1
|
Li MY, Shen HH, Cao XY, Gao XX, Xu FY, Ha SY, Sun JS, Liu SP, Xie F, Li MQ. Targeting a mTOR/autophagy axis: a double-edged sword of rapamycin in spontaneous miscarriage. Biomed Pharmacother 2024; 177:116976. [PMID: 38906022 DOI: 10.1016/j.biopha.2024.116976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/02/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Immune dysfunction is a primary culprit behind spontaneous miscarriage (SM). To address this, immunosuppressive agents have emerged as a novel class of tocolytic drugs, modulating the maternal immune system's tolerance towards the embryo. Rapamycin (PubChem CID:5284616), a dual-purpose compound, functions as an immunosuppressive agent and triggers autophagy by targeting the mTOR pathway. Its efficacy in treating SM has garnered significant research interest in recent times. Autophagy, the cellular process of self-degradation and recycling, plays a pivotal role in numerous health conditions. Research indicates that autophagy is integral to endometrial decidualization, trophoblast invasion, and the proper functioning of decidual immune cells during a healthy pregnancy. Yet, in cases of SM, there is a dysregulation of the mTOR/autophagy axis in decidual stromal cells or immune cells at the maternal-fetal interface. Both in vitro and in vivo studies have highlighted the potential benefits of low-dose rapamycin in managing SM. However, given mTOR's critical role in energy metabolism, inhibiting it could potentially harm the pregnancy. Moreover, while low-dose rapamycin has been deemed safe for treating recurrent implant failure, its potential teratogenic effects remain uncertain due to insufficient data. In summary, rapamycin represents a double-edged sword in the treatment of SM, balancing its impact on autophagy and immune regulation. Further investigation is warranted to fully understand its implications.
Collapse
Affiliation(s)
- Meng-Ying Li
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Hui Shen
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Xiao-Yan Cao
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Xiao-Xiao Gao
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Feng-Yuan Xu
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Si-Yao Ha
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510235, China
| | - Jian-Song Sun
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Song-Ping Liu
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China.
| | - Feng Xie
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China.
| | - Ming-Qing Li
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Department of Gynecologic Endocrinology and Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, People's Republic of China.
| |
Collapse
|
2
|
Feng W, Qiao J, Tan Y, Liu Q, Wang Q, Yang B, Yang S, Cui L. Interaction of antiphospholipid antibodies with endothelial cells in antiphospholipid syndrome. Front Immunol 2024; 15:1361519. [PMID: 39044818 PMCID: PMC11263079 DOI: 10.3389/fimmu.2024.1361519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Antiphospholipid syndrome (APS) is an autoimmune disease with arteriovenous thrombosis and recurrent miscarriages as the main clinical manifestations. Due to the complexity of its mechanisms and the diversity of its manifestations, its diagnosis and treatment remain challenging issues. Antiphospholipid antibodies (aPL) not only serve as crucial "biomarkers" in diagnosing APS but also act as the "culprits" of the disease. Endothelial cells (ECs), as one of the core target cells of aPL, bridge the gap between the molecular level of these antibodies and the tissue and organ level of pathological changes. A more in-depth exploration of the relationship between ECs and the pathogenesis of APS holds the potential for significant advancements in the precise diagnosis, classification, and therapy of APS. Many researchers have highlighted the vital involvement of ECs in APS and the underlying mechanisms governing their functionality. Through extensive in vitro and in vivo experiments, they have identified multiple aPL receptors on the EC membrane and various intracellular pathways. This article furnishes a comprehensive overview and summary of these receptors and signaling pathways, offering prospective targets for APS therapy.
Collapse
Affiliation(s)
- Weimin Feng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| | - Jiao Qiao
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| | - Yuan Tan
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| | - Qi Liu
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| | - Qingchen Wang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Boxin Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Shuo Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| |
Collapse
|
3
|
Li Z, Dai F, Zhu R, Zhang Y, Chen J, Chen L, Liu H, Cheng Y. Dysregulation of CREB5 Impairs Decidualization and Maternal-Fetal Interactions by Inhibiting Autophagy in Recurrent Spontaneous Abortion. Reprod Sci 2024; 31:1983-2000. [PMID: 38424407 DOI: 10.1007/s43032-024-01474-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Clinically, recurrent spontaneous abortion (RSA) is a pregnancy illness that is difficult to treat. Impaired decidualization is a documented cause of RSA, but the etiology and mechanism are still unknown. cAMP-responsive element binding protein 5 (CREB5) is a member of the ATF/CREB family. CREB5 has been reported to be related to pathological pregnancy, but there are few related studies on this topic in patients with RSA, and the underlying mechanism is unclear. METHODS We collected decidual tissues from RSA patients and healthy pregnant women to measure the expression level of CREB5, PRL, IGFBP1, ATG5, LC3B, and SQSTM/p62. Then, the changes in CREB5 expression and autophagy levels were measured in human endometrial stromal cells (hESCs) during decidualization. The expression levels of PRL and IGFBP1 were tested in sh-CREB5/ov-CREB5 hESCs after decidualization induction, and the autophagy level in sh-CREB5/ov-CREB5 hESCs was measured without decidualization induction. The decidualization ability of sh-CREB5 and ov-CREB5 hESCs treated with an autophagy inducer or inhibitor was measured. To investigate the effect of CREB5 in hESCs on the invasion and migration of HTR8/SVneo cells, we performed a coculture experiment. Finally, we examined the expression of CREB5 and autophagy key proteins in mouse decidual tissues by constructing an abortion mouse model. RESULTS In our study, we found that the expression of CREB5 was unusually elevated in the uterine decidua of RSA patients, but the expression of PRL, IGFBP1, and autophagy were decreased. During the decidualization of hESCs, the expression of CREB5 gradually decreases in a time-dependent manner with increasing autophagy. Moreover, by knocking down or overexpressing CREB5 in hESCs, it was found that CREB5 can impair decidualization and reduce autophagy in hESCs. Furthermore, the damage caused by CREB5 in terms of decidualization can be reversed by the addition of an autophagy inducer (rapamycin). In addition, CREB5 can increase the secretion of proteins (IL-1β and TGF-β1) in hESCs to inhibit trophoblast invasion and migration. CONCLUSIONS Our data support the supposition that CREB5 disturbs the decidualization of endometrial stromal cells and interactions at the maternal-fetal interface by inhibiting autophagy and that its abnormal upregulation and dysfunction may lead to RSA. It may function as a diagnostic and therapeutic target for RSA. Similarly, we found that in the spontaneous abortion mouse model, the expression of CREB5 in the decidual tissue of the abortion group was significantly increased, and autophagy was decreased.
Collapse
Affiliation(s)
- Zhidian Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Ronghui Zhu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Yuwei Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Jing Chen
- Caidian District People's Hospital of Wuhan, Wuhan, Hubei, 430100, People's Republic of China
| | - Liping Chen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
4
|
Zheng W, Lei M, Yao Y, Zhan J, Zhang Y, Zhou Q. Mechanisms underlying the therapeutic effects of Semen cuscutae in treating recurrent spontaneous abortion based on network pharmacology and molecular docking. Front Mol Biosci 2024; 11:1282100. [PMID: 38872917 PMCID: PMC11170108 DOI: 10.3389/fmolb.2024.1282100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/09/2024] [Indexed: 06/15/2024] Open
Abstract
Background: This paper aims to analyse the active components of Semen cuscutae (SC) by network pharmacology and screen the most stable compounds with tumour necrosis factor-alpha (TNF-α) by molecular docking to explore the mechanisms of SC treatment of recurrent spontaneous abortion (RSA) and provide a theoretical basis for drug development. Methods: The active compounds of SC and the potential inflammatory targets of RSA were obtained from the Traditional Chinese Medicine Systems Pharmacology database and GeneCards, respectively. The RSA-SC target gene interaction network was obtained and visualized using the STRING database and Cytoscape software. GO and KEGG pathway enrichment analyses were obtained from DAVID to further explore the RSA mechanism and therapeutic effects of SC. Interactions between TNF-α and drugs were analysed by molecular docking. Treatment of human trophoblast cells with sesamin and TNF-α was carried out to detect their proliferative and apoptotic abilities, and WB assay was carried out to detect EGFR, PTGS2, and CASP3 protein expression. Results: Ten compounds and 128 target genes were screened from SC, of which 79 overlapped with RSA target inflammatory genes, which were considered potential therapeutic targets. Network pharmacological analysis showed that sesamin, matrine, matrol, and other SC compounds had a good correlation with the inflammatory target genes of RSA. Related genes included PGR, PTGS1, PTGS2, TGFB1, and CHRNA7. Several signalling pathways are involved in the pathogenesis of RSA, such as the TNF-α signalling pathway, HIF-1 signalling pathway, oestrogen signalling pathway, proteoglycans in cancer cells, and FoxO signalling pathway. Molecular docking results suggested that sesamin was the most suitable natural tumour necrosis factor inhibitor (TNFi). Sesamin can promote proliferation and inhibit apoptosis in human trophoblasts by downregulating EGFR and CASP3 expression and upregulating PTGS2 expression. Conclusion: Our findings play an important role and basis for further research into the molecular mechanism of SC treatment of RSA and drug development of TNFi.
Collapse
Affiliation(s)
- Wenfei Zheng
- Department of Gynecology and Obstetrics, The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People’s Hospital, Yichan, China
| | | | | | | | | | | |
Collapse
|
5
|
Chen H, Chen Y, Zheng Q. The regulated cell death at the maternal-fetal interface: beneficial or detrimental? Cell Death Discov 2024; 10:100. [PMID: 38409106 PMCID: PMC10897449 DOI: 10.1038/s41420-024-01867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Regulated cell death (RCD) plays a fundamental role in placental development and tissue homeostasis. Placental development relies upon effective implantation and invasion of the maternal decidua by the trophoblast and an immune tolerant environment maintained by various cells at the maternal-fetal interface. Although cell death in the placenta can affect fetal development and even cause pregnancy-related diseases, accumulating evidence has revealed that several regulated cell death were found at the maternal-fetal interface under physiological or pathological conditions, the exact types of cell death and the precise molecular mechanisms remain elusive. In this review, we summarized the apoptosis, necroptosis and autophagy play both promoting and inhibiting roles in the differentiation, invasion of trophoblast, remodeling of the uterine spiral artery and decidualization, whereas ferroptosis and pyroptosis have adverse effects. RCD serves as a mode of communication between different cells to better maintain the maternal-fetal interface microenvironment. Maintaining the balance of RCD at the maternal-fetal interface is of utmost importance for the development of the placenta, establishment of an immune microenvironment, and prevention of pregnancy disorders. In addition, we also revealed an association between abnormal expression of key molecules in different types of RCD and pregnancy-related diseases, which may yield significant insights into the pathogenesis and treatment of pregnancy-related complications.
Collapse
Affiliation(s)
- Huan Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, P.R. China
| | - Yin Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, P.R. China
| | - Qingliang Zheng
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, P.R. China.
| |
Collapse
|
6
|
Zhou P, Wang J, Wang J, Liu X. When autophagy meets placenta development and pregnancy complications. Front Cell Dev Biol 2024; 12:1327167. [PMID: 38371923 PMCID: PMC10869551 DOI: 10.3389/fcell.2024.1327167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Autophagy is a common biological phenomenon in eukaryotes that has evolved and reshaped to maintain cellular homeostasis. Under the pressure of starvation, hypoxia, and immune damage, autophagy provides energy and nutrients to cells, which benefits cell survival. In mammals, autophagy is an early embryonic nutrient supply system involved in early embryonic development, implantation, and pregnancy maintenance. Recent studies have found that autophagy imbalance in placental tissue plays a key role in the occurrence and development of pregnancy complications, such as gestational hypertension, gestational obesity, premature birth, miscarriage, and intrauterine growth restriction. This mini-review summarizes the molecular mechanism of autophagy regulation, the autophagy pathways, and related factors involved in placental tissue and comprehensively describes the role of autophagy in pregnancy complications.
Collapse
Affiliation(s)
- Pei Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Junqi Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jun Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Obstetrics and Gynecology, Benxi Central Hospital of China Medical University, Benxi, Liaoning, China
| | - Xiaomei Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Qi J, Pan Z, Wang X, Zhang N, He G, Jiang X. Research advances of Zanthoxylum bungeanum Maxim. polyphenols in inflammatory diseases. Front Immunol 2024; 15:1305886. [PMID: 38343532 PMCID: PMC10853423 DOI: 10.3389/fimmu.2024.1305886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Zanthoxylum bungeanum Maxim., commonly known as Chinese prickly ash, is a well-known spice and traditional Chinese medicine ingredient with a rich history of use in treating inflammatory conditions. This review provides a comprehensive overview of the botanical classification, traditional applications, and anti-inflammatory effects of Z. bungeanum, with a specific focus on its polyphenolic components. These polyphenols have exhibited considerable promise, as evidenced by preclinical studies in animal models, suggesting their therapeutic potential in human inflammatory diseases such as ulcerative colitis, arthritis, asthma, chronic obstructive pulmonary disease, cardiovascular disease, and neurodegenerative conditions. This positions them as a promising class of natural compounds with the potential to enhance human well-being. However, further research is necessary to fully elucidate their mechanisms of action and develop safe and effective therapeutic applications.
Collapse
Affiliation(s)
- Jinxin Qi
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zhaoping Pan
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyun Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Komijani E, Parhizkar F, Abdolmohammadi-Vahid S, Ahmadi H, Nouri N, Yousefi M, Aghebati-Maleki L. Autophagy-mediated immune system regulation in reproductive system and pregnancy-associated complications. J Reprod Immunol 2023; 158:103973. [PMID: 37295066 DOI: 10.1016/j.jri.2023.103973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Autophagy lysosomal degradation is the main cell mechanism in cellular, tissue and organismal homeostasis and is controlled by autophagy-related genes (ATG). Autophagy has important effects in cellular physiology, including adaptation to metabolic stress, removal of dangerous cargo (such as protein aggregates, damaged organelles, and intracellular pathogens), regeneration during differentiation and development, and prevention of genomic damage in general. Also, it has been found that autophagy is essential for pre-implantation, development, and maintaining embryo survival in mammals. Under certain conditions, autophagy may be detrimental through pro-survival effects such as cancer progression or through possible cell death-promoting effects. Hormonal changes and environmental stress can initiate autophagy in reproductive physiology. The activity of autophagy can be upregulated under conditions like a lack of nutrients, inflammation, hypoxia, and infections. In this regard the dysregulation of autophagy involved in some pregnancy complications such as preeclampsia (PE) and pregnancy loss, and has a major impact on reproductive outcomes. Therefore, we aimed to discuss the relationship between autophagy and the female reproductive system, with a special focus on the immune system, and its role in fetal and maternal health.
Collapse
Affiliation(s)
- Erfan Komijani
- Department of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Forough Parhizkar
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamid Ahmadi
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, Pécs, Hungary
| | - Narjes Nouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
9
|
Mai J, He Q, Liu Y, Hou Y. Hyperoside Attenuates Sepsis-Induced Acute Lung Injury (ALI) through Autophagy Regulation and Inflammation Suppression. Mediators Inflamm 2023; 2023:1257615. [PMID: 37545738 PMCID: PMC10400302 DOI: 10.1155/2023/1257615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 05/21/2023] [Accepted: 06/22/2023] [Indexed: 08/08/2023] Open
Abstract
Background Sepsis mortality and morbidity are aggravated by acute lung injury (ALI) or acute respiratory distress syndrome. Published studies have discovered that hyperoside (HYP) has an anti-inflammatory and therapeutic effect in many diseases. However, whether HYP treatment can attenuate sepsis-induced ALI is still obscure. Methods In this study, a cecal ligation and puncture (CLP)-induced sepsis mouse model was constructed. The mouse lungs were harvested and assessed using proteomics, immunohistochemistry, immunofluorescence, and enzyme-linked immunosorbent assay for pro-inflammatory cytokines. Human lung microvascular endothelial cells (HLMVECs) were induced with lipopolysaccharide (LPS) for the in vitro model. Results The results showed that HYP treatment attenuated sepsis-induced ALI through an increased survival rate, decreased inflammatory factor expression, and lung tissue apoptosis. At the same time, HYP pretreatment restored angiogenesis in CLP-induced mouse lung tissues. Proteomics detection showed that Atg13 played a vital role in HYP-mediated protection against sepsis-induced ALI. The in vitro experiment showed HYP treatment attenuated LPS-induced HLMVEC damage by regulating Atg13-mediated autophagy. Inhibiting autophagy or silencing Atg13 reversed the protective effect of HYP against sepsis-induced ALI. Conclusion Taken together, we conclude that HYP attenuated sepsis-induced ALI by regulating autophagy and inhibiting inflammation.
Collapse
Affiliation(s)
- Jingyin Mai
- Emergency Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai 200071, China
| | - Qingqing He
- Hospital Infection Management Department, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai 200052, China
| | - Yuting Liu
- Cardiovascular Department, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai 200052, China
| | - Yuting Hou
- Department of Pharmacy, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai 200052, China
| |
Collapse
|
10
|
Wu W, Zhang Y, Liu G, Chi Z, Zhang A, Miao S, Lin C, Xu Q, Zhang Y. Potential protective effects of Huanglian Jiedu Decoction against COVID-19-associated acute kidney injury: A network-based pharmacological and molecular docking study. Open Med (Wars) 2023; 18:20230746. [PMID: 37533739 PMCID: PMC10390755 DOI: 10.1515/med-2023-0746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 08/04/2023] Open
Abstract
Corona virus disease 2019 (COVID-19) is prone to induce multiple organ damage. The kidney is one of the target organs of SARS-CoV-2, which is susceptible to inducing acute kidney injury (AKI). Huanglian Jiedu Decoction (HLJDD) is one of the recommended prescriptions for COVID-19 with severe complications. We used network pharmacology and molecular docking to explore the therapeutic and protective effects of HLJDD on COVID-19-associated AKI. Potential targets related to "HLJDD," "COVID-19," and "Acute Kidney Injury/Acute Renal Failure" were identified from several databases. A protein-protein interaction (PPI) network was constructed and screened the core targets according to the degree value. The target genes were then enriched using gene ontology and Kyoto Encyclopedia of Genes and Genomes. The bioactive components were docked with the core targets. A total of 65 active compounds, 85 common targets for diseases and drugs were obtained; PPI network analysis showed that the core protein mainly involved JUN, RELA, and AKT1; functional analysis showed that these target genes were mainly involved in lipid and atherosclerosis signaling pathway and IL-17 signal pathway. The results of molecular docking showed that JUN, RELA, and AKT1 had good binding activity with the effective chemical components of HLJDD. In conclusion, HLJDD can be used as a potential therapeutic drug for COVID-19-associated AKI.
Collapse
Affiliation(s)
- Weichu Wu
- Department of Urology, Shantou Central Hospital, Shantou, 515031, PR China
| | - Yonghai Zhang
- Department of Urology, Shantou Central Hospital, Shantou, 515031, PR China
| | - Guoyuan Liu
- Department of Urology, Shantou Central Hospital, Shantou, 515031, PR China
| | - Zepai Chi
- Department of Urology, Shantou Central Hospital, Shantou, 515031, PR China
| | - Aiping Zhang
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, PR China
| | - Shuying Miao
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chengchuang Lin
- Department of Traditional Chinese Medicine, Shantou Central Hospital, Shantou, 515031, PR China
| | - Qingchun Xu
- Department of Urology, Shantou Central Hospital, Shantou, 515031, PR China
| | - Yuanfeng Zhang
- Department of Urology, Shantou Central Hospital, Shantou, 515031, PR China
| |
Collapse
|
11
|
Wu K, Zhao X, Xiao X, Chen M, Wu L, Jiang C, Jin J, Li L, Ruan Q, Guo J. BuShen HuoXue decoction improves fertility through intestinal hsp-16.2-mediated heat-shock signaling pathway in Caenorhabditis elegans. Front Pharmacol 2023; 14:1210701. [PMID: 37332356 PMCID: PMC10272376 DOI: 10.3389/fphar.2023.1210701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction: BuShen HuoXue (BSHX) decoction is commonly used in the clinical treatment of premature ovarian failure because it can increase estradiol level and decrease follicle-stimulating hormone level. In this study, we determined the potential therapeutic effects of BSHX decoction via anti-stress pathway and the underlying mechanism by using the nematode Caenorhabditis elegans as an assay system. Methods: Bisphenol A (BPA, 175 μg/mL) was used to establish a fertility-defective C. elegans model. Nematodes were cultivated according to standard methods. Brood size, DTC, the number of apoptotic cells and oocytes were used to evaluate the fertility of nematodes. Nematodes were cultivated at 35°C as heat stress. RNA isolation and RT-qPCR were used to detect the mRNA expression level of genes. Intestinal ROS and intestinal permeability were used to evaluate the function of intestinal barrier. BSHX decoction was extracted with water and analyzed by LC/Q-TOF. Results and Discussion: In BPA-treated N2 nematodes, 62.5 mg/mL BSHX decoction significantly improved the brood size and the oocytes quality at different developmental stages. BSHX decoction improved resistance to heat stress through the hsf-1-mediated heat-shock signaling pathway. Further analysis showed that the decoction significantly improved the transcriptional levels of hsf-1 downstream target genes, such as hsp-16.1, hsp-16.2, hsp-16.41, and hsp-16.48. Other than hsp-16.2 expression in the gonad, the decoction also affected intestinal hsp-16.2 expression and significantly reversed the adverse effects induced by BPA. Moreover, the decoction ameliorated intestinal ROS and permeability. Thus, BSHX decoction can improve fertility by increasing intestinal barrier function via hsp-16.2-mediated heat-shock signaling pathway in C. elegans. These findings reveal the underlying regulatory mechanisms of hsp-16.2-mediated heat resistance against fertility defect.
Collapse
Affiliation(s)
- Kanglu Wu
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xudong Zhao
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xian Xiao
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Miao Chen
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liang Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Jiang
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Jin
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Lei Li
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qinli Ruan
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Guo
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Mu Z, Shen S, Tang L, Liu Y, Zhou Z, Lei L. Hyperin promotes proliferation, migration, and invasion of HTR-8/SVneo trophoblast cells via activation of JAK1/STAT3 pathway in recurrent spontaneous abortions. Heliyon 2023; 9:e12958. [PMID: 36747955 PMCID: PMC9898646 DOI: 10.1016/j.heliyon.2023.e12958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
The proliferation of extravillous trophoblasts (EVT) and their further migration, invasion, and differentiation into the decidual and myometrial vasculature are vital for spiral artery remodeling. These physiological functions of EVT are also essential steps in the implantation of the human embryo and the formation of the placenta and are closely related to pregnancy maintenance and the occurrence of abortion. Hyperin is a flavonoid with anti-inflammatory, pro-proliferative, and anti-apoptotic properties. Consequently, we investigated the previously unexplored effects of hyperin on the proliferation, migration, and invasion of HTR-8/SVneo cells. Human extravillous trophoblast-derived HTR-8/SVneo cells were incubated with different concentrations of hyperin (0, 5, 10, 25, 50, and 100 μM) to observe the changes in cell proliferation, migration, invasive capacity, and pathway activation. Proliferation, migration, and invasion were promoted by activating the JAK1/STAT3 pathway in HTR-8/SVneo cells treated with hyperin. In addition, brepocitinib (PF-06700841) significantly inhibited the proliferation, migration, and invasion effects of hyperin on HTR-8/SVneo cells. In vivo experiments confirmed that hyperin reduces the embryo loss rate in recurrent spontaneous abortion (RSA) model mice. Furthermore, our study revealed that hyperin promoted the proliferation, migration, and invasion of HTR-8/SVneo cells via activation of the JAK1/STAT3 pathway, further improving pregnancy outcomes in RSA.
Collapse
Affiliation(s)
- Zhenni Mu
- College of Integrated Traditional and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Sinan Shen
- College of Integrated Traditional and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Li Tang
- College of Integrated Traditional and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yingdie Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ziwei Zhou
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Lei Lei
- College of Integrated Traditional and Western Medicine, Hunan University of Chinese Medicine, Changsha, China,Corresponding author.
| |
Collapse
|
13
|
Xia J, Wan Y, Wu JJ, Yang Y, Xu JF, Zhang L, Liu D, Chen L, Tang F, Ao H, Peng C. Therapeutic potential of dietary flavonoid hyperoside against non-communicable diseases: targeting underlying properties of diseases. Crit Rev Food Sci Nutr 2022; 64:1340-1370. [PMID: 36073729 DOI: 10.1080/10408398.2022.2115457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-communicable diseases (NCDs) are a global epidemic with diverse pathogenesis. Among them, oxidative stress and inflammation are the most fundamental co-morbid features. Therefore, multi-targets and multi-pathways therapies with significant anti-oxidant and anti-inflammatory activities are potential effective measures for preventing and treating NCDs. The flavonol glycoside compound hyperoside (Hyp) is widely found in a variety of fruits, vegetables, beverages, and medicinal plants and has various health benefits, especially excellent anti-oxidant and anti-inflammatory properties targeting nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) signaling pathways. In this review, we summarize the pathogenesis associated with oxidative stress and inflammation in NCDs and the biological activity and therapeutic potential of Hyp. Our findings reveal that the anti-oxidant and anti-inflammatory activities regulated by Hyp are associated with numerous biological mechanisms, including positive regulation of mitochondrial function, apoptosis, autophagy, and higher-level biological damage activities. Hyp is thought to be beneficial against organ injuries, cancer, depression, diabetes, and osteoporosis, and is a potent anti-NCDs agent. Additionally, the sources, bioavailability, pharmacy, and safety of Hyp have been established, highlighting the potential to develop Hyp into dietary supplements and nutraceuticals.
Collapse
Affiliation(s)
- Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Feng Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Jang E. Hyperoside as a Potential Natural Product Targeting Oxidative Stress in Liver Diseases. Antioxidants (Basel) 2022; 11:antiox11081437. [PMID: 35892639 PMCID: PMC9331122 DOI: 10.3390/antiox11081437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Hyperoside (Hyp), also known as quercetin-3-O-galactoside or 3-O-β-D-galactopyranosyl, is a well-known flavonol glycoside that is abundant in various fruits, vegetables, and medicinal plants. Hyp has been suggested to exhibit a wide range of biological actions, including cardiovascular, renal, neuroprotective, antifungal, antifibrotic, and anticancer effects. Accumulating evidence supports the pharmacological activities of Hyp in improving liver pathophysiology. Hence, the present literature review aims to summarize preclinical data suggesting the beneficial effects and underlying mechanisms of Hyp. In addition, our study focuses on hepatic antioxidant defense signaling to assess the underlying mechanisms of the biological actions of Hyp that are closely associated with liver diseases. Experimental findings from an up-to-date search showed that Hyp possesses hepatoprotective, antiviral, antisteatotic, anti-inflammatory, antifibrotic, and anticancer activities in cellular and animal models related to liver dysfunction by enhancing antioxidant responses. In particular, hepatocellular antioxidant defense via activation of erythroid-related nuclear factor 2 by Hyp chiefly explains how this compound acts as a therapeutic agent in liver diseases. Thus, this review emphasizes the therapeutic potential of Hyp as a strong antioxidative substance that plays a crucial role in the regulation of various liver disorders during their pathogenesis.
Collapse
Affiliation(s)
- Eungyeong Jang
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; or
- Department of Internal Medicine, Kyung Hee University Korean Medicine Hospital, 23, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
15
|
Xu S, Chen S, Xia W, Sui H, Fu X. Hyperoside: A Review of Its Structure, Synthesis, Pharmacology, Pharmacokinetics and Toxicity. Molecules 2022; 27:molecules27093009. [PMID: 35566359 PMCID: PMC9101560 DOI: 10.3390/molecules27093009] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022] Open
Abstract
Hyperoside is an active ingredient in plants, such as Hypericum monogynum in Hypericaceae, Crataegus pinnatifida in Rosaceae and Polygonum aviculare in Polygonaceae. Its pharmacologic effects include preventing cancer and protecting the brain, neurons, heart, kidneys, lung, blood vessels, bones, joints and liver, among others. Pharmacokinetic analysis of hyperoside has revealed that it mainly accumulates in the kidney. However, long-term application of high-dose hyperoside should be avoided in clinical practice because of its renal toxicity. This review summarises the structure, synthesis, pharmacology, pharmacokinetics and toxicity of hyperoside.
Collapse
Affiliation(s)
- Sijin Xu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
| | - Shuaipeng Chen
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
| | - Wenxin Xia
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
| | - Hong Sui
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Regional Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Regional High Incidence Disease, Yinchuan 750004, China
- Correspondence: (H.S.); (X.F.)
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Regional Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Regional High Incidence Disease, Yinchuan 750004, China
- Correspondence: (H.S.); (X.F.)
| |
Collapse
|
16
|
Sun D, Lu S, Gan X, Lash GE. Is there a place for Traditional Chinese medicine (TCM) in the treatment of recurrent pregnancy loss? J Reprod Immunol 2022; 152:103636. [DOI: 10.1016/j.jri.2022.103636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/13/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022]
|
17
|
Fan S, Pan H, Huang J, Lei Z, Liu J. Hyperoside exerts osteoprotective effect on dexamethasone-induced osteoblasts by targeting NADPH Oxidase 4 (NOX4) to inhibit the reactive oxygen species (ROS) accumulation and activate c-Jun N-terminal kinase (JNK) pathway. Bioengineered 2022; 13:8657-8666. [PMID: 35331079 PMCID: PMC9161895 DOI: 10.1080/21655979.2022.2054499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hyperoside (Hyp) is a flavonoid active compound deriving from Chinese herbal medicines. Increasing studies have implicated that Hyp may serve as a predominant promoting factor in osteoblast differentiation. This paper investigates whether Hyp could relieve glucocorticoid-induced osteonecrosis of the femoral head (GONFH) via promoting osteoblast survival and differentiation as well as to uncover its potential mechanism. GONFH cell model was induced by treating MC3T3-E1 cells with dexamethasone (DEX). The viability, apoptosis, and osteogenic differentiation of DEX-induced cells with the presence or absence of Hyp were assessed by CCK-8, Tunel, ALP assay, and ARS staining, respectively. The NADPH Oxidase 4 (NOX4) overexpression was performed by transfection with overexpression vector. Besides, western blot was used to determine the levels of apoptosis-, osteogenic differentiation-, and c-Jun N-terminal kinase (JNK) signaling-related proteins. It was noticed that Hyp caused no significant effects on the viability of MC3T3-E1 cells without any treatment but significantly enhanced the viability of DEX-induced cells. Besides, Hyp inhibited the apoptosis in DEX-induced cells but enhanced ALP activity and calcium nodule formation. Additionally, Hyp declined NOX4 expression in DEX-induced cells. However, NOX4 overexpression partially reversed the impacts of Hyp on DEX-exposed MC3T3-E1 cells. Finally, Hyp suppressed the activation of ROS/JNK pathway in DEX-induced cells, which was then counteracted by NOX4 overexpression. In conclusion, Hyp could promote the survival and differentiation of DEX-induced osteoblasts by targeting NOX4 to inhibit the ROS/JNK pathway. These results provide evidence for the application of Hyp in treating GONFH.
Collapse
Affiliation(s)
- Siqi Fan
- Department of Orthopedics and Traumatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Haida Pan
- Research Student Academy, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Jiaxing Huang
- Yulin Orthopedics Hospital of Chinese and Western Medicine, Yulin, China
| | - Zhiqiang Lei
- Emergency Department, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Jinfu Liu
- Department of Orthopedics and Traumatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
18
|
Toschi P, Baratta M. Ruminant Placental Adaptation in Early Maternal Undernutrition: An Overview. Front Vet Sci 2021; 8:755034. [PMID: 34746288 PMCID: PMC8565373 DOI: 10.3389/fvets.2021.755034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Correct placental development during early gestation is considered the main determinant of fetal growth in late pregnancy. A reduction in maternal nourishment occurring across the early developmental window has been linked to a wide range of pregnancy disorders affecting placental transport capacity and consequently the fetal nutrient supply line, with long-term implications for offspring health and productivity. In livestock, ruminant species specifically experience maternal undernutrition in extensive systems due to seasonal changes in food availability, with significant economic losses for the farmer in some situations. In this review, we aim to discuss the effects of reduced maternal nutrition during early pregnancy on placental development with a specific focus on ruminant placenta physiology. Different types of placental adaptation strategies were examined, also considering the potential effects on the epigenetic landscape, which is known to undergo extensive reprogramming during early mammalian development. We also discussed the involvement of autophagy as a cellular degradation mechanism that may play a key role in the placental response to nutrient deficiency mediated by mammalian target of rapamycin, named the mTOR intracellular pathway.
Collapse
Affiliation(s)
- Paola Toschi
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Mario Baratta
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, Viale delle Scienze, University of Parma, Parma, Italy
| |
Collapse
|
19
|
Wang X, Gao H, Tan S, Xu C, Xu F, Wang T, Chu J, Han Y, Wu D, Jin C. An integrated approach to uncover quality markers of stir-baking Semen Cuscuta with salt solution preventing recurrent spontaneous abortion based on chemical and metabolomic profiling. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1177:122727. [PMID: 34102535 DOI: 10.1016/j.jchromb.2021.122727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/10/2021] [Accepted: 04/14/2021] [Indexed: 11/19/2022]
Abstract
The previous research of clinical big data mining showed that stir-baking Semen Cuscuta with salt solution (YP) ranked the first in the usage rate of treating abortion caused by kidney deficiency. At the same time, pharmacodynamic studies also showed that YP has better effect on improving recurrent spontaneous abortion (RSA) compared to raw products of Semen Cuscuta (SP). However, there were few studies on the biomarkers of YP improving RSA. In this study, the chemical and metabonomic profiling were used to screen the quality markers of YP on improving RSA. Firstly, a metabolomics study was carried out to select representative biomarkers of RSA. The ultra-high performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight-mass spectrometry (UPLC-ESI-Q-TOF-MS) technique was used to investigate the components of exogenous and endogenous in serum of rats after administrated with YP and SP. As a result, 14 differential compounds were identified between the serum of rats administrated SP and YP. Compared to SP, there was an upward trend in YP of the compounds including kaempferol-3-glucuronide, iso-kaempferol-3-glucuronide, (1S) -11-hydroxyhexadecanoic acid and 3-phenylpropionic acid. Meanwhile, there was a reducing trend in YP of the compounds including kaempferol 3-arabinofuranoside, apigenin-3-O-glucoside, hyperoside, caffeic acid-β-D glucoside, dicaffeoylquinic acid, linoleic acid, 3,4-dicaffeoylquinic acid, caffeic acid, palmitic acid and methyl myristate. 12 biomarkers for RSA indication were identified. SP and YP have a certain effect on the endogenous biomarker. The regulation effect of YP was higher than that of SP. The main metabolic pathways included phenylalanine, tyrosine and tryptophan biosynthesis, glycerophospholipid metabolism, fatty acid biosynthesis, sphingolipid metabolism, biosynthesis of unsaturated fatty acids. This study demonstrated a promising way to elucidate the active chemical and endogenous material basis of TCM.
Collapse
Affiliation(s)
- Xiaoli Wang
- Key Laboratory of Chinese Medicinal Formula of Anhui Province, Anhui University of Chinese Medicine, Hefei 230031, PR China; Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Bozhou 236800, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, PR China
| | - Haiyan Gao
- Key Laboratory of Chinese Medicinal Formula of Anhui Province, Anhui University of Chinese Medicine, Hefei 230031, PR China
| | - Song Tan
- Key Laboratory of Chinese Medicinal Formula of Anhui Province, Anhui University of Chinese Medicine, Hefei 230031, PR China
| | - Chao Xu
- Key Laboratory of Chinese Medicinal Formula of Anhui Province, Anhui University of Chinese Medicine, Hefei 230031, PR China
| | - Fengqing Xu
- Key Laboratory of Chinese Medicinal Formula of Anhui Province, Anhui University of Chinese Medicine, Hefei 230031, PR China
| | - Tongsheng Wang
- Key Laboratory of Chinese Medicinal Formula of Anhui Province, Anhui University of Chinese Medicine, Hefei 230031, PR China
| | - Jijun Chu
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230031, PR China
| | - Yanquan Han
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230031, PR China
| | - Deling Wu
- Key Laboratory of Chinese Medicinal Formula of Anhui Province, Anhui University of Chinese Medicine, Hefei 230031, PR China; Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Bozhou 236800, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, PR China.
| | - Chuanshan Jin
- Key Laboratory of Chinese Medicinal Formula of Anhui Province, Anhui University of Chinese Medicine, Hefei 230031, PR China; Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Bozhou 236800, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, PR China.
| |
Collapse
|
20
|
Jiang S, Chen Z, Lai W, Mai Q, Chen D, Sun S, Zhang Y. Decoction of Heat-Clearing, Detoxifying and Blood Stasis Removing Relieves Acute Soft Tissue Injury via Modulating MiR-26b-5p/COX2 Axis to Inhibit Inflammation. Biosci Rep 2020; 40:BSR20201981. [PMID: 33270831 PMCID: PMC7753743 DOI: 10.1042/bsr20201981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 11/30/2022] Open
Abstract
Traditional Chinese medicine (TCM), such as Huanglian-Jie-Du-Tang, a heat-clearing and detoxifying decoction is beneficial to alleviation of inflammation-related diseases. The objective of this study is to uncover the effect and mechanism of heat-clearing, detoxifying and blood stasis removing decoction (HDBD) on the treatment of acute soft tissue injury (STI) which is characterized with excessive inflammatory cascade at the onset. Male Sprague-Dawley (SD) rats with hammer beating served as the in vivo models of acute STI. Haematoxylin-eosin (HE) staining was used for histopathology assessment. The levels of inflammatory factors, including prostaglandin E2 (PGE2), tumor necrosis factor-αumTNF-α), interleukin (IL)-1t and IL-6 were measured by enzyme linked immunosorbent assay (ELISA). Human dermal microvascular endothelium cell line HMEC-1 and rat vascular endothelium cell line RAOEC were used to explore the mechanism in vitro. Luciferase gene reporter assay was applied to determine the relationship between miR-26b-5p and COX2. The results showed that HDBD intervention significantly reduced the temperature difference between the healthy side and affected side of rats with hammer beating, together with the decreased levels of COX2, PGE2, TNF-α, IL-6 and IL-1β, and the increased level of miR-26b-5p. In mechanism, miR-26b-5p targeted COX2 and decreased its expression, leading to significant decreases in the levels of PGE2, TNF-α and IL-6 in RAOEC and HMEC-1 cells. In addition, miR-26b-5p inhibition impaired the effects of HDBD on the suppression of PGE2, TNF-α, IL-6 and IL-1β in vitro. In conclusion, this study revealed that HDBD relieved acute STI via modulating miR-26b-5p/COX2 axis to inhibit inflammation.
Collapse
Affiliation(s)
- Shunwan Jiang
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Zhi Chen
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Wenqiang Lai
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Qingchun Mai
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Dayu Chen
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Shufen Sun
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Yong Zhang
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| |
Collapse
|