
- Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
5
|
Liu DY, Wu J, Zhou HY, Lv JX, Cai KZ, Tang CB. Phytic acid improves osteogenesis and inhibits the senescence of human bone marrow mesenchymal stem cells under high-glucose conditions via the ERK pathway. Chem Biol Interact 2024; 387:110818. [PMID: 38000455 DOI: 10.1016/j.cbi.2023.110818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Hyperglycaemia causes impairment of osteogenic differentiation and accelerates stem cell senescence, resulting in weakened osteogenesis and disordered bone metabolism. Phytic acid (PA) is an antioxidant that is reportedly beneficial to bone homeostasis. The present study aims to clarify how PA affects the osteogenic capacity and cellular senescence of bone marrow mesenchymal stem cells (BMSCs) exposed to high-glucose environments, as well as the potential molecular mechanisms. Our results indicate that osteogenic differentiation in BMSCs cultivated in high-glucose conditions is enhanced by PA, as evidenced by increased alkaline phosphatase activity and staining, Alizarin Red S staining, osteogenic marker in in vitro studies, and increased osteogenesis in animal experiments. PA also prevented high-glucose-induced senescence of BMSCs, as evidenced by the repression of reactive oxygen species production, senescence-associated β-galactosidase staining, and P21 and P53 expression. Furthermore, it was found that PA rescued the high-glucose-inhibited expression of phosphorylated extracellular regulated protein kinases (p-ERK). The inhibition of ERK pathway by the specific inhibitor PD98059 blocked the PA-enhanced osteogenesis of BMSCs and promoted cell senescence. Our results revealed that PA enhances osteogenic differentiation and inhibits BMSC senescence in a high-glucose environment. In addition, the activation of the ERK pathway seems to mediate the beneficial effects of PA. The findings provide novel insights that could facilitate bone regeneration in patients with diabetes.
Collapse
Affiliation(s)
- Dong-Yu Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - He-Yang Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jia-Xin Lv
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kun-Zhan Cai
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun-Bo Tang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Sheng N, Xing F, Wang J, Zhang QY, Nie R, Li-Ling J, Duan X, Xie HQ. Recent progress in bone-repair strategies in diabetic conditions. Mater Today Bio 2023; 23:100835. [PMID: 37928253 PMCID: PMC10623372 DOI: 10.1016/j.mtbio.2023.100835] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 10/02/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023] Open
Abstract
Bone regeneration following trauma, tumor resection, infection, or congenital disease is challenging. Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia. It can result in complications affecting multiple systems including the musculoskeletal system. The increased number of diabetes-related fractures poses a great challenge to clinical specialties, particularly orthopedics and dentistry. Various pathological factors underlying DM may directly impair the process of bone regeneration, leading to delayed or even non-union of fractures. This review summarizes the mechanisms by which DM hampers bone regeneration, including immune abnormalities, inflammation, reactive oxygen species (ROS) accumulation, vascular system damage, insulin/insulin-like growth factor (IGF) deficiency, hyperglycemia, and the production of advanced glycation end products (AGEs). Based on published data, it also summarizes bone repair strategies in diabetic conditions, which include immune regulation, inhibition of inflammation, reduction of oxidative stress, promotion of angiogenesis, restoration of stem cell mobilization, and promotion of osteogenic differentiation, in addition to the challenges and future prospects of such approaches.
Collapse
Affiliation(s)
- Ning Sheng
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Fei Xing
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Jie Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Qing-Yi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Duan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
| |
Collapse
|
7
|
Alhasan MA, Tomokiyo A, Hamano S, Sugii H, Ono T, Ipposhi K, Yamashita K, Mardini B, Minowa F, Maeda H. Hyaluronic Acid Induction Promotes the Differentiation of Human Neural Crest-like Cells into Periodontal Ligament Stem-like Cells. Cells 2023; 12:2743. [PMID: 38067170 PMCID: PMC10705959 DOI: 10.3390/cells12232743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Periodontal ligament (PDL) stem-like cells (PDLSCs) are promising for regeneration of the periodontium because they demonstrate multipotency, high proliferative capacity, and the potential to regenerate bone, cementum, and PDL tissue. However, the transplantation of autologous PDLSCs is restricted by limited availability. Since PDLSCs are derived from neural crest cells (NCs) and NCs persist in adult PDL tissue, we devised to promote the regeneration of the periodontium by activating NCs to differentiate into PDLSCs. SK-N-SH cells, a neuroblastoma cell line that reportedly has NC-like features, seeded on the extracellular matrix of PDL cells for 2 weeks, resulted in the significant upregulation of PDL marker expression. SK-N-SH cell-derived PDLSCs (SK-PDLSCs) presented phenotypic characteristics comparable to induced pluripotent stem cell (iPSC)-derived PDLSCs (iPDLSCs). The expression levels of various hyaluronic acid (HA)-related genes were upregulated in iPDLSCs and SK-PDLSCs compared with iPSC-derived NCs and SK-N-SH cells, respectively. The knockdown of CD44 in SK-N-SH cells significantly inhibited their ability to differentiate into SK-PDLSCs, while low-molecular HA (LMWHA) induction enhanced SK-PDLSC differentiation. Our findings suggest that SK-N-SH cells could be applied as a new model to induce the differentiation of NCs into PDLSCs and that the LMWHA-CD44 relationship is important for the differentiation of NCs into PDLSCs.
Collapse
Affiliation(s)
- M. Anas Alhasan
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Atsushi Tomokiyo
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-ku, Sapporo 060-8586, Japan
| | - Sayuri Hamano
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Hideki Sugii
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Taiga Ono
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Keita Ipposhi
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Kozue Yamashita
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Bara Mardini
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Fumiko Minowa
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
| | - Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (M.A.A.); (S.H.); (H.S.); (T.O.); (K.I.); (K.Y.); (B.M.); (F.M.); (H.M.)
- Department of Endodontology, Kyushu University Hospital, Fukuoka 812-8582, Japan
| |
Collapse
|
8
|
Yang Y, Liu H, Wang R, Zhao Y, Zheng Y, Huang Y, Li W. Autophagy mediates cementoblast mineralization under compression through periostin/β-catenin axis. J Cell Physiol 2023; 238:2147-2160. [PMID: 37475648 DOI: 10.1002/jcp.31075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023]
Abstract
Repair of orthodontic external root resorption and periodontal tissue dysfunction induced by mechanical force remains a clinical challenge. Cementoblasts are vital in cementum mineralization, a process important for restoring damaged cementum. Despite autophagy plays a role in mineralization under various environmental stimuli, the underlying mechanism of autophagy in mediating cementoblast mineralization remains unclear. Here we verified that murine cementoblasts exhibit compromised mineralization under compressive force. Autophagy was indispensable for cementoblast mineralization, and autophagic activation markedly reversed cementoblast mineralization and prevented cementum damage in mice during tooth movement. Subsequently, messenger RNA sequencing analyses identified periostin (Postn) as a mediator of autophagy and mineralization in cementoblasts. Cementoblast mineralization was significantly inhibited following the knockdown of Postn. Furthermore, Postn silencing suppressed Wnt signaling by modulating the stability of β-catenin. Together our results highlight the role of autophagy in cementoblast mineralization via Postn/β-catenin signaling under compressive force and may provide a new strategy for the remineralization of cementum and regeneration of periodontal tissue.
Collapse
Affiliation(s)
- Yuhui Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Hao Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Ruoxi Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Yi Zhao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| |
Collapse
|
9
|
Qin H, Cai J. Effect of periostin on bone metabolic and autophagy factors during tooth eruption in mice. Open Life Sci 2023; 18:20220663. [PMID: 37589010 PMCID: PMC10426264 DOI: 10.1515/biol-2022-0663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 08/18/2023] Open
Abstract
This study aimed to investigate the effect of periostin (PN) on the expression of receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG), microtubule-associated protein1 light chain 3B (LC3B), and Beclin1 in mouse alveolar bone specimens and cultured osteoblasts in vitro, to preliminarily explore the role of PN and autophagy in remodeling bone metabolism during tooth eruption. Mice at 5 days of age were injected with 75 ng/mL recombinant PN protein under the periosteum for 3 consecutive days according to the standard of 1 mL/100 g/day. Then, their mandibles were removed, and the expression of bone metabolic and autophagy factors was detected by immunohistochemistry. Mouse osteoblast-like cells cultured in vitro were treated with recombinant PN at a concentration of 75 ng/mL. The changes in the aforementioned indicators were compared again by immunofluorescence and western blotting 72 h after dosing. The results of the mouse samples showed that the protein expression of RANKL, LC3B, and Beclin1 decreased, accompanied by the decrease in RANKL/OPG ratio. However, OPG protein expression increased in the dosing group. Immunofluorescence and western blotting results of osteoblasts cultured in vitro showed that the protein expression of RANKL, LC3B, Beclin1, and the RANKL/OPG ratio in the experimental group decreased, but OPG expression increased. PN may regulate alveolar bone metabolism during tooth eruption by inhibiting the RANKL/OPG ratio and autophagy, which will provide a new research perspective for further exploration of the mechanisms during tooth eruption.
Collapse
Affiliation(s)
- Han Qin
- Department of Stomatology, The Lianyungang Affiliated Hospital of Xuzhou Medical University, #182 Tongguan Road, Lianyungang222002, Jiangsu Province, China
| | - Jun Cai
- Department of Anesthesia, The Maternal and Child Health Hospital of Lianyungang City, Lianyungang222006, Jiangsu Province, China
| |
Collapse
|
10
|
Luo M, Zhao Z, Yi J. Osteogenesis of bone marrow mesenchymal stem cell in hyperglycemia. Front Endocrinol (Lausanne) 2023; 14:1150068. [PMID: 37415664 PMCID: PMC10321525 DOI: 10.3389/fendo.2023.1150068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Diabetes mellitus (DM) has been shown to be a clinical risk factor for bone diseases including osteoporosis and fragility. Bone metabolism is a complicated process that requires coordinated differentiation and proliferation of bone marrow mesenchymal stem cells (BMSCs). Owing to the regenerative properties, BMSCs have laid a robust foundation for their clinical application in various diseases. However, mounting evidence indicates that the osteogenic capability of BMSCs is impaired under high glucose conditions, which is responsible for diabetic bone diseases and greatly reduces the therapeutic efficiency of BMSCs. With the rapidly increasing incidence of DM, a better understanding of the impacts of hyperglycemia on BMSCs osteogenesis and the underlying mechanisms is needed. In this review, we aim to summarize the current knowledge of the osteogenesis of BMSCs in hyperglycemia, the underlying mechanisms, and the strategies to rescue the impaired BMSCs osteogenesis.
Collapse
Affiliation(s)
- Meng Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Pickering ME, Oris C, Chapurlat R. Periostin in Osteoporosis and Cardiovascular Disease. J Endocr Soc 2023; 7:bvad081. [PMID: 37362382 PMCID: PMC10285762 DOI: 10.1210/jendso/bvad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Indexed: 06/28/2023] Open
Abstract
Context Osteoporosis (OP) and cardiovascular disease (CVD), prevalent disorders worldwide, often coexist and share common risk factors. The identification of common biomarkers could significantly improve patients' preventive care. Objectives The objectives are 1, to review periostin (Postn) involvement in osteoporosis and in CVD, and 2, identify if Postn could be a common biomarker. Design This is a scoping review on Postn in OP and CVD. Methods Databases were searched, in vitro and in vivo, for publications in English on Postn, bone, and the cardiovascular system, with no limit regarding publication date. Results Postn appears as a key factor in OP and CVD. Its role as a potential biomarker in both pathologies is described in recent studies, but a number of limitations have been identified. Conclusions Current evidence provides fragmented views on Postn in OP and CVD and does not encapsulate Postn as a common pivotal thread linking these comorbidities. A number of gaps impede highlighting Postn as a common biomarker. There is room for future basic and clinical research with Postn as a marker and a target to provide new therapeutic options for aging patients with concomitant OP and CVD.
Collapse
Affiliation(s)
- Marie-Eva Pickering
- Correspondence: Marie-Eva Pickering, MD, Rheumatology Department, CHU Gabriel Montpied, 58 rue Montalembert, 63000 Clermont-Ferrand, France.
| | - Charlotte Oris
- Service de Biologie, CHU Gabriel Montpied, 63000 Clermont-Ferrand, France
| | - Roland Chapurlat
- Service de Rhumatologie, Hospices Civils de Lyon, 69437 Lyon, Cedex 03, France
- Inserm UMR 1033, 69437 Lyon, Cedex 03, France
| |
Collapse
|
12
|
Wei X, Liu Q, Liu L, Tian W, Wu Y, Guo S. Periostin plays a key role in maintaining the osteogenic abilities of dental follicle stem cells in the inflammatory microenvironment. Arch Oral Biol 2023; 153:105737. [PMID: 37320885 DOI: 10.1016/j.archoralbio.2023.105737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
OBJECTIVE This study aimed to explore the effect of periostin in the osteogenic abilities of dental follicle stem cells (DFSCs) and DFSC sheets in the inflammatory microenvironment. DESIGN DFSCs were isolated from dental follicles and identified. A lentiviral vector was used to knock down periostin in DFSCs. 250 ng/ml lipopolysaccharide from Porphyromonas gingivalis (P.g-LPS) was used to construct the inflammatory microenvironment. Osteogenic differentiation was evaluated by alizarin red staining, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot. The formation of extracellular matrix was assessed by qRT-PCR and immunofluorescence. The expressions of receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) were measured by western blot. RESULTS Knockdown of periostin inhibited osteogenic differentiation and promoted adipogenic differentiation of DFSCs. In an inflammatory microenvironment, knockdown of periostin attenuated the proliferation and osteogenic differentiation of DFSCs. Knockdown of periostin inhibited the formation of extracellular matrix collagen I (COL-I), fibronectin, and laminin in DFSC sheets, but did not affect the expression of osteogenesis-related markers alkaline phosphatase (ALP) and osteocalcin (OCN). In the inflammatory microenvironment, knocking down periostin inhibited the expression of OCN and OPG in DFSC sheets, and promoted the expression of RANKL. CONCLUSION Periostin played a key role in maintaining the osteogenic abilities of DFSCs and DFSC sheets in the inflammatory microenvironment and might be an important molecule in the process of DFSCs coping with inflammatory microenvironment and promoting periodontal tissues regeneration.
Collapse
Affiliation(s)
- Xiuqun Wei
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Qian Liu
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Li Liu
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| | - Shujuan Guo
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
13
|
Lin Y, Jin L, Yang Y. Periodontal ligament cells from patients with treated stable periodontitis: Characterization and osteogenic differentiation potential. J Periodontal Res 2023; 58:237-246. [PMID: 36567428 DOI: 10.1111/jre.13085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/22/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontal ligament progenitor cells (PDL cells) isolated from patients with inflammatory periodontitis have impaired regenerative capacity, but it is unknown whether this capacity can be recovered upon treatment and stabilization of the periodontal condition. The study aimed to investigate the expression of surface markers and the proliferation and osteogenic potential of PDL cells isolated from patients with treated stable periodontitis (S-PDL cells), periodontally healthy individuals (H-PDL cells), and patients with inflammatory periodontitis (I-PDL cells). METHODS H-PDL, I-PDL, and S-PDL cells were isolated from the extracted teeth of individuals who (1) were periodontally healthy, (2) had inflammatory periodontitis, and (3) had treated stable periodontitis, respectively. The expression levels of surface markers and the proliferative and osteogenic capacities of the PDL cells were assessed. RESULTS PDL cells derived from all three sources exhibited mesenchymal stem cell (MSC) characteristics. They were positive for MSC-related markers and negative for a hematopoiesis-related marker. However, S-PDL cells had higher proliferation rates, higher expression levels of osteogenic markers, higher alkaline phosphatase activity, and more calcium nodules than I-PDL cells. But all of these parameters remained lower in S-PDL cells than in H-PDL cells. CONCLUSIONS S-PDL cells proliferated faster and had greater osteogenic potential than I-PDL cells, although these values remained lower than those in H-PDL cells.
Collapse
Affiliation(s)
- Yifan Lin
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Lijian Jin
- Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yanqi Yang
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
14
|
Wei X, Guo S, Liu Q, Liu L, Huo F, Wu Y, Tian W. Dental Follicle Stem Cells Promote Periodontal Regeneration through Periostin-Mediated Macrophage Infiltration and Reprogramming in an Inflammatory Microenvironment. Int J Mol Sci 2023; 24:ijms24076353. [PMID: 37047322 PMCID: PMC10094259 DOI: 10.3390/ijms24076353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Dental follicle stem cells (DFSCs) have been verified to promote periodontal regeneration in an inflammatory microenvironment. When coping with inflammatory stimulation, DFSCs highly express periostin, a bioactive molecule closely related to periodontal homeostasis. It is worth exploring whether and how periostin plays a role in the promotion of periodontal regeneration by DFSCs. By tracking the fate of DFSCs, it was found that DFSCs significantly contributed to periodontal regeneration in rat periodontal defects while they had a low survival rate. They highly expressed periostin and improved the immune microenvironment in the defect area, especially via the recruitment and reprogramming of macrophages. Silencing periostin attenuated the effects of DFSCs in promoting periodontal regeneration and regulating macrophages. Recombinant human periostin (rhPeriostin) could not only directly promote macrophage reprogramming through the integrin αM/phosphorylated extracellular signal-regulated kinase (p-Erk)/Erk signaling pathway, but it also exhibited the potential to promote periodontal regeneration in rats when loaded in a collagen matrix. These results indicated that periostin is actively involved in the process by which DFSCs promote periodontal regeneration through the regulation of macrophages and is a promising molecular agent to promote periodontal regeneration. This study provides new insight into the mechanism by which DFSCs promote periodontal regeneration and suggests a new approach for periodontal regeneration therapy.
Collapse
Affiliation(s)
- Xiuqun Wei
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shujuan Guo
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qian Liu
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Liu
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Fangjun Huo
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (Y.W.); (W.T.)
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (Y.W.); (W.T.)
| |
Collapse
|
15
|
Xu X, Zhou Y, Zheng K, Li X, Li L, Xu Y. 3D Polycaprolactone/Gelatin-Oriented Electrospun Scaffolds Promote Periodontal Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46145-46160. [PMID: 36197319 DOI: 10.1021/acsami.2c03705] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Periodontitis is a worldwide chronic inflammatory disease, where surgical treatment still shows an uncertain prognosis. To break through the dilemma of periodontal treatment, we fabricated a three-dimensional (3D) multilayered scaffold by stacking and fixing electrospun polycaprolactone/gelatin (PCL/Gel) fibrous membranes. The biomaterial displayed good hydrophilic and mechanical properties. Besides, we found human periodontal ligament stem cell (hPDLSC) adhesion and proliferation on it. The following scanning electron microscopy (SEM) and cytoskeleton staining results proved the guiding function of fibers to hPDLSCs. Then, we further analyzed periodontal regeneration-related proteins and mRNA expression between groups. In vivo results in a rat acute periodontal defect model confirmed that the topographic cues of materials could directly guide cellular orientation and might provide the prerequisite for further differentiation. In the aligned scaffold group, besides new bone regeneration, we also observed that angular concentrated fiber regeneration in the root surface of the defect is similar to the normal periodontal tissue. To sum up, we have constructed electrospun membrane-based 3D biological scaffolds, which provided a new treatment strategy for patients undergoing periodontal surgery.
Collapse
Affiliation(s)
- Xuanwen Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing210029, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing210029, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing210029, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing210029, China
| | - Kai Zheng
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing210029, China
| | - Xinyu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing210029, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing210029, China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing210029, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing210029, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing210029, China
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing210029, China
| |
Collapse
|
16
|
Qin H, Cai J. Effect of periostin on autophagy and factors related to bone metabolism in osteoblasts. J MECH MED BIOL 2022. [DOI: 10.1142/s0219519422400310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Wang J, Qu X, Xu C, Zhang Z, Qi G, Jin Y. Thermoplasmonic Regulation of the Mitochondrial Metabolic State for Promoting Directed Differentiation of Dental Pulp Stem Cells. Anal Chem 2022; 94:9564-9571. [PMID: 35762532 DOI: 10.1021/acs.analchem.2c00288] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulating stem cell differentiation in a controllable way is significant for regeneration of tissues. Herein, we report a simple and highly efficient method for accelerating the stem cell differentiation of dental pulp stem cells (DPSCs) based on the synergy of the electromagnetic field and the photothermal (thermoplasmonic) effect of plasmonic nanoparticles. By simple laser irradiation at 50 mW/cm2 (10 min per day, totally for 5 days), the thermoplasmonic effect of Au nanoparticles (AuNPs) can effectively regulate mitochondrial metabolism to induce the increase of mitochondrial membrane potential and further drive energy increase during the DPSC differentiation process. The proposed method can specifically regulate DPSCs' cell differentiation toward odontoblasts, with the differentiation time reduced to only 5 days. Simultaneously, the molecular profiling change of mitochondria within DPSCs during the cell differentiation process is revealed by in situ surface-enhanced Raman spectroscopy. It clearly demonstrates that the expression of hydroxyproline and glutamate gradually increases with prolonging of the differentiation days. The developed method is simple, robust, and rapid for stem cell differentiation of DPSCs, which would be beneficial to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jiafeng Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,School and Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, P. R. China
| | - Xiaozhang Qu
- The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Chen Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Zhimin Zhang
- School and Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, P. R. China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| |
Collapse
|
18
|
Wang QN, Yan YZ, Zhang XZ, Lv JX, Nie HP, Wu J, Wu D, Yuan SS, Tang CB. Rescuing effects of periostin in advanced glycation end-products (AGEs) caused osteogenic and oxidative damage through AGE receptor mediation and DNA methylation of the CALCA promoter. Chem Biol Interact 2022; 354:109835. [PMID: 35090876 DOI: 10.1016/j.cbi.2022.109835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 11/19/2022]
Abstract
An in vitro model was established to simulate a diabetes-type environment by treating human periodontal stem cells with advanced glycation end-products (AGEs). Periostin (POSTN) plays a crucial role in maintaining the integrity of periodontal tissues. However, the role of POSTN in human periodontal stem cells stimulated by AGEs remains unknown. Diabetes mellitus is considered a metabolic disease, and DNA methylation of CpG islands is a biomarker of metabolic syndromes. Diabetes has been found to be closely related to the DNA methylation of certain genes. Here, we investigated the protective mechanism and effect of POSTN on osteogenesis and oxidative stress in the AGE environment, and further explored the CpG island methylation of specific genes potentially mediated by POSTN. The optimal concentration of AGEs was screened using CCK8. AGEs were found to contribute to oxidative stress. Conversely, reactive oxygen species production and malondialdehyde and superoxide activity indicated that the AGE + POSTN group decreased oxidative injury. According to an alkaline phosphatase assay, Alizarin Red S staining, and the expression of key genes and proteins involved in osteogenesis, POSTN mitigated the inhibitory effects of AGE on cell proliferation and osteogenic differentiation potential during osteogenic differentiation. In contrast, the growth and osteogenesis of human periodontal stem cells were notably suppressed by POSTN knockdown. Bisulfite sequencing PCR was used to evaluate the DNA methylation status. Moreover, AGE elevated the expression of DNA methyltransferas 1 (DNMT1) and inhibited the activation of CALAL promoter methylation, which was rescued by the addition of POSTN and 5-Azacytidine (5-AZA). In conclusion, POSTN attenuated the AGE-induced inhibition of osteogenesis in periodontal ligament stem cells by reducing AGE receptor levels and DNA methylation of the calcitonin-related polypeptide α (CALCA) promoter. Thus, POSTN is a promising candidate for dental bone regeneration, representing a novel therapeutic agent for diabetic patients. The mechanism underlying these processes may provide new insights into novel therapeutic targets for improving abnormal bone metabolism in patients with diabetes.
Collapse
Affiliation(s)
- Qiao-Na Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Oral Special Consultation, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Yan-Zhe Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Xiao-Zhen Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Jia-Xin Lv
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - He-Peng Nie
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Jin Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Di Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Shan-Shan Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China
| | - Chun-Bo Tang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, China.
| |
Collapse
|
19
|
The Effect of Diabetes Mellitus on IGF Axis and Stem Cell Mediated Regeneration of the Periodontium. Bioengineering (Basel) 2021; 8:bioengineering8120202. [PMID: 34940355 PMCID: PMC8698546 DOI: 10.3390/bioengineering8120202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Periodontitis and diabetes mellitus (DM) are two of the most common and challenging health problems worldwide and they affect each other mutually and adversely. Current periodontal therapies have unpredictable outcome in diabetic patients. Periodontal tissue engineering is a challenging but promising approach that aims at restoring periodontal tissues using one or all of the following: stem cells, signalling molecules and scaffolds. Mesenchymal stem cells (MSCs) and insulin-like growth factor (IGF) represent ideal examples of stem cells and signalling molecules. This review outlines the most recent updates in characterizing MSCs isolated from diabetics to fully understand why diabetics are more prone to periodontitis that theoretically reflect the impaired regenerative capabilities of their native stem cells. This characterisation is of utmost importance to enhance autologous stem cells based tissue regeneration in diabetic patients using both MSCs and members of IGF axis.
Collapse
|
20
|
Huang B, Bi W, Sun Y, Li R, Wu X, Yu Y. AdipoRon Promotes the Osseointegration of Dental Implants in Mice With Type 2 Diabetes Mellitus. Front Physiol 2021; 12:697738. [PMID: 36632609 PMCID: PMC9829077 DOI: 10.3389/fphys.2021.697738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/30/2021] [Indexed: 01/14/2023] Open
Abstract
AdipoRon is an oral active synthetic small molecule with biological functions similar to adiponectin (APN). It is an APN receptor agonist that can improve insulin resistance and glucose intolerance. However, the role of AdipoRon in bone metabolism and related molecular mechanisms remains to be investigated. To explore the effect of AdipoRon on bone absorption and bone integration of type 2 diabetes mellitus (T2DM) mice with implants, we established surgery-induced model of osseointegration of dental implantation in T2DM mice of C57BL/6 db/db and normal mice homologous to diabetic mice. Micro-CT was used to analyze the femurs with the implant in the mice to detect the bone mass, H&E, and tartrate-resistant acid phosphatase (TRAP), and Safranin O-fast green staining was performed to analyze the bone formation and bone resorption. Bone integration-related markers as Rankl, bone morphogenetic protein 2 (BMP2), osteoprotegerin (OPG), osteopontin (OPN), and runt-related transcription factor 2 (Runx2) were also measured using immunohistochemistry. Our results indicated that diabetic mice showed a lower bone mass and decreased the osteoblast differentiation. AdipoRon attenuated diabetes-impaired bone volume (BV)/total volume (TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), and bone integration-related markers variation and promoted bone hyperplasia as well as repressed the osteoclast formation, especially in diabetic mice. AdipoRon may improve the osseointegration of dental implants in mice with T2DM by promoting osteogenesis and inhibiting bone resorption, and AdipoRon may serve as a promising oral strategy to improve the osseointegration ability of patients with diabetes.
Collapse
|
21
|
Zhao Y, Liu H, Xi X, Chen S, Liu D. TRIM16 protects human periodontal ligament stem cells from oxidative stress-induced damage via activation of PICOT. Exp Cell Res 2020; 397:112336. [PMID: 33091421 DOI: 10.1016/j.yexcr.2020.112336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 02/09/2023]
Abstract
Periodontitis is a chronic inflammatory disease that result in severe loss of supporting structures and substantial tooth loss. Oxidative stress is tightly involved in the progression of periodontitis. Tripartite Motif 16 (TRIM16) has been identified as a novel regulatory protein in response to oxidative and proteotoxic stresses. The present study aimed to investigate the role of TRIM16 in human periodontal ligament stem cells (hPDLSCs) under oxidative stress. First, we found that the expression of TRIM16 decreased after exposure to H2O2. Then TRIM16 overexpression alleviated H2O2-induced oxidative stress by enhancing antioxidant capacity and reducing the amount of intracellular reactive oxygen species (ROS) and reactive nitrogen species (RNS). TRIM16 increased cell viability, inhibited cell apoptosis and the depolarization of the mitochondrial membrane potential in hPDLSCs. Furthermore, TRIM16 attenuated H2O2-induced suppression of osteogenic differentiation. Mechanistically, TRIM16 promoted the activation of protein kinase C (PKC)-interacting cousin of thioredoxin (PICOT), p-Akt and Nrf2, while knockdown of PICOT reversed TRIM16-mediated ROS resistance and decreased the expression of p-Akt and Nrf2. In conclusion, TRIM16 alleviated oxidative damage in hPDLSCs via the activation of PICOT/Akt/Nrf2 pathway, suggesting that TRIM16 could be a promising target to develop effective therapies for periodontitis.
Collapse
Affiliation(s)
- Yi Zhao
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Hong Liu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Xun Xi
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Shuai Chen
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Dongxu Liu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China.
| |
Collapse
|