1
|
Sun L, Chen X, Li F, Liu S. Construction and significance of a breast cancer prognostic model based on cuproptosis-related genotyping and lncRNAs. J Formos Med Assoc 2024:S0929-6646(24)00243-2. [PMID: 38772805 DOI: 10.1016/j.jfma.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 03/18/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND /Purpose: Cuproptosis may play a significant role in breast cancer (BC). We aimed to investigate the prognostic impact of cuproptosis-related lncRNAs in BC. METHODS Consensus clustering analysis categorized TCGA-BRCA samples into 3 clusters, followed by survival and immune analyses of the 3 clusters. LASSO-COX analysis was performed on cuproptosis-related lncRNAs differentially expressed in BC to construct a BC prognostic model. Gene Ontology/Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) enrichment, immune, and drug prediction analyses were performed on the high-risk and low-risk groups. Cell experiments were conducted to analyze the results of drug prediction and two cuproptosis-related lncRNAs (AC104211.1 and LINC01863). RESULTS Significant differences were observed in survival outcomes and immune infiltration levels among the three clusters (p < 0.05). The validation of the model showed significant differences in survival outcomes between the high-risk and low-risk groups in both the training and validation sets (p < 0.05). Differential mRNAs between the two groups were significantly enriched in the Neuroactive ligand-receptor interaction and cAMP signaling pathway. Additionally, significant differences were found in immune infiltration levels, human leukocyte antigen (HLA) expression, Immunophenoscore (IPS) scores, and Tumor Immune Dysfunction and Exclusion (TIDE) scores between the two groups (p < 0.05). Drug prediction and corresponding cell experimental results showed that Trametinib, 5-fluorouracil, and AICAR significantly inhibited the viability of MCF-7 cells (p < 0.05). AC104211.1 and LINC01863 were found to impact the proliferation of BC cells. CONCLUSION The risk-scoring model obtained in this study may serve as a robust prognostic biomarker, potentially aiding in clinical decision-making for BC patients.
Collapse
Affiliation(s)
- Lu Sun
- Department of Breast Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, Guangdong, China
| | - Xinxu Chen
- Department of the Breast and Thyroid Surgery, Guiqian International General Hospital, 550018, Guiyang, China
| | - Fei Li
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, Fujian, China
| | - Shengchun Liu
- Department of Breast Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, Guangdong, China.
| |
Collapse
|
2
|
Zhang J, Li Y, Yang Y, Huang J, Sun Y, Zhang X, Kong X. A novel iTreg-related signature for prognostic prediction in lung adenocarcinoma. Cancer Sci 2024; 115:109-124. [PMID: 38015097 PMCID: PMC10823293 DOI: 10.1111/cas.16015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/09/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer. Most patients are diagnosed at an advanced stage, therefore it is crucial to identify novel prognostic biomarkers for LUAD. As important regulatory cells, inducible regulatory T cells (iTregs) play a vital role in immune suppression and are important for the maintenance of immune homeostasis. This study explored the prognostic value and therapeutic effects of iTreg-related genes in LUAD. Data for LUAD patients, including immune infiltration data, RNA sequencing data, and clinical features, were acquired from The Cancer Genome Atlas, Gene Expression Omnibus, and Tumor Immune Single-cell Hub 2 databases. Immune-related subgroups with different infiltration patterns and iTreg-related genes were identified through univariate and multivariate Cox regression analyses and weighted correlation network analysis. Functional enrichment analyses were performed to explore the underlying mechanisms of iTreg-related genes. A prognostic risk signature was constructed using Cox regression analysis with the least absolute shrinkage and selection operator penalty. The ESTIMATE algorithm was applied to determine the immune status of LUAD patients. We applied the constructed signature to predict chemosensitivity and performed single-cell RNA sequencing analysis. The infiltration of iTregs was identified as an independent factor for predicting patient outcomes. We constructed a prognostic signature based on seven iTreg-related genes (GIMAP5, SLA, MS4A7, ZNF366, POU2AF1, MRPL12, and COL5A1), which was applied to subdivide patients into high- and low-risk subgroups. Our results revealed that patients in the iTreg-related low-risk subgroup had a better prognosis and possibly greater sensitivity to traditional chemotherapy. Our study provides a novel iTreg-related signature to elucidate the mechanisms underlying LUAD prognosis and promote individualized chemotherapy treatment.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Thoracic SurgeryHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Yan Li
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Yue Yang
- Institute of Cancer Prevention and Treatment, Harbin Medical UniversityHarbinHeilongjiangChina
| | - Jian Huang
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Yue Sun
- The Academic Department of Science and TechnologyHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Xi Zhang
- Department of AnaesthesiologyHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Xianglong Kong
- Department of Thoracic SurgeryHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| |
Collapse
|
3
|
Betzler AC, Brunner C. The Role of the Transcriptional Coactivator BOB.1/OBF.1 in Adaptive Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:53-77. [PMID: 39017839 DOI: 10.1007/978-3-031-62731-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
BOB.1/OBF.1 is a transcriptional coactivator involved in octamer-dependent transcription. Thereby, BOB.1/OBF.1 is involved in the transcriptional regulation of genes important for lymphocyte physiology. BOB.1/OBF.1-deficient mice reveal multiple B- and T-cell developmental defects. The most prominent defect of these mice is the complete absence of germinal centers (GCs) resulting in severely impaired T-cell-dependent immune responses. In humans, BOB.1/OBF.1 is associated with several autoimmune and inflammatory diseases but also linked to liquid and solid tumors. Although its role for B-cell development is relatively well understood, its exact role for the GC reaction and T-cell biology has long been unclear. Here, the contribution of BOB.1/OBF.1 for B-cell maturation is summarized, and recent findings regarding its function in GC B- as well as in various T-cell populations are discussed. Finally, a detailed perspective on how BOB.1/OBF.1 contributes to different pathologies is provided.
Collapse
Affiliation(s)
- Annika C Betzler
- Department of Oto-Rhino-Larnygology, Ulm University Medical Center, Ulm, Germany
- Core Facility Immune Monitoring, Ulm University, Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Larnygology, Ulm University Medical Center, Ulm, Germany.
- Core Facility Immune Monitoring, Ulm University, Ulm, Germany.
| |
Collapse
|
4
|
Alchahin AM, Tsea I, Baryawno N. Recent Advances in Single-Cell RNA-Sequencing of Primary and Metastatic Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2023; 15:4734. [PMID: 37835428 PMCID: PMC10571653 DOI: 10.3390/cancers15194734] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Over the past two decades, significant progress has been made in the treatment of clear cell renal cell carcinoma (ccRCC), with a shift towards adopting new treatment approaches ranging from monotherapy to triple-combination therapy. This progress has been spearheaded by fundamental technological advancements that have allowed a deeper understanding of the various biological components of this cancer. In particular, the rapid commercialization of transcriptomics technologies, such as single-cell RNA-sequencing (scRNA-seq) methodologies, has played a crucial role in accelerating this understanding. Through precise measurements facilitated by these technologies, the research community has successfully identified and characterized diverse tumor, immune, and stromal cell populations, uncovering their interactions and pathways involved in disease progression. In localized ccRCC, patients have shown impressive response rates to treatment. However, despite the emerging findings and new knowledge provided in the field, there are still patients that do not respond to treatment, especially in advanced disease stages. One of the key challenges lies in the limited study of ccRCC metastases compared to localized cases. This knowledge gap may contribute to the relatively low survival rates and response rates observed in patients with metastatic ccRCC. To bridge this gap, we here delve into recent research utilizing scRNA-seq technologies in both primary and metastatic ccRCC. The goal of this review is to shed light on the current state of knowledge in the field, present existing treatment options, and emphasize the crucial steps needed to improve survival rates, particularly in cases of metastatic ccRCC.
Collapse
Affiliation(s)
| | | | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 10000-19999 Stockholm, Sweden; (A.M.A.); (I.T.)
| |
Collapse
|
5
|
Shao B, Ye Z, Sun B, Xiao Z. Molecular Evolutionary Landscape of the Immune Microenvironment of Head and Neck Cancer. Biomolecules 2023; 13:1120. [PMID: 37509156 PMCID: PMC10377423 DOI: 10.3390/biom13071120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Head and neck cancer is a highly heterogeneous malignant tumor. Numerous studies have shown that the immune microenvironment of head and neck cancer has a significant impact on its occurrence and development, as well as its prognosis. However, there have been fewer studies related to the accurate immunophenotyping of head and neck cancer. In this study, we used gene expression profile information and clinical information from the TCGA-HNSC cohort (502 samples) and the GSE655858 cohort (270 samples) to identify and independently validate three immune subtypes (Cluster1-Cluster3) with different immune-related molecular profiles and clinical outcomes. Cluster2, which is mainly dominated by B-lymphocyte infiltration, was found to have the best prognosis. In addition, a support vector machine (SVM)-based classifier was constructed, which could accurately classify HNSC based on 19 genes. Furthermore, the results of the prognostic analysis showed activation of antibody-secreting B-lymphocyte function, which showed a good prognostic effect in all three immune subtypes of HNSC. Finally, the immune evolutionary landscape of HNSC was constructed in an attempt to explain the evolutionary pattern of the immune subtypes of HNSC. In summary, we provide a conceptual framework for understanding the tumor immune microenvironment in HNSC and demonstrate the importance of immune infiltration of B lymphocytes in HNSC. Further research is needed to assess the importance of these immunophenotypes in combination drug therapy and to provide a basis for screening appropriate patients for immunotherapy.
Collapse
Affiliation(s)
- Baoyi Shao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zheng Ye
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
6
|
Li J, Li L, Mahesutihan G, Meng J, Chen Y, Lv J. Identification of STAT5B as a biomarker associated with prognosis and immune infiltration in breast cancer. Medicine (Baltimore) 2023; 102:e32972. [PMID: 36862902 PMCID: PMC9981440 DOI: 10.1097/md.0000000000032972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Breast invasive cancer (BRCA) is the most common malignancy and the second leading cause of malignancy death among women. Signal transducers and activators of transcription (STAT) family played a vital role in regulating certain biological processes and could serve as biomarkers for many diseases or cancers. METHODS The expression, prognostic value, and clinical functions of STAT family in BRCA were evaluated with several bioinformatics web portals. RESULTS The expression of STAT5A/5B were downregulated in BRCA in subgroup analyses based on race, age, gender, race, subclasses, tumor histology, menopause status, nodal metastasis status, and TP53 mutation. BRCA patients with high STAT5B expression had a better overall survival, relapse free survival, MDFS and post progression survival. STAT5B expression level can impact the prognosis in BRCA patients with positive PR status, negative Her2 status and wild type TP53. Moreover, STAT5B was positively correlated with immune cell infiltration and the level of immune biomarkers. Drug sensitivity revealed that low STAT5B expression was resistant to the many small molecules or drugs. Functional enrichment analysis revealed that STAT5B was involved in adaptive immune response, translational initiation, JAK-STAT signaling pathway, Ribosome, NF-kappa B signaling pathway and Cell adhesion molecules. CONCLUSIONS STAT5B was a biomarker associated with prognosis and immune infiltration in breast cancer.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Pharmacy, Branch of the First Affiliated Hospital of Xinjiang Medical University, Changji, Xinjiang, China
| | - Li Li
- Department of Party and government, Branch of the First Affiliated Hospital of Xinjiang Medical University, Changji, Xinjiang, China
| | - Gulijiang Mahesutihan
- Department of Pharmacy, Branch of the First Affiliated Hospital of Xinjiang Medical University, Changji, Xinjiang, China
| | - Juanjuan Meng
- Department of Oncology, Branch of the First Affiliated Hospital of Xinjiang Medical University, Changji, Xinjiang, China
| | - Yuan Chen
- Department of Information, Changji People’s Hospital, Changji, Xinjiang, China
| | - Jingsen Lv
- Forevergen Biosciences Center, Guangzhou, Guangdong, China
- * Correspondence: Jingsen Lv, Forevergen Biosciences Center, No.6 Helix 3rd Road, Guangzhou International Biological Island, Huangpu District, Guangzhou 510000, Guangdong, China (e-mail: )
| |
Collapse
|
7
|
Pan-cancer analysis based on epigenetic modification explains the value of HJURP in the tumor microenvironment. Sci Rep 2022; 12:20871. [PMID: 36460821 PMCID: PMC9718852 DOI: 10.1038/s41598-022-25439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
To analyze the expression levels, prognostic value and immune infiltration association of Holliday junction protein (HJURP) as well as its feasibility as a pan-cancer biomarker for different cancers. The Protter online tool was utilized to obtain the localization of HJURP, then the methylation of HJURP in tumors were further explored. Thereafter, the mRNA data and clinical characteristics of 33 tumor types from TCGA database were obtained to investigate the expression and prognostic relationship of HJURP in different tumor types. Finally, the composition pattern and immune infiltration of HJURP in different tumors were detected in Tumor Immune Estimation Resource. HJURP was abnormally expressed in most of the cancer types and subtypes in TCGA database. Also, it was associated with poor prognosis of different cohorts. At the same time, the results also showed that HJURP was related to tumor immune evasion through different mechanisms, including T cell rejection and methylation in different cancer types. Besides, the methylation of HJURP was inversely proportional to mRNA expression levels, which mediated the dysfunctional phenotypes of T cells and poor prognosis of different cancer types. Alternatively, our results indicated that HJURP expression was associated with immune cell infiltration in a variety of cancers. HJURP may serve as an oncogenic molecule, and its expression and immune infiltration characteristics can be used as a biomarker for cancer detection, prognosis, treatment design and follow-up.
Collapse
|
8
|
Zhang F, Liang J, Lu Y, Tang Y, Liu S, Wu K, Zhang F, Lu Y, Liu Z, Wang X. Macrophage-Specific Cathepsin as a Marker Correlated with Prognosis and Tumor Microenvironmental Characteristics of Clear Cell Renal Cell Carcinoma. J Inflamm Res 2022; 15:6275-6292. [DOI: 10.2147/jir.s375250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
|
9
|
Zhang J, Hou W, Zuo J, Huang Z, Ding X, Bu X. CXCL2 acts as a prognostic biomarker and associated with immune infiltrates in stomach adenocarcinoma. Medicine (Baltimore) 2022; 101:e31096. [PMID: 36281171 PMCID: PMC9592451 DOI: 10.1097/md.0000000000031096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND STAD ranked 5th most common in the incidence of malignant tumors and 3rd most common in the death rate of cancer worldwide. CXC chemokines affect the biological progress of various tumors, resulting in therapeutic failure. The role of CXCL2 in STAD was still a mystery. METHODS The expression, prognostic value, and clinical function of CXCL2 were analyzed using several online bioinformatics tools and clinical tissues. RESULTS CXCL2 level was significantly upregulated in STAD tissues. Strong correlation was obtained between CXCL2 level and immune cells as well as immune biomarkers. High CXCL2 expression in STAD was correlated with a favorable prognosis. Further analysis revealed that CXCL2, pTNM stage and age were independent factors affecting the prognosis of STAD patients. A predictive nomogram indicated that the calibration plots for the 1-year, 3-year and 5-year OS rates were predicted relatively well compared with an ideal model in the entire cohort. Validation analysis revealed that CXCL2 expression was upregulated in STAD and high CXCL2 level had a better overall survival. CXCL2 was associated with resistance to numerous drugs or small molecules in STAD. CONCLUSIONS We identified CXCL2 as a novel therapeutic target and associated with immune infiltration in STAD.
Collapse
Affiliation(s)
- Jingxin Zhang
- Department of General Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Wenji Hou
- Department of General Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Junbo Zuo
- Department of General Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Zhenhua Huang
- Department of General Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Xin Ding
- Department of General Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Xuefeng Bu
- Department of General Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Xuefeng Bu, Department of General Surgery, Affiliated People’s Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212001, China (e-mail: )
| |
Collapse
|
10
|
Ataş MN, Ertuğrul B, İplik ES, Çakmakoğlu B, Ergen A. The inhibitory effect of betulinic acid on epithelial-mesenchymal transition pathway in renal cell carcinoma. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:170. [PMID: 35972672 DOI: 10.1007/s12032-022-01775-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022]
Abstract
Renal cancer is the most lethal urological cancer and characterized by high metastasis rate at initial diagnosis and drug resistance to current chemotherapeutics. Betulinic acid is a pentacyclic triterpene with broad biological activity that occurs naturally in variety of plants. Even though the anti-cancer efficacy of betulinic acid have been reported by many studies, the information about the pathways and the molecules which are affected by betulinic acid in renal cancer are limited. Epithelial-mesenchymal transition (EMT) is considered as the initial step of metastasis and contributes to drug resistance of cancer cells. Depending on the role of EMT in cancer progression and drug resistance, targeting EMT may represent an effective strategy in this context. Therefore, we aimed to investigate the anti-metastatic effects of betulinic acid on renal cell carcinoma cells by evaluating two EMT markers, SNAIL-1, and SDC-2. Following the treatment of betulinic acid at determined doses by WST-1 cytotoxicity assay in our previous study, SDC-2 expression level was decreased in both cell lines. Additionally, in correlation with this result, we also found a reduction in SDC-2 and SNAIL-1 protein levels which are measured by ELISA. Furthermore, the migration and invasion capacities were suppressed by betulinic acid treatment in metastatic renal adenocarcinoma ACHN cells. Taken together, our findings indicate that betulinic acid may constitute a potential treatment approach for renal cancer with further investigations.
Collapse
Affiliation(s)
- Merve Nur Ataş
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Barış Ertuğrul
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Elif Sinem İplik
- Department of Biochemistry, Faculty of Medicine, Istanbul Health and Technology University, Istanbul, Turkey
| | - Bedia Çakmakoğlu
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Arzu Ergen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
11
|
Yao Z, Zheng Z, Zheng X, Wu H, Zhao W, Mu X, Sun F, Wu K, Zheng J. Comprehensive Characterization of Metabolism-Associated Subtypes of Renal Cell Carcinoma to Aid Clinical Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9039732. [PMID: 35265267 PMCID: PMC8898770 DOI: 10.1155/2022/9039732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/15/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022]
Abstract
Renal cell carcinoma (RCC) is a disease characterized by excessive administration complexity because it exhibits extraordinary nonuniformity among distinct molecular subtypes. We herein intended to delineate the metabolic aspects of clear cell RCC (ccRCC) in terms of the gene expression profile. Recent studies have revealed that metabolic variations within tumors are related to the responsiveness to immune checkpoint inhibitor (ICI) therapy and patient prognosis. We used 100 previously reported metabolic (MTB) pathways to quantify the metabolic landscape of the 729 ccRCC patients. Three MTB subtypes were established, and the MTB scores were calculated using principal component analysis (PCA). The high MTB score group had better overall survival (OS) and was associated with higher expression of immune-checkpoint and immune-activity signatures. The opposite was true of the low MTB score group, which may explain the poor prognosis of these patients. Three ICI-treated cohorts or tyrosine kinase inhibitor (TKI) treated cohort proved that patients with higher MTB scores exhibited notable therapeutic benefits and clinical gains. This research explained that the MTB score could be applied as a powerful prognostic indicator and predictive of ICI or TKI therapy. Assessing the MTB scores in a more extended group will facilitate our perception of tumor metabolism and provide guidance for studies on targeted approaches for ccRCC patients.
Collapse
Affiliation(s)
- Zhixian Yao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong Zheng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Zheng
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Hantao Wu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Weiguang Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xingyu Mu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Feng Sun
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ke Wu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junhua Zheng
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Sun L, Zhang Z, Zhao H, Qiu M, Wen Y, Yao X, Tang WH. Identification of TRPM2 as a Marker Associated With Prognosis and Immune Infiltration in Kidney Renal Clear Cell Carcinoma. Front Mol Biosci 2022; 8:774905. [PMID: 35071322 PMCID: PMC8769242 DOI: 10.3389/fmolb.2021.774905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
TRPM2 (transient receptor potential melastatin-2), a Ca2+ permeable, non-selective cation channel, is highly expressed in cancers and regulates tumor cell migration, invasion, and proliferation. However, no study has yet demonstrated the association of TRPM2 with the prognosis of cancer patients or tumor immune infiltration, and the possibility and the clinical basis of TRPM2 as a prognostic marker in cancers are yet unknown. In the current study, we first explored the correlation between the mRNA level of TRPM2 and the prognosis of patients with different cancers across public databases. Subsequently, the Tumor Immune Estimation Resource (TIMER) platform and the TISIDB website were used to assess the correlation between TRPM2 and tumor immune cell infiltration level. We found that 1) the level of TRPM2 was significantly elevated in most tumor tissues relative to normal tissues; 2) TRPM2 upregulation was significantly associated with adverse clinical characteristics and poor survival of kidney renal clear cell carcinoma (KIRC) patients; 3) the level of TRPM2 was positively related to immune cell infiltration. Moreover, TRPM2 was closely correlated to the gene markers of diverse immune cells; 4) a high TRPM2 expression predicted worse prognosis in KIRC based on different enriched immune cell cohorts; and 5) TRPM2 was mainly implemented in the T-cell activation process indicated by Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. In conclusion, TRPM2 can serve as a marker to predict the prognosis and immune infiltration in KIRC through the regulation of T-cell activation. The current data may provide additional information for further studies surrounding the function of TRPM2 in KIRC.
Collapse
Affiliation(s)
- Lei Sun
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Zijun Zhang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Hang Zhao
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Miaoyun Qiu
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Ying Wen
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Ho Tang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Yue Y, Zhang Q, Sun Z. CX3CR1 Acts as a Protective Biomarker in the Tumor Microenvironment of Colorectal Cancer. Front Immunol 2022; 12:758040. [PMID: 35140706 PMCID: PMC8818863 DOI: 10.3389/fimmu.2021.758040] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) plays an important role in the pathogenesis of many cancers. We aimed to screen the TME-related hub genes of colorectal adenoma (CRAD) and identify possible prognostic biomarkers. The gene expression profiles and clinical data of 464 CRAD patients in The Cancer Genome Atlas (TCGA) database were downloaded. The Estimation of STromal and Immune cells in MAlignant Tumours using Expression data (ESTIMATE) algorithm was performed to calculate the ImmuneScore, StromalScore, and EstimateScore. Thereafter, differentially expressed genes (DEGs) were screened. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein–protein interaction (PPI) analysis were performed to explore the roles of DEGs. Furthermore, univariate and multivariate Cox analyses were accomplished to identify independent prognostic factors of CRAD. CX3CR1 was selected as a hub gene, and the expression was confirmed in colorectal cancer (CRC) patients and cell lines. The correlations between CX3CR1 and tumor-infiltrating immune cells were estimated by Tumor IMmune Estimation Resource database (TIMER) and CIBERSORT analysis. Besides, we investigated the effects of coculture with THP-1-derived macrophages with HCT8 cells with low CX3CR1 expression on immune marker expression, cell viability, and migration. There were significant differences in the ImmuneScore and EstimateScore among different stages. Patients with low scores presented significantly lower lifetimes than those in the high-score group. Moreover, we recognized 1,578 intersection genes in ImmuneScore and StromalScore, and these genes were mainly enriched in numerous immune-related biological processes. CX3CR1 was found to be associated with immune cell infiltration levels, immune marker expression, and macrophage polarization. Simultaneous silencing of CX3CR1 and coculture with THP-1 cells further regulated macrophage polarization and promoted the cell proliferation and migration of CRC cells. CX3CR1 was decreased in CRAD tissues and cell lines and was related to T and N stages, tumor differentiation, and prognosis. Our results suggest that CX3CR1 contributes to the recruitment and regulation of immune-infiltrating cells and macrophage polarization in CRC and TAM-induced CRC progression. CX3CR1 may act as a prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Yuanyi Yue
- Department of Gastroenterology Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhengrong Sun
- BioBank, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhengrong Sun,
| |
Collapse
|
14
|
Deng W, Wang G, Deng H, Yan Y, Zhu K, Chen R, Liu X, Chen L, Zeng T, Fu B. The Role of Critical N6-Methyladenosine-Related Long Non-Coding RNAs and Their Correlations with Immune Checkpoints in Renal Clear Cell Carcinoma. Int J Gen Med 2021; 14:9773-9787. [PMID: 34934351 PMCID: PMC8684405 DOI: 10.2147/ijgm.s344771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose This study aimed to evaluate the functions of critical N6-methyladenosine (m6A)-related long non-coding RNAs (lncRNAs) and their correlations with immunotherapeutic targets in clear cell renal cell carcinoma (ccRCC). Methods m6A-related lncRNAs were analyzed using the dataset from The Cancer Genome Atlas database via Pearson correlation analysis. Then, their prognostic functions in patients with ccRCC were determined via univariate Cox analysis. A prognostic m6A-related lncRNA signature (MRLS) in ccRCC was established using the least absolute shrinkage and selection operator (LASSO) Cox regression model. In addition, the correlations between these prognostic m6A-related lncRNAs with immune checkpoints were further evaluated in clinical samples. Results MRLS was established by the LASSO Cox regression model on the basis of seven prognostic m6A-related lncRNAs. The risk score for each patient was calculated using the MRLS model, and the patients were further stratified into high- and low-risk subgroups. The MRLS model was validated with a robust prognostic ability by the stratification analysis. On the basis of age, grade, stage, and risk score, a nomogram was developed with a strong reliability in forecasting the overall survival percentages of the patients with ccRCC. Moreover, seven prognostic m6A-related lncRNAs enrolled in the MRLS model were found to be correlated with various immunotherapeutic targets, namely, PD-1, PD-L1, CTLA4, and LAG3, and the expression levels of which in the high-risk subgroup were significantly higher than those in the low-risk subgroup. The significant correlations between LINC00342 and the aforementioned immunotherapeutic targets were also confirmed in clinical samples. Conclusion In this study, seven m6A-related lncRNAs were identified as potential biomarkers for forecasting the prognosis of patients with ccRCC and evaluating the efficacy of immunotherapy for these patients. Furthermore, a prognostic and predictive MRLS model with a high reliability was constructed to predict the overall survival probability of patients with ccRCC.
Collapse
Affiliation(s)
- Wen Deng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Huanhuan Deng
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Yan Yan
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Ke Zhu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Ru Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China.,Department of Urology, The First Hospital of Putian City, Putian City, Fujian Province, People's Republic of China
| | - Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Luyao Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Tao Zeng
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| |
Collapse
|
15
|
Zheng B, Xie F, Cheng F, Wang J, Yao Z, He W, Niu Z. Integrative Analysis of Immune-Related Genes in the Tumor Microenvironment of Renal Clear Cell Carcinoma and Renal Papillary Cell Carcinoma. Front Mol Biosci 2021; 8:760031. [PMID: 34888353 PMCID: PMC8650138 DOI: 10.3389/fmolb.2021.760031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Kidney cancer encompasses a range of primary cancers, such as clear cell renal cell carcinoma (ccRCC) and papillary renal cell carcinoma (pRCC). Our knowledge about the tumor microenvironment (TME) of kidney cancer is still limited. Therefore, we comprehensively assessed the TME of kidney cancers (including ccRCC and pRCC) using the ESTIAMTE, and CIBERSORT algorithms, and conducted distinct functional and correlation analyses with data from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), Gene Expression Omnibus (GEO), Connectivity map and CellMiner database. Next, we identified two immune-related hub genes, IGLL5 and IL2RA, which play essential roles in the TME as well as on survival in ccRCC and pRCC. Furthermore, ccRCC and pRCC samples from our medical center were collected to verify the clinical application value of these two immune-related genes. A specific enrichment analysis of immune cells related to IGLL5 and IL2RA was also conducted in two types of renal cell cancer. Based on selected genes, we predicted the drug response and uncovered novel drug candidate for RCC treatment. Considering the unfavorable outcomes of kidney cancer and emerging interest in TME-targeted treatments, our results may offer insights into immune-related molecular mechanisms and possible targets to control the kidney cancer.
Collapse
Affiliation(s)
- Bin Zheng
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Fang Xie
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Urology, Weihai Municipal Hospital, Weihai, China
| | - Fajuan Cheng
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianwei Wang
- Department of Urology, Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, China
| | - Zhongshun Yao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Wei He
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhihong Niu
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
16
|
Wang Y, Zhang J, Zhou Y, Li Z, Lv D, Liu Q. Construction of a microenvironment immune gene model for predicting the prognosis of endometrial cancer. BMC Cancer 2021; 21:1203. [PMID: 34763648 PMCID: PMC8588713 DOI: 10.1186/s12885-021-08935-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022] Open
Abstract
Background Infiltrating immune and stromal cells are important components of the endometrial cancer (EC) microenvironment, which has a significant effect on the biological behavior of EC, suggesting that unique immune-related genes may be associated with the prognosis of EC. However, the association of immune-related genes with the prognosis of EC has not been elucidated. We attempted to identify immune-related genes with potentially prognostic value in EC using The Cancer Genome Atlas database and the relationship between immune microenvironment and EC. Methods We analyzed 578 EC samples from TCGA database and used weighted gene co-expression network analysis to screen out immune-related genes. We constructed a protein–protein interaction network and analyzed it using STRING and Cytoscape. Immune-related genes were analyzed through conjoint Cox regression and random forest algorithm analysis were to identify a multi-gene prediction model and stratify low-risk and high-risk groups of EC patients. Based on these data, we constructed a nomogram prediction model to improve prognosis assessment. Evaluation of Immunological, gene mutations and gene enrichment analysis were applied on these groups to quantify additional differences. Results Using conjoint Cox regression and random forest algorithm, we found that TRBC2, TRAC, LPXN, and ARHGAP30 were associated with the prognosis of EC and constructed four gene risk models for overall survival and a consistent nomogram. The time-dependent receiver operating characteristic curve analysis revealed that the area under the curve for 1-, 3-, and 5-y overall survival was 0.687, 0.699, and 0.76, respectively. These results were validated using a validation cohort. Immune-related pathways were mostly enriched in the low-risk group, which had higher levels of immune infiltration and immune status. Conclusion Our study provides new insights for novel biomarkers and immunotherapy targets in EC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08935-w.
Collapse
Affiliation(s)
- Yichen Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Jingkai Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Yijun Zhou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Zhiguang Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| | - Dekang Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
17
|
Wu SY, Lin KC, Lawal B, Wu ATH, Wu CZ. MXD3 as an onco-immunological biomarker encompassing the tumor microenvironment, disease staging, prognoses, and therapeutic responses in multiple cancer types. Comput Struct Biotechnol J 2021; 19:4970-4983. [PMID: 34584637 PMCID: PMC8441106 DOI: 10.1016/j.csbj.2021.08.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
MAX dimerization (MXD) protein 3 (MXD3) is a member of the MXD family of basic-helix-loop-helix-leucine-zipper (bHLHZ) transcription factors that plays pivotal roles in cell cycle progression and cell proliferation. However, there is insufficient scientific evidence on the pathogenic roles of MXD3 in various cancers and whether MXD3 plays a role in the immuno-oncology context of the tumor microenvironment, pathogenesis, prognosis, and therapeutic response of different tumors through certain common molecular mechanisms; thus, we saw a need to conduct the present in silico pan-cancer study. Using various computational tools, we interrogated the role of MXD3 in tumor immune infiltration, immune evasion, tumor progression, therapy response, and prognosis of cohorts from various cancer types. Our results indicated that MXD3 was aberrantly expressed in almost all The Cancer Genome Atlas (TCGA) cancer types and subtypes and was associated with the tumor stage, metastasis, and worse prognoses of various cohorts. Our results also suggested that MXD3 is associated with tumor immune evasion via different mechanisms involving T-cell exclusion in different cancer types and by tumor infiltration of immune cells in thymoma (THYM), liver hepatocellular carcinoma (LIHC), and head and neck squamous cell carcinoma (HNSC). Methylation of MXD3 was inversely associated with messenger (m)RNA expression levels and mediated dysfunctional T-cell phenotypes and worse prognoses of cohorts from different cancer types. Finally, we found that genetic alterations and oncogenic features of MXD3 were concomitantly associated with deregulation of the DBN1, RAB24, SLC34A1, PRELID1, LMAN2, F12, GRK6, RGS14, PRR7, and PFN3 genes and were connected to phospholipid transport and ion homeostasis. Our results also suggested that MXD3 expression is associated with immune or chemotherapeutic outcomes in various cancers. In addition, higher MXD3 expression levels were associated with decreased sensitivity of cancer cell lines to several mitogen-activated protein kinase kinase (MEK) inhibitors but led to increased activities of other kinase inhibitors, including Akt inhibitors. Interestingly, MXD3 exhibited higher predictive power for response outcomes and overall survival of immune checkpoint blockade sub-cohorts than three of seven standardized biomarkers. Altogether, our study strongly suggests that MXD3 is an immune-oncogenic molecule and could serve as a biomarker for cancer detection, prognosis, therapeutic design, and follow-up.
Collapse
Affiliation(s)
- Szu-Yuan Wu
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.,Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan.,Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan.,Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan.,Graduate Institute of Business Administration, Fu Jen Catholic University, New Taipei City, Taiwan.,Centers for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Cancer Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Kuan-Chou Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Bashir Lawal
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Alexander T H Wu
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Taipei Heart Institute (THI), Taipei Medical University, Taipei, Taiwan
| | - Ching-Zong Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Dentistry, Lotung Poh-Ai hospital, Yilan, Taiwan
| |
Collapse
|
18
|
TLR3 Serves as a Prognostic Biomarker and Associates with Immune Infiltration in the Renal Clear Cell Carcinoma Microenvironment. JOURNAL OF ONCOLOGY 2021; 2021:3336770. [PMID: 34531911 PMCID: PMC8440088 DOI: 10.1155/2021/3336770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/15/2021] [Accepted: 08/14/2021] [Indexed: 01/11/2023]
Abstract
Background Clear cell renal cancer (KIRC) is one of the most common cancers globally, with a poor prognosis. TLRs play a vital role in anticancer immunity and the regulation of the biological progress of tumour cells. However, the precise role of TLRs in KIRC is still ambiguous. Methods Various bioinformatics analysis and clinical validation of tissues were performed to evaluate the prognostic value of TLRs and their correlation with immune infiltration in KIRC. Results The expression of TLR2/3/7/8 was increased at both mRNA and protein levels in KIRC. TLRs in KIRC were involved in the activation of apoptosis, EMT, RAS/MAPK, and RTK pathways, as well as the inhibition of the cell cycle and the hormone AR pathway. Drug sensitivity analysis revealed that high expression of TLR3 and low expression of TLR7/9/10 were resistant to most of the small molecules or drugs from CTRP. Enrichment analyses showed that TLRs were mainly involved in innate immune response, toll-like receptor signalling pathway, NF-kappa B signalling pathway, and TNF signalling pathway. Furthermore, a high-level TLR3 expression was associated with a favourable prognosis in KIRC. Validation research further confirmed that TLR3 expression was increased in KIRC tissues, and high TLR3 levels were associated with poor overall survival. Moreover, TLR3 in KIRC showed a positive association with an abundance of immune cells, including B-cells, CD4+ T-cells, CD8+ T-cells, macrophage, neutrophils, and dendritic cells, and the expression of the immune biomarker sets. Several TLR3-associated kinase, miRNA, or transcription factor targets were also identified in KIRC. Conclusion Our results indicate that TLR3 serves as a prognostic biomarker and associated with immune infiltration in KIRC. This work lays a foundation for further studies on the role of TLR3 in the carcinogenesis and progression of KIRC.
Collapse
|
19
|
Identification and Validation of PIK3CA as a Marker Associated with Prognosis and Immune Infiltration in Renal Clear Cell Carcinoma. JOURNAL OF ONCOLOGY 2021; 2021:3632576. [PMID: 34367282 PMCID: PMC8337125 DOI: 10.1155/2021/3632576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/17/2021] [Indexed: 02/08/2023]
Abstract
Background Kidney renal clear cell carcinoma (KIRC) is the most prevalent renal malignancy. The therapeutic strategies for advanced KIRC are very few, with only sunitinib being widely approved. Mutations in the PIK3CA gene can affect tumor cell proliferation, metastasis, and patients' survival. Methods Bioinformatics analysis was performed to explore the expression and clinical significance of PIK3CA in KIRC. Moreover, qRT-PCR was conducted to verify the result. Results Subgroup analyses of KIRC tissue based on gender, tumor grade, and cancer stage indicated downregulation of PIK3CA mRNA expression. The KIRC patients with high PIK3CA expression indicated a better overall survival, progression-free survival, and disease-free survival. A predictive nomogram was constructed and demonstrated that the calibration plots for the 3-year and 5-year OS rates were predicted relatively well compared with an ideal model in the TCGA KIRC cohort. The validation study revealed that downregulation of PIK3CA in KIRC tissues and low PIK3CA expression had a poor overall survival with an AUC of 0.775 in the ROC curve. Moreover, Cox regression analysis revealed that PIK3CA expression and clinical stage were independent factors affecting the prognosis of KIRC patients. PIK3CA expression was found to be significantly associated with the abundance of immune cells and immune biomarker sets. PIK3CA and associated genes were found to be mainly associated with immune response and the JAK-STAT signaling pathway. Conclusion We identified PIK3CA as a potential biomarker for prognosis correlated with immune infiltrates in KIRC. Further studies should focus on the functions of PIK3CA in KIRC carcinogenesis.
Collapse
|
20
|
Identification of tumor microenvironment-related prognostic genes in colorectal cancer based on bioinformatic methods. Sci Rep 2021; 11:15040. [PMID: 34294834 PMCID: PMC8298640 DOI: 10.1038/s41598-021-94541-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) ranks fourth among the deadliest cancers globally, and the progression is highly affected by the tumor microenvironment (TME). This study explores the relationship between TME and colorectal cancer prognosis and identifies prognostic genes related to the CRC microenvironment. We collected the gene expression data from The Cancer Genome Atlas (TCGA) and calculated the scores of stromal/immune cells and their relations to clinical outcomes in colorectal cancer by the ESTIMATE algorithm. Lower immune scores were significantly related to the malignant progression of CRC (metastasis, p = 0.001). We screened 292 differentially expressed genes (DEGs) by dividing CRC cases into high and low stromal/immune score groups. Functional enrichment analyses and protein-protein interaction (PPI) networks illustrated that these DEGs were closely involved in immune response, cytokine-cytokine receptor interaction, and chemokine signaling pathway. Six DEGs (FABP4, MEOX2, MMP12, ERMN, TNFAIP6, and CHST11) with prognostic value were identified by survival analysis and validated in two independent cohorts (GSE17538 and GSE161158). The six DEGs were significantly related to immune cell infiltration levels based on the Tumor Immune Estimation Resource (TIMER). The results might contribute to discovering new diagnostic and prognostic biomarkers and new treatment targets for colorectal cancer.
Collapse
|
21
|
Jiang X, Gao Y, Zhang N, Yuan C, Luo Y, Sun W, Zhang J, Ren J, Gong Y, Xie C. Establishment of Immune-related Gene Pair Signature to Predict Lung Adenocarcinoma Prognosis. Cell Transplant 2021; 29:963689720977131. [PMID: 33334139 PMCID: PMC7873765 DOI: 10.1177/0963689720977131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tumor microenvironment (TME) has critical impacts on the pathogenesis of lung adenocarcinoma (LUAD). However, the molecular mechanism of TME effects on the prognosis of LUAD patients remains unclear. Our study aimed to establish an immune-related gene pair (IRGP) model for prognosis prediction and internal mechanism investigation. Based on 702 TME-related differentially expressed genes (DEGs) extracted from The Cancer Genome Atlas (TCGA) training cohort using the ESTIMATE algorithm, a 10-IRGP signature was established to predict LUAD patient prognosis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that DEGs were significantly associated with tumor immune response. In both TCGA training and Gene Expression Omnibus validation datasets, the risk score was an independent prognostic factor for LUAD patients using Lasso-Cox analysis, and patients in the high-risk group had poorer prognosis than those in the low-risk one. In the high-risk group, M2 macrophage and neutrophil infiltrations were higher, while the levels of T cell follicular helpers were significantly lower. The gene set enrichment analysis results showed that DNA repair signaling pathways were involved. In summary, we established an IRGP signature as a potential biomarker to predict the prognosis of LUAD patients.
Collapse
Affiliation(s)
- Xueping Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanping Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Nannan Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cheng Yuan
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jianguo Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Human Genetics Resource Preservation Center of Hubei Province, Human Genetics Resource Preservation Center of Wuhan University, Wuhan, Hubei, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
22
|
Song J, Yu Z, Dong B, Zhu M, Guo X, Ma Y, Zhao S, Yang T. Clinical significance of circulating tumour cells and Ki-67 in renal cell carcinoma. World J Surg Oncol 2021; 19:156. [PMID: 34034739 PMCID: PMC8152311 DOI: 10.1186/s12957-021-02268-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/18/2021] [Indexed: 12/27/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is a common malignant tumour of the genitourinary system. We aimed to analyse the potential value of metastasis-related biomarkers, circulating tumour cells (CTCs) and the proliferative marker Ki-67 in the diagnosis of RCC. Methods Data from 24 laparoscopic radical nephrectomies (RNs) and 17 laparoscopic partial nephrectomies (PNs) were collected in 2018. The numbers and positive rates of CTCs and circulating tumour microemboli (CTM) in the peripheral blood were obtained at three different time points: just before surgery, immediately after surgery and 1 week after surgery. Ki-67 protein expression was evaluated in the RCC tissue by immunohistochemistry. Results Except for the statistically significant association between the preoperative CTC counts and tumour size, no association between the number and positive rate of perioperative CTCs and clinicopathological features was found. The CTC counts gradually decreased during the perioperative period, and at 1 week after surgery, they were significantly lower than those before surgery. High Ki-67 expression was significantly positively correlated with preoperative CTC counts. In addition, Ki-67 expression was higher in the high CTC group (≥ 5 CTCs). Conclusion Our results suggest that surgical nephrectomy is associated with a decrease in CTC counts in RCC patients. CTCs can act as a potential biomarker for the diagnosis and prognosis of RCC. A careful and sufficient long-term follow-up is needed for patients with high preoperative CTC counts. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02268-5.
Collapse
Affiliation(s)
- Jinbo Song
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zhe Yu
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Bingqi Dong
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Mingkai Zhu
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaofeng Guo
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yongkang Ma
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Shiming Zhao
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Tiejun Yang
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
23
|
Li C, Liu T, Liu Y, Zhang J, Zuo D. Prognostic value of tumour microenvironment-related genes by TCGA database in rectal cancer. J Cell Mol Med 2021; 25:5811-5822. [PMID: 33949771 PMCID: PMC8184694 DOI: 10.1111/jcmm.16547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/15/2021] [Accepted: 03/30/2021] [Indexed: 12/20/2022] Open
Abstract
Rectal cancer is a common malignant tumour and the progression is highly affected by the tumour microenvironment (TME). This study intended to assess the relationship between TME and prognosis, and explore prognostic genes of rectal cancer. The gene expression profile of rectal cancer was obtained from TCGA and immune/stromal scores were calculated by Estimation of Stromal and Immune cells in Malignant Tumors using Expression data (ESTIMATE) algorithm. The correlation between immune/stromal scores and survival time as well as clinical characteristics were evaluated. Differentially expressed genes (DEGs) were identified according to the stromal/immune scores, and the functional enrichment analyses were conducted to explore functions and pathways of DEGs. The survival analyses were conducted to clarify the DEGs with prognostic value, and the protein‐protein interaction (PPI) network was performed to explore the interrelation of prognostic DEGs. Finally, we validated prognostic DEGs using data from the Gene Expression Omnibus (GEO) database by PrognoScan, and we verified these genes at the protein levels using the Human Protein Atlas (HPA) databases. We downloaded gene expression profiles of 83 rectal cancer patients from The Cancer Genome Atlas (TCGA) database. The Kaplan‐Meier plot demonstrated that low‐immune score was associated with worse clinical outcome (P = .034), metastasis (M1 vs. M0, P = .031) and lymphatic invasion (+ vs. ‐, P < .001). A total of 540 genes were screened as DEGs with 539 up‐regulated genes and 1 down‐regulated gene. In addition, 60 DEGs were identified associated with overall survival. Functional enrichment analyses and PPI networks showed that the DEGs are mainly participated in immune process, and cytokine‐cytokine receptor interaction. Finally, 19 prognostic genes were verified by GSE17536 and GSE17537 from GEO, and five genes (ADAM23, ARHGAP20, ICOS, IRF4,MMRN1) were significantly different in tumour tissues compared with normal tissues at the protein level. In summary, our study demonstrated the associations between TME and prognosis as well as clinical characteristics of rectal cancer. Moreover, we explored and verified microenvironment‐related genes, which may be the potential key prognostic genes of rectal cancer. Further clinical samples and functional studies are needed to validate this finding.
Collapse
Affiliation(s)
- Chao Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Tao Liu
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yi Liu
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jiantao Zhang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Didi Zuo
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Mining TCGA database for tumor mutation burden and their clinical significance in bladder cancer. Biosci Rep 2021; 40:222532. [PMID: 32239176 PMCID: PMC7178217 DOI: 10.1042/bsr20194337] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bladder cancer is the ninth most-common cancer worldwide and it is associated with high morbidity and mortality. Tumor mutational burden (TMB) is an emerging biomarker in cancer characterized by microsatellite instability. TMB has been described as a powerful predictor of tumor behavior and response to immunotherapy. METHODS A total of 443 bladder cancer samples obtained from The Cancer Genome Atlas (TCGA) were analyzed for mutation types, TMB values, and prognostic value of TMB. Differentially expressed genes (DEGs) were identified from the TMB groupings. Functional analysis was performed to assess the prognostic value of the first 30 core genes. CIBERSORT algorithm was used to determine the correlation between the immune cells and TMB subtypes. RESULTS Single nucleotide polymorphism (SNP) and C>T were reported as the most common missense mutations and we also identified a high rate of mutations in TP53, TTN, KMT2D. Bladder cancer patients with high TMB showed a better prognosis. Enrichment analysis of the DEGs revealed that they were involved in the regulation of the P13K-Akt signaling pathway, cytokine-cytokine receptor interaction, and Ras signaling pathway. The high expression of hub genes ADRA2A, CXCL12, S1PR1, ADAMTS9, F13A1, and SPON1 was correlated with poor overall survival. Besides, significant differences in the composition of the immune cells of T cells CD8, T cells CD4 memory activated, NK cells resting and Mast cells resting were observed. CONCLUSIONS The present study provides a comprehensive and systematic analysis of the prediction of TMB in bladder cancer and its clinical significance. Also, the study provides additional prognostic information and opportunities for immunotherapy in bladder cancer.
Collapse
|
25
|
Wang L, Gu W, Ni H. Construction of a prognostic value model in papillary renal cell carcinoma by immune-related genes. Medicine (Baltimore) 2021; 100:e24903. [PMID: 33761648 PMCID: PMC9281962 DOI: 10.1097/md.0000000000024903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 02/01/2021] [Indexed: 01/05/2023] Open
Abstract
Papillary renal cell carcinoma (PRCC) is the second most common type of renal carcinoma following clear cell renal cell carcinoma, and the role of immune-related genes (IRGs) in tumorigenesis and metastasis is evident; its prognostic value in PRCC remains unclear. In this study, we downloaded the gene expression profiles and clinical data of patients with PRCC from The Cancer Genome Atlas (TCGA) database and obtained IRGs from the ImmPort database. A total of 371 differentially expressed IRGs (DEIRGs) were discovered between PRCC and normal kidney tissues. Prognostic DEIRGs (PDEIRGs) were identified by univariate Cox regression analysis. Then, we screened the four most representative PDEIRGs (IL13RA2, CCL19, BIRC5, and INHBE) and used them to construct a risk model to predict the prognosis of patients with PRCC. This model precisely stratified survival outcome and accurately identified mutation burden in PRCC. Thus, our results suggest that these four PDEIRGs are available prognostic predictors for PRCC. They could be used to assess the prognosis and to guide individualized treatments for patients with PRCC.
Collapse
Affiliation(s)
| | | | - Huijun Ni
- Department of Pharmacy, Traditional Chinese Medical Hospital of Huangdao District, Qingdao, P.R. China
| |
Collapse
|
26
|
Liu K, Gao R, Wu H, Wang Z, Han G. Single-cell analysis reveals metastatic cell heterogeneity in clear cell renal cell carcinoma. J Cell Mol Med 2021; 25:4260-4274. [PMID: 33759378 PMCID: PMC8093989 DOI: 10.1111/jcmm.16479] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the leading causes of cancer-related death worldwide. Tumour metastasis and heterogeneity lead to poor survival outcomes and drug resistance in patients with metastatic RCC (mRCC). In this study, we aimed to assess intratumoural heterogeneity (ITH) in mRCC cells by performing a combined analysis of bulk data and single-cell RNA-sequencing data, and develop novel biomarkers for prognosis prediction on the basis of the potential molecular mechanisms underlying tumorigenesis. Eligible single-cell cohorts related to mRCC were acquired using the Gene Expression Omnibus (GEO) dataset to identify potential mRCC subpopulations. We then performed gene set variation analysis to understand the differential function in primary RCC and mRCC samples. Subsequently, we applied weighted correlation network analysis to identify coexpressing gene modules that were related to the external trait of metastasis. Protein-protein interactions were used to screen hub subpopulation-difference (sub-dif) markers (ACTG1, IL6, CASP3, ACTB and RAP1B) that might be involved in the regulation of RCC metastasis and progression. Cox regression analysis revealed that ACTG1 was a protective factor (HR < 1), whereas the other four genes (IL6, CASP3, ACTB and RAP1B) were risk factors (HR > 1). Kaplan-Meier survival analysis suggested the potential prognostic value of these sub-dif markers. The expression of sub-dif markers in mRCC was further evaluated in clinical samples by immunohistochemistry (IHC). Additionally, the genetic features of sub-dif marker expression patterns, such as genetic variation profiles, correlations with tumour-infiltrating lymphocytes (TILs), and targeted signalling pathway activities, were assessed in bulk RNA-seq datasets. In conclusion, we established novel subpopulation markers as key prognostic factors affecting EMT-related signalling pathway activation in mRCC, which could facilitate the implementation of a treatment for mRCC patients.
Collapse
Affiliation(s)
- Kun Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Gao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hao Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhe Wang
- Department of Gastrointestinal Oncology, Cancer Hospital of China Medical University Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Guang Han
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
27
|
Hypoxia-induced microRNA-155 overexpression in extracellular vesicles promotes renal cell carcinoma progression by targeting FOXO3. Aging (Albany NY) 2021; 13:9613-9626. [PMID: 33742606 PMCID: PMC8064184 DOI: 10.18632/aging.202706] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
Renal cell carcinoma (RCC) is a form of cancer arising from the renal epithelium, with high mortality rates that have reached stable levels over the past decade. The tumor microenvironment is an essential regulator of tumor progression and survival, and extracellular vesicles (EVs) are an important facet of this microenvironment. Herein, we explored the impact of hypoxia-induced miR-155 expression in EVs on FOXO3 expression in RCC cells and their associated oncogenic activity. We found that RCC patients exhibited elevated miR-155 expression in EVs relative to healthy controls, suggesting that this miRNA may be important in the context of RCC progression. We then characterized EVs produced from RCC cell lines (Caki-1 and 786-O) under normoxic and hypoxic conditions, revealing that hypoxia-induced EVs contained higher levels of miR-155 and promoted cell proliferation. Then, we identified FOXO3 as a miR-155 target. Lastly, hypoxia-induced EVs were found to be able to significantly inhibit FOXO3 activation via facilitating miR-155 up-regulation. Together, these findings indicate that hypoxia can promote the upregulation of miR-155 in EVs and that this miRNA can act in RCC cells to suppress FOXO3 expression, thereby enhancing cellular tumor progression.
Collapse
|
28
|
Xia ZN, Wang XY, Cai LC, Jian WG, Zhang C. IGLL5 is correlated with tumor-infiltrating immune cells in clear cell renal cell carcinoma. FEBS Open Bio 2021; 11:898-910. [PMID: 33449444 PMCID: PMC7931224 DOI: 10.1002/2211-5463.13085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Renal cell carcinomas (RCCs) account for about 90% of renal tumors, and their major histological subtype is ccRCC (clear cell RCC). Increasing evidence has indicated that the tumor microenvironment plays a significant role in the occurrence and development of ccRCC. In this study, we used ESTIMATE and CIBERSORT computational methods to calculate the proportion of immune and stromal components and the rate of TICs (tumor‐infiltrating immune cells) in 539 ccRCC samples from The Cancer Genome Atlas database. By examining the intersection of the differentially expressed genes obtained by the protein–protein interaction network and Cox regression analysis, we identified only one overlapping gene: IGLL5 (immunoglobulin lambda‐like polypeptide 5). We report that IGLL5 expression is correlated with TICs. Furthermore, our immunoinfiltration analyses revealed that three types of TIC are positively correlated with IGLL5 expression. IGLL5 may have potential as a prognostic biomarker of ccRCC.
Collapse
Affiliation(s)
- Zhi-Nan Xia
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, China
| | - Xing-Yuan Wang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, China
| | - Li-Cheng Cai
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, China
| | - Wen-Gang Jian
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, China
| |
Collapse
|
29
|
ACE2 Is a Prognostic Biomarker and Associated with Immune Infiltration in Kidney Renal Clear Cell Carcinoma: Implication for COVID-19. JOURNAL OF ONCOLOGY 2021; 2021:8847307. [PMID: 33564310 PMCID: PMC7849311 DOI: 10.1155/2021/8847307] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Background KIRC is one of the most common cancers with a poor prognosis. ACE2 was involved in tumor angiogenesis and progression in many malignancies. The role of ACE2 in KIRC is still ambiguous. Methods Various bioinformatics analysis tools were investigated to evaluate the prognostic value of ACE2 and its association with immune infiltration in KIRC. Results ACE2 was shown to be downregulated in KIRC at the mRNA and protein level. Low expression of ACE2 protein in KIRC patients was observed in subgroup analyses based on gender, age, weight, tumor grade, and cancer stage. Upregulation of ACE2 in KIRC was associated with a favorable prognosis. ACE2 mRNA expression showed a positive correlation with the abundance of immune cells (B cells, CD8+ T cells, macrophages, neutrophils, and dendritic cells) and the level of immune markers of different immune cells in KIRC. ACE2 expression could affect, in part, the immune infiltration and the advanced cancer stage. Moreover, enrichment analysis revealed that ACE2 in KIRC were mainly involved in translation factor activity, immunoglobulin binding, metabolic pathways, transcriptional misregulation in cancerous cells, cell cycle, and ribosomal activity. Several ACE2-associated kinases, miRNA, and transcription factor targets in KIRC were also identified. Conclusion ACE2 was downregulated in KIRC and served as a prognostic biomarker. It was also shown to be associated with immune infiltration.
Collapse
|
30
|
Li C, Deng H, Zhou Y, Ye Y, Zhao S, Liang S, Cai S, Lin J, Tang Y, Wu Y. Expression and clinical significance of CXC chemokines in the glioblastoma microenvironment. Life Sci 2020; 261:118486. [PMID: 32976881 DOI: 10.1016/j.lfs.2020.118486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common subtype of brain cancer, encompassing 16% of all primary brain cancers. The prognosis of GBM is poor, with a 5-year-survial of approximately 5%. Increasing evidence has revealed that chemokines in the tumor microenvironment (TME) are often altered, thus affecting tumor proliferation and metastasis. METHOD Multi-omics and bioinformatics tools were utilized to clarify the role of CXC chemokine in GBM. RESULT Most CXC chemokines were found to be differentially regulated in GBM, which correlated with patient prognosis. CXC chemokines were found to activate cancer-related signaling pathways, thus affecting immune infiltration. Interestingly, this was found to be associated with drug resistance. Most CXC chemokines were significantly correlated with abundance of B cells, CD8+ cells and dendritic cells. Furthermore, somatic copy number alterations of CXC chemokines can inhibit dendritic cell infiltration. Moreover, CXCL1 was selected as a hub gene, and several kinase, miRNA and transcription factor targets of CXCL1 were identified. CONCLUSION our study provides novel insights into CXC chemokine expression and their role in the GBM microenvironment. These results are able to provide more data about prognostic biomarkers and therapeutic targets of GBM.
Collapse
Affiliation(s)
- Chenglin Li
- Department of neurosurgery, Maoming people's hospital, Maoming 515000, China
| | - Hanshun Deng
- Department of neurosurgery, Maoming people's hospital, Maoming 515000, China
| | - Yanfei Zhou
- Department of neurosurgery, Maoming people's hospital, Maoming 515000, China
| | - Yuanshen Ye
- Department of neurosurgery, Maoming people's hospital, Maoming 515000, China
| | - Shuizhen Zhao
- Department of neurosurgery, Maoming people's hospital, Maoming 515000, China
| | - Shangnan Liang
- Department of neurosurgery, Maoming people's hospital, Maoming 515000, China
| | - Shirong Cai
- Department of neurosurgery, Maoming people's hospital, Maoming 515000, China
| | - Jincai Lin
- Department of neurosurgery, Maoming people's hospital, Maoming 515000, China
| | - Yaolong Tang
- Department of neurosurgery, Maoming people's hospital, Maoming 515000, China
| | - Yanyu Wu
- Department of neurosurgery, Maoming people's hospital, Maoming 515000, China.
| |
Collapse
|
31
|
Wang B, Li Y, Kou C, Sun J, Xu X. Mining Database for the Clinical Significance and Prognostic Value of ESRP1 in Cutaneous Malignant Melanoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4985014. [PMID: 32964032 PMCID: PMC7492958 DOI: 10.1155/2020/4985014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Epithelial splicing regulatory protein 1 (ESRP1) has been described as an RNA-binding protein involved in cancer development. However, the expression and regulatory network of ESRP1 in cutaneous malignant melanoma (CMM) remain unclear. METHODS From the sequencing data of 103 CMM samples in The Cancer Genome Atlas database, the expression level of ESRP1 and its correlation with the clinicopathological characteristics were analyzed using the Oncomine 4.5, Gene Expression Profiling Interactive Analysis (GEPIA), and UALCAN tools, while LinkedOmics was used to identify differential gene expression with ESRP1 and to analyze Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Gene enrichment analysis examined target networks of kinases, miRNAs, and transcription factors. Finally, TIMER was used to analyze the relationship between ESRP1 and tumor immune cell infiltration. RESULTS We found that ESRP1 was lowly expressed in CMM tissues, and a low level of ESRP1 expression correlated with better overall survival. Expression of this gene was linked to functional networks involving the condensed chromosomes, epidermal development, and translation initiation. Functional network analysis suggested that ESRP1 regulated ribosome metabolism, drug metabolism, and chemical carcinogenesis via pathways involving several cancer-related kinases, miRNAs, and transcription factors. Furthermore, our results suggested that ESRP1 played an important role in regulating tumor-associated macrophage polarization, dendritic cell infiltration, Treg cells, and T cell exhaustion. CONCLUSION Our study demonstrates ESRP1 expression, prognostic value, and potential regulatory networks in CMM, thereby shedding light on the clinical significance of ESRP1, and provides a novel biomarker for determining prognosis and immune infiltration in CMM.
Collapse
Affiliation(s)
- Baihe Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing 210042, China
| | - Yang Li
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Caixia Kou
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing 210042, China
| | - Jianfang Sun
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing 210042, China
| | - Xiulian Xu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing 210042, China
| |
Collapse
|
32
|
Mining Database for the Expression and Clinical Significance of NF- κB Family in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2020; 2020:2572048. [PMID: 32879628 PMCID: PMC7448221 DOI: 10.1155/2020/2572048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 11/23/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the deadliest diseases affecting humans. Its incidence has been increasing over the last decade. It is characterized by poor prognosis as well as lack of therapeutic regimens for patients in the advanced stages. It is therefore important to develop effective biomarkers for diagnosis, prognosis, and immunotherapy of HCC. Research suggests that the NF-κB family plays vital roles in immune response, inflammation, tumorigenesis, and the progress of malignancy in various cancers. However, its role in HCC remains unidentified. Methodology. The expression and clinical significance of the NF-κB family in HCC were analyzed using several bioinformatics tools including UALCAN, The Human Protein Atlas, GEPIA, GSCALite, David, GeneMANIA, and TIMER. Results The mRNA expression levels of RelA, RelB, NF-κB1, and NF-κB2 were significantly elevated in HCC. The mRNA levels of RelB and NF-κB2 were significantly upregulated in HCC tissues compared to normal liver tissues in subgroup analyses based on patient's race, gender, age, weight, tumor grade, cancer stage, and nodal metastasis status. Moreover, HCC patients with elevated levels of RelB and NF-κB2 had a worse overall survival and disease-free survival. Methylation downregulated the expressions of RelA, RelB, and NF-κB1 in HCC. NF-κB family was also significantly involved in various hallmark cancer-related pathways such as the apoptosis, EMT, RTK, and cell cycle pathways. Similarly, the expression of RelB and NF-κB2 was positively correlated with the abundance of immune cells and the expression of immune biomarkers. Several kinase and miRNA targets of RelB and NF-κB2 were also identified. Conclusion RelB and NF-κB2 are potential biomarkers for the diagnosis, prognosis, and immunotherapy of HCC.
Collapse
|
33
|
Liu J, Nie S, Wu Z, Jiang Y, Wan Y, Li S, Meng H, Zhou S, Cheng W. Exploration of a novel prognostic risk signatures and immune checkpoint molecules in endometrial carcinoma microenvironment. Genomics 2020; 112:3117-3134. [DOI: 10.1016/j.ygeno.2020.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
|
34
|
Zhang W, Zhao H, Chen J, Zhong X, Zeng W, Li Z, Zhou J, He Z, Tang S. Mining database for the expression and gene regulation network of JAK2 in skin cutaneous melanoma. Life Sci 2020; 253:117600. [PMID: 32234492 DOI: 10.1016/j.lfs.2020.117600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is the most common subtype of skin malignancy, with ever-increasing incidence, mortality, and disease burden. Dysregulation of JAK-STATs signaling pathway is involved in the pathogenesis and progression of cancers, thus affecting the prognosis of cancer patients. The function of JAKs in SKCM is still not clarified. METHODS A total of five online portal (GEPIA, TIMER, GeneMANIA, LinkedOmics, and GSCALite) is used to mine the expression and gene regulation network JAK2 in SKCM. RESULTS JAK2 expression was downregulated in SKCM and significantly associated with pathological stage and the prognosis of patients. The functions of JAK2 and associated genes were primarily involved in the DNA recombination, cell cycle checkpoint, metabolic process, NOD-like receptor signaling pathways, p53 signaling pathway and apoptosis. JAK2 level was significantly correlated with the abundance of immune cells and the level of immune biomarkers. Low expression of JAK2 were resistant to QL-VIII-58, TL-1-85, Ruxolitinib, TG101348 and Sunitinib. CONCLUSIONS Our results reveal the expression and gene regulation network of JAK2 in skin cutaneous melanoma, providing more evidences about the role of JAK2 in carcinogenesis.
Collapse
Affiliation(s)
- Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Hanxing Zhao
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiasheng Chen
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaoping Zhong
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Weiping Zeng
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhonglei Li
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Jianda Zhou
- Department of Plastic and Reconstructive Surgery, Central South University Third Xiangya Hospital, Changsha, Hunan, China
| | - Zhihao He
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|