1
|
Yin S, Xia F, Zou W, Jiang F, Shen K, Sun B, Lu Z. Ginsenoside Rg1 regulates astrocytes to promote angiogenesis in spinal cord injury via the JAK2/STAT3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118531. [PMID: 38971343 DOI: 10.1016/j.jep.2024.118531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/12/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng (Panax ginseng C. A. Mey) is a common traditional Chinese medicine used for anti-inflammation, anti-apoptosis, anti-oxidative stress, and neuroprotection. Ginsenosides Rg1, the main active components isolated from ginseng, may be a feasible therapy for spinal cord injury (SCI). AIMS OF THE STUDY SCI causes endothelial cell death and blood vessel rupture, ultimately resulting in long-term neurological impairment. As a result, encouraging spinal angiogenesis may be a feasible therapy for SCI. This investigation aimed to validate the capacity of ginsenoside Rg1 in stimulating angiogenesis within the spinal cord. MATERIALS AND METHODS Rats with SCI were injected intraperitoneally with ginsenoside Rg1. The effectiveness of ginsenoside Rg1 was assessed using the motor function score and the motor-evoked potential (MEP). Immunofluorescence techniques were applied to identify the spinal cord's angiogenesis. Angiogenic factors were examined through Western Blot (WB) and Immunohistochemistry. Oxygen-glucose deprivation (OGD) was employed to establish the hypoxia-ischemia model in vitro, and astrocytes (As) were given ginsenoside Rg1 and co-cultured with spinal cord microvascular endothelial cells (SCMECs). Immunofluorescence, wound healing test, and tube formation assay were used to identify the co-cultured SCMECs' activity. Finally, network pharmacology analysis and siRNA transfection were applied to verify the mechanism of ginsenoside Rg1 promoting angiogenesis. RESULTS The rats with SCI treated with ginsenoside Rg1 indicated more significant functional recovery, more pronounced angiogenesis, and higher levels of angiogenic factor expression. In vitro, the co-culture system with ginsenoside Rg1 intervention improved SCMECs' capacity for proliferating, migrating, and forming tubes, possibly by promoting the expression of vascular endothelial growth factor (VEGF) in As via the janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. CONCLUSION Ginsenoside Rg1 can regulate As to promote angiogenesis, which may help to understand the mechanism of promoting SCI recovery.
Collapse
Affiliation(s)
- Shiyuan Yin
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China
| | - Feiyun Xia
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China
| | - Wenjun Zou
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China
| | - Fengxian Jiang
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China
| | - Kelv Shen
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China
| | - Baihan Sun
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China
| | - Zhengfeng Lu
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China.
| |
Collapse
|
2
|
Zhu Y, Zou W, Sun B, Shen K, Xia F, Wang H, Jiang F, Lu Z. Ginsenoside Rg1 Regulates the Activation of Astrocytes Through lncRNA-Malat1/miR-124-3p/Lamc1 Axis Driving PI3K/AKT Signaling Pathway, Promoting the Repair of Spinal Cord Injury. CNS Neurosci Ther 2024; 30:e70103. [PMID: 39491316 PMCID: PMC11532020 DOI: 10.1111/cns.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024] Open
Abstract
AIM To investigate the regulation of ginsenoside Rg1 on the PI3K/AKT pathway through the lncRNA-Malat1/miR-124-3p/ Laminin gamma1 (Lamc1) axis, activating astrocytes (As) to promote the repair of spinal cord injury (SCI). METHODS Bioinformatics analysis was used to predict miRNA targeting Lamc1 and lncRNA targeting miR-124-3p, which were then validated through a dual-luciferase assay. Following transfection, the relationships between Malat1, miR-124-3p, and Lamc1 expression levels were assessed by qRT-PCR and Western blot (WB). Immunofluorescence staining and immunohistochemistry were utilized to measure Lamc1 expression, while changes in cavity area were observed through hematoxylin-eosin (HE) staining. Basso-Beattie-Bresnahan (BBB) scale and footprint analysis were used to evaluate functional recovery. WB was performed to assess the expression of PI3K/AKT pathway-related protein. RESULTS Rg1 was found to upregulate Malat1 expression, which in turn modulated the Malat1/miR-124-3p/Lamc1 axis. Furthermore, Rg1 activated the PI3K/Akt signaling pathway, significantly reducing the SCI cavity area and improving hind limb motor function. However, knockout of Malat1 hindered these effects, and inhibition of miR-124-3p reversed the silencing effects of Malat1. CONCLUSIONS Rg1 can induce Malat1 expression to activate the Lamc1/PI3K/AKT signaling pathway by sponging with miR-124-3p, thereby regulating As activity to repair SCI.
Collapse
Affiliation(s)
- Yin Zhu
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of OrthopedicsThe Affiliated Zhangjiagang Hospital of Soochow UniversityZhangjiagangChina
| | - Wenjun Zou
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Baihan Sun
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of OrthopedicsXuzhou City Hospital of TCMXuzhouChina
| | - Kelv Shen
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Feiyun Xia
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Hao Wang
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Fengxian Jiang
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhengfeng Lu
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
3
|
Alizadeh SD, Jalalifar MR, Ghodsi Z, Sadeghi-Naini M, Malekzadeh H, Rahimi G, Mojtabavi K, Shool S, Eskandari Z, Masoomi R, Kiani S, Harrop J, Rahimi-Movaghar V. Reprogramming of astrocytes to neuronal-like cells in spinal cord injury: a systematic review. Spinal Cord 2024; 62:133-142. [PMID: 38448665 DOI: 10.1038/s41393-024-00969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
STUDY DESIGN A Systematic Review OBJECTIVES: To determine the therapeutic efficacy of in vivo reprogramming of astrocytes into neuronal-like cells in animal models of spinal cord injury (SCI). METHODS PRISMA 2020 guidelines were utilized, and search engines Medline, Web of Science, Scopus, and Embase until June 2023 were used. Studies that examined the effects of converting astrocytes into neuron-like cells with any vector in all animal models were included, while conversion from other cells except for spinal astrocytes, chemical mechanisms to provide SCI models, brain injury population, and conversion without in-vivo experience were excluded. The risk of bias was calculated independently. RESULTS 5302 manuscripts were initially identified and after eligibility assessment, 43 studies were included for full-text analysis. After final analysis, 13 manuscripts were included. All were graded as high-quality assessments. The transduction factors Sox2, Oct4, Klf4, fibroblast growth factor 4 (Fgf4) antibody, neurogenic differentiation 1 (Neurod1), zinc finger protein 521 (Zfp521), ginsenoside Rg1, and small molecules (LDN193189, CHIR99021, and DAPT) could effectively reprogramme astrocytes into neuron-like cells. The process was enhanced by p21-p53, or Notch signaling knockout, valproic acid, or chondroitin sulfate proteoglycan inhibitors. The type of mature neurons was both excitatory and inhibitory. CONCLUSION Astrocyte reprogramming to neuronal-like cells in an animal model after SCI appears promising. The molecular and functional improvements after astrocyte reprogramming were demonstrated in vivo, and further investigation is required in this field.
Collapse
Affiliation(s)
- Seyed Danial Alizadeh
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad-Rasoul Jalalifar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Ghodsi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Sadeghi-Naini
- Department of neurosurgery, Lorestan University of medical sciences, Khoram-Abad, Iran
| | - Hamid Malekzadeh
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnoosh Rahimi
- Department of Cellular and Molecular Biology, University of Science and Culture, Tehran, Iran
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Kurosh Mojtabavi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Neuroscience Department, Erasmus MC, Rotterdam, The Netherlands
| | - Sina Shool
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Eskandari
- Department of Management, Faculty of Social Sciences and Economics, Alzahra University, Tehran, Iran
| | - Rasoul Masoomi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Kiani
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - James Harrop
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
- Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
4
|
Zhang Y, Yi D, Hong Q, Cao J, Geng X, Liu J, Xu C, Cao M, Chen C, Xu S, Zhang Z, Li M, Zhu Y, Peng N. Platelet-rich plasma-derived exosomes boost mesenchymal stem cells to promote peripheral nerve regeneration. J Control Release 2024; 367:265-282. [PMID: 38253204 DOI: 10.1016/j.jconrel.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Peripheral nerve injury (PNI) remains a severe clinical problem with debilitating consequences. Mesenchymal stem cell (MSC)-based therapy is promising, but the problems of poor engraftment and insufficient neurotrophic effects need to be overcome. Herein, we isolated platelet-rich plasma-derived exosomes (PRP-Exos), which contain abundant bioactive molecules, and investigated their potential to increase the regenerative capacity of MSCs. We observed that PRP-Exos significantly increased MSC proliferation, viability, and mobility, decreased MSC apoptosis under stress, maintained MSC stemness, and attenuated MSC senescence. In vivo, PRP-Exo-treated MSCs (pExo-MSCs) exhibited an increased retention rate and heightened therapeutic efficacy, as indicated by increased axonal regeneration, remyelination, and recovery of neurological function in a PNI model. In vitro, pExo-MSCs coculture promoted Schwann cell proliferation and dorsal root ganglion axon growth. Moreover, the increased neurotrophic behaviour of pExo-MSCs was mediated by trophic factors, particularly glia-derived neurotrophic factor (GDNF), and PRP-Exos activated the PI3K/Akt signalling pathway in MSCs, leading to the observed phenotypes. These findings demonstrate that PRP-Exos may be novel agents for increasing the ability of MSCs to promote neural repair and regeneration in patients with PNI.
Collapse
Affiliation(s)
- Yongyi Zhang
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China; State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, National Clinical Research Centre for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China; No.962 Hospital of the PLA Joint Logistic Support Force, Harbin 150080, China
| | - Dan Yi
- Medical School of Chinese PLA, Beijing 100853, China; Departments of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Quan Hong
- State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, National Clinical Research Centre for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Jiangbei Cao
- Departments of Anaesthesiology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaodong Geng
- State Key Laboratory of Kidney Diseases, Nephrology Institute of the Chinese PLA, National Clinical Research Centre for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Jinwei Liu
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Chuang Xu
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Mengyu Cao
- Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Chao Chen
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Shuaixuan Xu
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhen Zhang
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Molin Li
- Medical School of Chinese PLA, Beijing 100853, China; Departments of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Yaqiong Zhu
- Departments of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China.
| | - Nan Peng
- Medical School of Chinese PLA, Beijing 100853, China; Department of Rehabilitation Medicine, The Second Medical Centre & National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
5
|
Xu L, Yang Y, Zhong W, Li W, Liu C, Guo Z, Yu X. Comparative efficacy of five most common traditional Chinese medicine monomers for promoting recovery of motor function in rats with blunt spinal cord injury: a network meta-analysis. Front Neurol 2023; 14:1165076. [PMID: 37465765 PMCID: PMC10351986 DOI: 10.3389/fneur.2023.1165076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
Objective This research employed a network meta-analysis (NMA) to examine the effectiveness of five traditional Chinese medicine (TCM) monomers for promoting motor function recovery in rats with blunt spinal cord injury (SCI). Methods Wangfang, China National Knowledge Infrastructure, Web of Science, Embase, Chinese Scientific Journal Database, PubMed, and the Chinese Biomedical Literature Databases were searched for retrieving relevant articles published from their inception to December 2022. Two reviewers performed screening of search results, data extraction, and literature quality assessment independently. Results For this meta-analysis, 59 publications were included. Based on the recovery of motor function at weeks 1, 2, 3, and 4 in NMA, almost all TCM groups had significantly increased positive effects than the negative control animals. In terms of cumulative probability, the tanshinone IIA (TIIA) group ranked first in restoring motor function in the first week after blunt SCI, and the resveratrol (RSV) group ranked first during the last 3 weeks. Conclusion The NMA revealed that TCM monomers could effectively restore motor function in the rat model of blunt SCI. In rats with blunt SCI, TIIA may be the most effective TCM monomer during the first week, whereas RSV may be the most effective TCM monomer during the last 3 weeks in promoting motor function recovery. For better evidence reliability in preclinical investigations and safer extrapolation of those findings into clinical settings, further research standardizing the implementation and reporting of animal experiments is required. Systematic Review Registration https://inplasy.com/, identifier INPLASY202310070.
Collapse
|
6
|
Gao B, Qu YC, Cai MY, Zhang YY, Lu HT, Li HX, Tang YX, Shen H. Phytochemical interventions for post-traumatic stress disorder: A cluster co-occurrence network analysis using CiteSpace. JOURNAL OF INTEGRATIVE MEDICINE 2023:S2095-4964(23)00048-1. [PMID: 37380564 DOI: 10.1016/j.joim.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 03/16/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVE This study investigated trends in the study of phytochemical treatment of post-traumatic stress disorder (PTSD). METHODS The Web of Science database (2007-2022) was searched using the search terms "phytochemicals" and "PTSD," and relevant literature was compiled. Network clustering co-occurrence analysis and qualitative narrative review were conducted. RESULTS Three hundred and one articles were included in the analysis of published research, which has surged since 2015 with nearly half of all relevant articles coming from North America. The category is dominated by neuroscience and neurology, with two journals, Addictive Behaviors and Drug and Alcohol Dependence, publishing the greatest number of papers on these topics. Most studies focused on psychedelic intervention for PTSD. Three timelines show an "ebb and flow" phenomenon between "substance use/marijuana abuse" and "psychedelic medicine/medicinal cannabis." Other phytochemicals account for a small proportion of the research and focus on topics like neurosteroid turnover, serotonin levels, and brain-derived neurotrophic factor expression. CONCLUSION Research on phytochemicals and PTSD is unevenly distributed across countries/regions, disciplines, and journals. Since 2015, the research paradigm shifted to constitute the mainstream of psychedelic research thus far, leading to the exploration of botanical active ingredients and molecular mechanisms. Other studies focus on anti-oxidative stress and anti-inflammation. Please cite this article as: Gao B, Qu YC, Cai MY, Zhang YY, Lu HT, Li HX, Tang YX, Shen H. Phytochemical interventions for post-traumatic stress disorder: A cluster co-occurrence network analysis using CiteSpace. J Integr Med. 2023; Epub ahead of print.
Collapse
Affiliation(s)
- Biao Gao
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China; Teaching and Research Support Center, Naval Medical University, Shanghai 200433, China
| | - Yi-Cui Qu
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Meng-Yu Cai
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Yin-Yin Zhang
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Hong-Tao Lu
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Hong-Xia Li
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Yu-Xiao Tang
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Hui Shen
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
7
|
Liu S, Pei H, Chen W, Zhu X, Wang Y, Li J, He Z, Du R. Evaluating the effect of ginsenoside Rg1 on CPF-induced brain injury in mice via PI3k/AKT pathway. J Biochem Mol Toxicol 2023; 37:e23319. [PMID: 36811218 DOI: 10.1002/jbt.23319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/13/2022] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
Organophosphorus pesticides (OPs) have long been used extensively on agricultural land and can lead to significant improvements in crop yields. Due to occupational exposure, humans are exposed to pesticides through dermal contact, inhalation, and ingestion. The effects of OPs on the organism are currently studied for their effects on livers, kidneys, hearts, blood indicators, neurotoxicity, and teratogenic, carcinogenic, and mutagenic effects, while studies in the direction of brain tissue damage have not been reported in detail. Previous reports have confirmed that ginsenoside Rg1 is a prominent and representative tetracyclic triterpenoid derivative rich in ginseng and has good neuroprotective activity. Considering that, the aim of this study was to establish a mouse model of brain tissue injury by using the OP-type pesticide chlorpyrifos (CPF) and to explore the therapeutic effects and possible molecular mechanisms of Rg1. Mice in the experimental group were pre-protected with Rg1 by gavage for 1 week, and brain tissue damage was induced using CPF (5 mg/kg for 1 week) to assess the effect of Rg1 (80 and 160 mg/kg for 3 weeks) in alleviating brain damage. Morris water maze and histopathological analysis were performed to assess cognitive function and pathological changes in the mouse brain, respectively. Protein expression levels of Bax, Bcl-2, Caspase-3, Cl-Cas-3, Caspase-9, Cl-Cas-9, phosphoinositide 3-kinase (PI3K), phosphorylated-PI3K, protein kinase B (AKT), and phosphorylated-AKT were quantified by protein blotting analysis. Rg1 obviously restored CPF-induced oxidative stress damage in mouse brain tissue, increased the levels of antioxidant parameters (total superoxide dismutase, total antioxidative capacity, and glutathione) in the brain, and significantly reduced the overexpression of apoptosis-related proteins induced by CPF. At the same time, Rg1 also markedly attenuated the histopathological changes in the brain induced by CPF exposure. Mechanistically, Rg1 could effectively activate the phosphorylation of PI3K/AKT. Furthermore, molecular docking studies revealed a stronger binding capacity between Rg1 and PI3K. Rg1 attenuated neurobehavioural alterations and reduced lipid peroxidation in the mouse brain to a great extent. Apart from that, Rg1 administration improved brain histopathology in CPF-induced rats. All results suggest that ginsenoside Rg1 has potential antioxidant effects on CPF-induced oxidative brain injury, and it is evident that Rg1 could be used as a promising therapeutic strategy for the study of brain injury from OP poisoning.
Collapse
Affiliation(s)
- Silu Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China.,Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiaoying Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Yu Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China.,Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun, Jilin, China.,Key Laboratory of Animal Production and Product Quality and Safety, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
8
|
The role of PI3K/Akt signalling pathway in spinal cord injury. Biomed Pharmacother 2022; 156:113881. [DOI: 10.1016/j.biopha.2022.113881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
|
9
|
Shen K, Wu D, Sun B, Zhu Y, Wang H, Zou W, Ma Y, Lu Z. Ginsenoside Rg1 promotes astrocyte-to-neuron transdifferentiation in rat and its possible mechanism. CNS Neurosci Ther 2022; 29:256-269. [PMID: 36352836 PMCID: PMC9804042 DOI: 10.1111/cns.14000] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/17/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Neuronal loss caused by spinal cord injury (SCI) usually contributes to irreversible motor dysfunction. Promoting neuronal regeneration and functional recovery is vital to the repair of SCI. AIMS Astrocytes, activated by SCI with high proliferative capacity and proximity to neuronal lineage, are considered ideal cells for neuronal regeneration. As previous studies identified several small molecules for the induction of astrocyte-to-neuron, we confirmed that ginsenoside Rg1, a neuroprotective herb, could promote the direct transdifferentiation of astrocyte-to-neuron in rat. METHODS AND RESULTS Immunofluorescence staining showed that 26.0 ± 1.5% of the induced cells exhibited less astroglial properties and more neuronal markers with typical neuronal morphologies, reflecting 20.6 ± 0.9% of cholinergic neurons and 22.3 ± 1.9% of dopaminergic neurons. Western blot and qRT-PCR revealed that the induced cells had better antiapoptotic ability and Rg1-promoted neuronal transdifferentiation of reactive astrocytes might take effect through suppressing Notch/Stat3 signal pathway. In vivo, a revised SCI model treated by Rg1 was confirmed with faster functional recovery and less injury lesion cavity. CONCLUSION In summary, our study provided a novel strategy of direct transdifferentiation of endogenous rat reactive astrocytes into neurons with Rg1 and promotion of neuronal regeneration after SCI.
Collapse
Affiliation(s)
- Kelv Shen
- Department of OrthopedicsThe Second Affliated Hospital of Soochow UniversitySuzhouChina
| | - Duanrong Wu
- Department of OrthopedicsThe Second Affliated Hospital of Soochow UniversitySuzhouChina
| | - Baihan Sun
- Department of OrthopedicsThe Second Affliated Hospital of Soochow UniversitySuzhouChina
| | - Yin Zhu
- Department of OrthopedicsThe Second Affliated Hospital of Soochow UniversitySuzhouChina
| | - Hao Wang
- Department of OrthopedicsThe Second Affliated Hospital of Soochow UniversitySuzhouChina
| | - Wenjun Zou
- Department of OrthopedicsThe Second Affliated Hospital of Soochow UniversitySuzhouChina
| | - Yuhang Ma
- Department of OrthopedicsThe Second Affliated Hospital of Soochow UniversitySuzhouChina
| | - Zhengfeng Lu
- Department of OrthopedicsThe Second Affliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
10
|
Fan R, Wang L, Botchway BOA, Zhang Y, Liu X. Protective role of ethyl pyruvate in spinal cord injury by inhibiting the high mobility group box-1/toll-like receptor4/nuclear factor-kappa B signaling pathway. Front Mol Neurosci 2022; 15:1013033. [PMID: 36187352 PMCID: PMC9524569 DOI: 10.3389/fnmol.2022.1013033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is a high incident rate of central nervous system disease that usually causes paralysis below the injured level. The occurrence of chronic inflammation with the axonal regeneration difficulties are the underlying barriers for the recovery of SCI patients. Current studies have paid attention to controlling the instigative and developmental process of neuro-inflammation. Ethyl pyruvate, as a derivative of pyruvate, has strong anti-inflammatory and neuroprotective functions. Herein, we reviewed the recent studies of ethyl pyruvate and high mobility group box-1 (HMGB1). We think HMGB1 that is one of the main nuclear protein mediators to cause an inflammatory response. This protein induces astrocytic activation, and promotes glial scar formation. Interestingly, ethyl pyruvate has potent inhibitory effects on HMGB1 protein, as it inhibits chronic inflammatory response by modulating the HMGB1/TLR4/NF-κB signaling pathway. This paper discusses the potential mechanism of ethyl pyruvate in inhibiting chronic inflammation after SCI. Ethyl pyruvate can be a prospective therapeutic agent for SCI.
Collapse
Affiliation(s)
- Ruihua Fan
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Lvxia Wang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | | | - Yong Zhang
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
- School of Life Sciences, Shaoxing University, Shaoxing, China
- *Correspondence: Xuehong Liu, ; orcid.org/0000-0003-4325-6762
| |
Collapse
|
11
|
Qi L, Zhang J, Wang J, An J, Xue W, Liu Q, Zhang Y. Mechanisms of ginsenosides exert neuroprotective effects on spinal cord injury: A promising traditional Chinese medicine. Front Neurosci 2022; 16:969056. [PMID: 36081662 PMCID: PMC9445311 DOI: 10.3389/fnins.2022.969056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating disorder of the central nervous system (CNS). It is mainly caused by trauma and reduces the quality of life of the affected individual. Ginsenosides are safe and effective traditional Chinese medicines (TCMs), and their efficacy against SCI is being increasingly researched in many countries, especially in China and Korea. This systematic review evaluated the neuroprotective effects of ginsenosides in SCI and elucidated their properties.
Collapse
|
12
|
Ghafouri-Fard S, Balaei N, Shoorei H, Hasan SMF, Hussen BM, Talebi SF, Taheri M, Ayatollahi SA. The effects of Ginsenosides on PI3K/AKT signaling pathway. Mol Biol Rep 2022; 49:6701-6716. [PMID: 35220526 PMCID: PMC9270311 DOI: 10.1007/s11033-022-07270-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/15/2022] [Indexed: 12/14/2022]
Abstract
Ginsenosides belong to a group of steroid glycosides that are extracted from the plant genus Panax (ginseng). This plant has been used for a long time for the treatment of a variety of disorders in traditional medicine. Recent studies have assessed the biological impact of Ginsenosides in cell culture or animal models. Animal studies have shown their beneficial impacts in the remedy of pathological conditions in different tissues. The ameliorating effects of Ginsenosides in diverse pathogenic conditions can be attributed to their effects on the production of reactive oxygen species. These substances mainly affect the activity of AMPK/AKT and PI3K/AKT pathways. The beneficial effects of Ginsenosides have been appraised in diabetes-related complications, spinal cord injury, cerebral ischemia, myocardial ischemia, and other disorders which are associated with oxidative stress. Moreover, these substances have been shown to interfere with the pathologic conditions during carcinogenesis. In the current study, we explain these impacts in two distinct sections including non-neoplastic conditions and neoplastic conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Balaei
- Department of Pharmacology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Syed Muhammad Farid Hasan
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Seyedeh Fahimeh Talebi
- Department of Pharmacology, College of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | | |
Collapse
|
13
|
Jiang W, Tang M, Yang L, Zhao X, Gao J, Jiao Y, Li T, Tie C, Gao T, Han Y, Jiang JD. Analgesic Alkaloids Derived From Traditional Chinese Medicine in Pain Management. Front Pharmacol 2022; 13:851508. [PMID: 35620295 PMCID: PMC9127080 DOI: 10.3389/fphar.2022.851508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic pain is one of the most prevalent health problems. The establishment of chronic pain is complex. Current medication for chronic pain mainly dependent on anticonvulsants, tricyclic antidepressants and opioidergic drugs. However, they have limited therapeutic efficacy, and some even with severe side effects. We turned our interest into alkaloids separated from traditional Chinese medicine (TCM), that usually act on multiple drug targets. In this article, we introduced the best-studied analgesic alkaloids derived from TCM, including tetrahydropalmatine, aloperine, oxysophocarpine, matrine, sinomenine, ligustrazine, evodiamine, brucine, tetrandrine, Stopholidine, and lappaconitine, focusing on their mechanisms and potential clinical applications. To better describe the mechanism of these alkaloids, we adopted the concept of drug-cloud (dCloud) theory. dCloud illustrated the full therapeutic spectrum of multitarget analgesics with two dimensions, which are “direct efficacy”, including inhibition of ion channels, activating γ-Aminobutyric Acid/opioid receptors, to suppress pain signal directly; and “background efficacy”, including reducing neuronal inflammation/oxidative stress, inhibition of glial cell activation, restoring the balance between excitatory and inhibitory neurotransmission, to cure the root causes of chronic pain. Empirical evidence showed drug combination is beneficial to 30–50% chronic pain patients. To promote the discovery of effective analgesic combinations, we introduced an ancient Chinese therapeutic regimen that combines herbal drugs with “Jun”, “Chen”, “Zuo”, and “Shi” properties. In dCloud, “Jun” drug acts directly on the major symptom of the disease; “Chen” drug generates major background effects; “Zuo” drug has salutary and supportive functions; and “Shi” drug facilitates drug delivery to the targeted tissue. Subsequently, using this concept, we interpreted the therapeutic effect of established analgesic compositions containing TCM derived analgesic alkaloids, which may contribute to the establishment of an alternative drug discovery model.
Collapse
Affiliation(s)
- Wei Jiang
- Zhejiang Zhenyuan Pharmaceutical Co., Ltd., Shaoxing, China
| | - Mingze Tang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Limin Yang
- Zhejiang Zhenyuan Pharmaceutical Co., Ltd., Shaoxing, China
| | - Xu Zhao
- First Clinical Division, Peking University Hospital of Stomatology, Beijing, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medicine Sciences & Peking Union Medical College, Beijing, China
| | - Yue Jiao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cai Tie
- State Key Laboratory of Coal Resources and Safety Mining, China University of Mining and Technology, Beijing, China.,School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, China
| | - Tianle Gao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Mao C, Luan H, Gao S, Sheng W. Urolithin A as a Potential Drug for the Treatment of Spinal Cord Injuries: A Mechanistic Study Using Network Pharmacology Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9090113. [PMID: 35497925 PMCID: PMC9054438 DOI: 10.1155/2022/9090113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/08/2022] [Accepted: 03/21/2022] [Indexed: 02/08/2023]
Abstract
Objective This research was focused to examine the potential targets, action network, and mechanism of urolithin A (UA) in spinal cord injury (SCI) management exploiting the network pharmacology (NP). Methods We used the SwissTargetPrediction, PharmMapper, and TargetNet databases to obtain UA action targets. We searched the OMIM, GeneCards, CTD, and DrugBank databases to screen selected target genes for SCI treatment. The intersection of target genes between the UA and SCI databases was obtained by constructing Venn diagrams, which led to the identification of common druggable targets for the disease. The relationship network of the targets was built with Cytoscape 3.7.2, and the protein interaction network was analyzed with the STRING platform. The protein-protein interaction (PPI) network can be built on the STRING database. Gene Ontology (GO) function and KEGG pathway analyses of target intersections were completed with the DAVID 6.8 database. We constructed preliminary network targets for actions underlying UA-SCI interactions. Using the AutoDock software, we examined the molecular docking interactions between UA and its target proteins and further verified the mechanism of the action of UA. Results We obtained 318 UA drug targets and 1492 SCI disease targets. We identified a total of 118 common UA-SCI targets. Based on the PPI analysis, we identified MAPK1, SRC, AKT1, HRAS, MAPK8, HSP90AA1, MAPK14, JAK2, ESR1, and NF-κB1 as possible therapeutic targets. Enrichment analysis revealed that the PI3K-AKT, VEGF, and TNF signaling pathways could be critical for the NP analysis. Molecular docking indicated that UA had a strong affinity for docked proteins (binding energy range: -6.3 to -9.3 kcal mol-1). Conclusions We employed an NP approach to validate and predict the underlying mechanisms associated with UA therapy for SCI. An additional purpose of this study was to provide a theoretical basis for further experimental studies on UA's potential in SCI treatment.
Collapse
Affiliation(s)
- Chao Mao
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - HaoPeng Luan
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - ShuTao Gao
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - WeiBin Sheng
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| |
Collapse
|
15
|
Mao J, Ma X, Zhu J, Zhang H. Ginsenoside Rg1 ameliorates psoriasis-like skin lesions by suppressing proliferation and NLRP3 inflammasomes in keratinocytes. J Food Biochem 2022; 46:e14053. [PMID: 35218026 DOI: 10.1111/jfbc.14053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022]
Abstract
As a common chronic skin disease, psoriasis is characterized by the involvement of congenital acquired inflammatory immune diseases. In the study, our results indicated the effect of ginsenoside Rg1 on psoriasis-like skin and the potential protection mechanisms that have not yet been investigated. In vivo, psoriasis-like skin mice model was induced by imiquimod (IMQ), then was treated by ginsenoside Rg1 for consecutive 4 weeks to evaluate its effect, respectively. In vitro, M5 cocktail treatment of human immortalized keratinocyte HaCaT-induced psoriasis-like skin cell model, which was exposed to ginsenoside Rg1. The inflammatory cell infiltration, expression level of keratinocyte proliferation marker Ki67, keratinocyte proliferation, inflammatory cytokines, and ROS/NLRP3 pathway-related proteins in vivo and in vitro were examined by hematoxylin and eosin, immunohistochemistry, ELISA, CCK-8, flow cytometry, and western blot. All results demonstrated that ginsenoside Rg1 attenuated the injury of psoriasis-like skin, which inhibited the proliferation of skin keratinocytes and the activation of NLRP3 inflammasome and the level of inflammatory factors such as IL-1β and IL-18, and decreased the level of Ki67, NLRP3, and caspase-1 in mice and HaCaT. Furthermore, NLRP3 overexpression attenuates the effect of ginsenoside Rg1 on M5 cocktail-induced proliferation and NLRP3 inflammasomes in HaCaT. These results demonstrated that ginsenoside Rg1 could suppress the ROS/NLRP3 pathway to treat psoriasis-like skin. PRACTICAL APPLICATIONS: This is the very first study to explore the efficacy of ginsenoside Rg1 against psoriasis-like skin lesions to reveal the underlying mechanism. In this paper, the detection of skin histopathological analysis, CCK-8, flow cytometry, western blot, and ELISA analysis shows that ginsenoside Rg1 has preventive effect on psoriasis caused by imiquimod or M5 cocktail through inhibiting NLRP3 inflammasome, which helps in the development of novel nutraceutical/functional food against psoriasis and thus could improve the quality of life in psoriasis patients.
Collapse
Affiliation(s)
- Jingyi Mao
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of traditional Chinese Medicine, Shanghai, China
| | - Xin Ma
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of traditional Chinese Medicine, Shanghai, China
| | - Jiong Zhu
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of traditional Chinese Medicine, Shanghai, China
| | - Huimin Zhang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Liao HY, Wang ZQ, Da CM, Zhou KS, Zhang HH. Ski regulates proliferation and migration of reactive astrocytes induced by lipopolysaccharide (LPS) through PI3K/Akt pathway. J Neuroimmunol 2022; 364:577807. [PMID: 35007896 DOI: 10.1016/j.jneuroim.2022.577807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 11/30/2022]
Abstract
Spinal cord injury (SCI) is a leading cause of disability and death worldwide. Reactive astrogliosis, a typical feature of SCI, undergoes various molecular and morphological changes and contributes to glial scar formation, which impedes axonal regeneration. Ski is a novel molecule that regulates the biological characteristics of astrocytes after spinal cord injury, but its function and the exact mechanism of its overexpression in reactive astrocyte proliferation and migration after SCI remain unclear. The purpose of this study was to elucidate the effect and mechanism of Ski on the proliferation and migration of reactive astrocytes, and to regulate the spatiotemporal formation of glial scars after SCI. In an in vitro lipopolysaccharide (LPS)-induced astrocyte injury model, the expression of Ski was upregulated in a time-dependent manner in LPS-induced astrocytes, and the upregulation of Ski was accompanied by that of PCNA, CDK4, CyclinD1, and other proliferation-related proteins. Our findings suggest that Ski promotes the proliferation and migration of reactive astrocytes. Next, astrocytes were transfected with a specific lentivirus to cause the overexpression of Ski, which significantly enhanced the proliferation and migration of reactive astrocytes and LPS-induced activation of the PI3K/Akt pathway. The PI3K/Akt pathway inhibitor LY294002 significantly inhibited the proliferation and migration of LPS-induced reactive astrocytes after Ski overexpression. In conclusion, Ski regulates LPS-induced astrocyte proliferation and migration through the PI3K/Akt pathway, making Ski a promising target for strategies to combat glial scarring after SCI.
Collapse
Affiliation(s)
- Hai-Yang Liao
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Zhi-Qiang Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Chao-Ming Da
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Kai-Sheng Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China.
| |
Collapse
|
17
|
Jin J, Zhong Y, Long J, Wu T, Jiang Q, Wang H, Ge W, Zhao H, Liu D. Ginsenoside Rg1 relieves experimental colitis by regulating balanced differentiation of Tfh/Treg cells. Int Immunopharmacol 2021; 100:108133. [PMID: 34543978 DOI: 10.1016/j.intimp.2021.108133] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
Inflammatory bowel disease (IBD) is typically characterized by the dysregulation of Tfh cell differentiation. we sought to explore the potential mechanism of Ginsenoside Rg1 (G-Rg1) treated IBD by observing the level of the Tfh/Treg cells and the activation of PI3K/Akt signaling pathway in the colitis mice. In the present study, G-Rg1 significantly inhibited the inflammatory response to mice colitis induced by dextran sodium sulfate (DSS), as evidenced by increased body weight and colon length, decreased colon weight, reduced colon weight index and histopathological scores, lower levels of IL-6 and TNF-α, and increased IL-10 levels. Significantly, G-Rg1 effectively decreased the amounts of CD4+CXCR5+IL-9+(Tfh9), CD4+ CXCR5+IL-17+(Tfh17), and increased CD4+CXCR5+Foxp3+(Tfr) and CD4+CD25+ Foxp3+(Treg) cells. Furthermore, G-Rg1 markedly down-regulated PI3K and p-Akt level, and upregulated PTEN expression. These results indicated that G-Rg1 could effectively regulate the balance of Tfh/Treg cells to relieve experimental colitis, which could be potentially related to PI3K/Akt signaling pathway inhibition.
Collapse
Affiliation(s)
- Jing Jin
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Youbao Zhong
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Jian Long
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Tiantian Wu
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Qingqing Jiang
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Haiyan Wang
- Party and School Office, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Wei Ge
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, Jiangxi Province, China
| | - Haimei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| | - Duanyong Liu
- Science and Technology College, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| |
Collapse
|
18
|
Anwar H, Rasul A, Iqbal J, Ahmad N, Imran A, Malik SA, Ijaz F, Akram R, Maqbool J, Sajid F, Sun T, Hussain G, Manzoor MF. Dietary biomolecules as promising regenerative agents for peripheral nerve injury: An emerging nutraceutical-based therapeutic approach. J Food Biochem 2021; 45:e13989. [PMID: 34719796 DOI: 10.1111/jfbc.13989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 12/22/2022]
Abstract
Peripheral nerve damage is a debilitating condition that can result in partial or complete functional loss as a result of axonal degeneration, as well as lifelong dependence. Many therapies have been imbued with a plethora of positive features while posing little risks. It is worth noting that these biomolecules work by activating several intrinsic pathways that are known to be important in peripheral nerve regeneration. Although the underlying mechanism is used for accurate and speedy functional recovery, none of them are without side effects. As a result, it is believed that effective therapy is currently lacking. The dietary biomolecules-based intervention, among other ways, is appealing, safe, and effective. Upregulation of transcription factors, neurotrophic factors, and growth factors such as NGF, GDNF, BDNF, and CTNF may occur as a result of these substances' dietary intake. Upregulation of the signaling pathways ERK, JNK, p38, and PKA has also been seen, which aids in axonal regeneration. Although several mechanistic approaches to understanding their involvement have been suggested, more work is needed to reveal the amazing properties of these biomolecules. We have discussed in this article that how different dietary biomolecules can help with functional recovery and regeneration after an injury. PRACTICAL APPLICATIONS: Based on the information known to date, we may conclude that treatment techniques for peripheral nerve injury have downsides, such as complications, donor shortages, adverse effects, unaffordability, and a lack of precision in efficacy. These difficulties cast doubt on their efficacy and raise severe concerns about the prescription. In this situation, the need for safe and effective therapeutic techniques is unavoidable, and dietary biomolecules appear to be a safe, cost-efficient, and effective way to promote nerve regeneration following an injury. The information on these biomolecules has been summarized here. Upregulation of transcription factors, neurotrophic factors, and growth factors, such as NGF, GDNF, BDNF, and CTNF, as well as the ERK, JNK, p38, and PKA, signaling pathways, may stimulate axonal regeneration.
Collapse
Affiliation(s)
- Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Javed Iqbal
- Department of Neurology, Allied Hospital, Faisalabad Medical University, Faisalabad, Pakistan
| | - Nazir Ahmad
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Shoaib Ahmad Malik
- Department of Biochemistry, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Fazeela Ijaz
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Rabia Akram
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Javeria Maqbool
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Faiqa Sajid
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
19
|
Hu X, Li R, Wu Y, Li Y, Zhong X, Zhang G, Kang Y, Liu S, Xie L, Ye J, Xiao J. Thermosensitive heparin-poloxamer hydrogel encapsulated bFGF and NGF to treat spinal cord injury. J Cell Mol Med 2020; 24:8166-8178. [PMID: 32515141 PMCID: PMC7348165 DOI: 10.1111/jcmm.15478] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/18/2020] [Accepted: 05/24/2020] [Indexed: 01/10/2023] Open
Abstract
The application of growth factors (GFs) for treating chronic spinal cord injury (SCI) has been shown to promote axonal regeneration and functional recovery. However, direct administration of GFs is limited by their rapid degradation and dilution at the injured sites. Moreover, SCI recovery is a multifactorial process that requires multiple GFs to participate in tissue regeneration. Based on these facts, controlled delivery of multiple growth factors (GFs) to lesion areas is becoming an attractive strategy for repairing SCI. Presently, we developed a GFs‐based delivery system (called GFs‐HP) that consisted of basic fibroblast growth factor (bFGF), nerve growth factor (NGF) and heparin‐poloxamer (HP) hydrogel through self‐assembly mode. This GFs‐HP was a kind of thermosensitive hydrogel that was suitable for orthotopic administration in vivo. Meanwhile, a 3D porous structure of this hydrogel is commonly used to load large amounts of GFs. After single injection of GFs‐HP into the lesioned spinal cord, the sustained release of NGF and bFGF from HP could significantly improve neuronal survival, axon regeneration, reactive astrogliosis suppression and locomotor recovery, when compared with the treatment of free GFs or HP. Moreover, we also revealed that these neuroprotective and neuroregenerative effects of GFs‐HP were likely through activating the phosphatidylinositol 3 kinase and protein kinase B (PI3K/Akt) and mitogen‐activated protein kinase/extracellular signal‐regulated kinase (MAPK/ERK) signalling pathways. Overall, our work will provide an effective therapeutic strategy for SCI repair.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Anesthesia, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Rui Li
- Department of Anesthesia, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yanqing Wu
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Wenzhou, China
| | - Yi Li
- Department of Anesthesia, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Xingfeng Zhong
- Department of Anesthesia, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guanyinsheng Zhang
- Department of Anesthesia, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Yanmin Kang
- Department of Anesthesia, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Shuhua Liu
- Department of Anesthesia, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Ling Xie
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Junming Ye
- Department of Anesthesia, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Wenzhou, China
| |
Collapse
|