1
|
Lauritzen KH, Yang K, Frisk M, Louwe MC, Olsen MB, Ziegler M, Louch WE, Halvorsen B, Aukrust P, Yndestad A, Sandanger Ø. Apigenin inhibits NLRP3 inflammasome activation in monocytes and macrophages independently of CD38. Front Immunol 2025; 15:1497984. [PMID: 39840045 PMCID: PMC11746122 DOI: 10.3389/fimmu.2024.1497984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction CD38, a regulator of intracellular calcium signalling, is highly expressed in immune cells. Mice lacking CD38 are very susceptible to acute bacterial infections, implicating CD38 in innate immune responses. The effects of CD38 inhibition on NLRP3 inflammasome activation in human primary monocytes and monocyte-derived macrophages have not been investigated. Apigenin is a naturally occurring flavonoid known to inhibit CD38. However, apigenin has also been proposed to inhibit the extracellular ATP receptor P2XR7, an upstream activator of NLRP3. In this study we aimed to investigate whether apigenin attenuates NLRP3 inflammasome activation in human monocytes and monocyte-derived macrophages through CD38 inhibition. Methods LPS-primed human monocytes and monocyte-derived macrophages were treated with apigenin, the CD38 inhibitor 78c, antagonists of CD38 second messengers (8-br-ADPR and 8-br-cADPR) or the ATP hydrolase, apyrase, prior to NLRP3 activation with ATP, monosodium urate crystals (MSU) or nigericin. IL-1β and TNF secretion and mRNA expression, as well as N-terminal gasdermin-D formation were quantified. Ca2+ mobilization was determined by live confocal microscopy. NLRP3 activity was also compared in WT and CD38-/- mouse bone marrow-derived macrophages (BMDMs) with and without CD38 inhibitors. Results Apigenin significantly inhibited IL-1β release from LPS-primed monocytes and macrophages activated with ATP, MSU, or nigericin. CD38 inhibition with 78c also attenuated NLRP3-dependent IL-1β release. Apigenin was a potent inhibitor of Ca2+ flux from the endoplasmic reticulum to the cytosol in human monocyte-derived macrophages. Apyrase attenuated IL-1β release induced by ATP or MSU, but not by nigericin. However, the NLRP3 inflammasome is not compromised in CD38-/- bone marrow-derived macrophages compared to corresponding WT cells, and apigenin moderated IL-1β release in both genotypes. Discussion Our data support that apigenin attenuates NLRP3 activation independently of CD38. Our results also suggest that MSU crystals activate NLRP3 through autocrine or paracrine ATP signalling.
Collapse
Affiliation(s)
- Knut Husø Lauritzen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kuan Yang
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Mieke C. Louwe
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - Maria Belland Olsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - William E. Louch
- Institute for Experimental Medical Research, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - Øystein Sandanger
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
- Section of Dermatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
2
|
Li JP, Qiu S, Tai GJ, Liu YM, Wei W, Fu MM, Fang PQ, Otieno JN, Battulga T, Li XX, Xu M. NLRP3 inflammasome-modulated angiogenic function of EPC via PI3K/ Akt/mTOR pathway in diabetic myocardial infarction. Cardiovasc Diabetol 2025; 24:6. [PMID: 39762890 PMCID: PMC11705910 DOI: 10.1186/s12933-024-02541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Inflammatory diseases impair the reparative properties of endothelial progenitor cells (EPC); however, the involvement of diabetes in EPC dysfunction associated with myocardial infarction (MI) remains unknown. METHODS A model was established combining high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice with myocardial infarction. The therapeutic effects of transplanted wild-type EPC, Nlrp3 knockout EPC, and Nlrp3 overexpression EPC were evaluated. Chip and Luciferase assay revealed CEBPB regulated the transcriptional expression of Nlrp3 as a transcription factor in EPC stimulated by high glucose (HG) or advanced glycation end products (AGEs). CO-IP results suggested that USP14 selectively suppressed NLRP3 degradation. KEGG enrichment revealed PI3K/ Akt/mTOR signaling showed striking significance in the entire pathway. RESULTS In our study, wild-type, Nlrp3 knockout and Nlrp3 overexpressed EPC, intracardiac injections effectively improved cardiac function, increased angiogenesis, and reduced infarct size in mice with myocardial infarction. However, in the HFD/STZ-induced diabetic mice model combined with myocardial infarction, Nlrp3 knockout EPC significantly restored angiogenic capacity. Mechanically, CEBPB regulated the transcriptional level of Nlrp3 as a transcription factor in EPC. Meanwhile, we found that USP14 selectively suppressed NLRP3 protein degradation through the USP motif on the NACHT domain in mediating inflammasome activation. Cardiac functional outcomes in recipient mice after intramyocardial injection of shNlrp3 EPC overexpressing CEBPB or USP14 validated the modulation of EPC function by regulating Nlrp3 transcription or post-translational modification. Furthermore, KEGG enrichment and validation at the protein levels revealed PI3K/ Akt/mTOR cascade might be a downstream signal for NLRP3 inflammasome. CONCLUSION Our study provides a new understanding of how diabetes affected progenitor cell-mediated cardiac repair and identifies NLRP3 as a new therapeutic target for improving myocardial infarction repair in inflammatory diseases.
Collapse
Affiliation(s)
- Jia-Peng Li
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing, 210009, People's Republic of China
| | - Shu Qiu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing, 210009, People's Republic of China
| | - Guang-Jie Tai
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing, 210009, People's Republic of China
| | - Yi-Ming Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210009, People's Republic of China
| | - Wei Wei
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing, 210009, People's Republic of China
| | - Meng-Meng Fu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing, 210009, People's Republic of China
| | - Pan-Qi Fang
- Department of Pharmacy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Joseph Nicolao Otieno
- Director Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciencea, P.O.BOX 65001, Dar es Salaam, Tanzania
| | - Tungalag Battulga
- School of Pharmacy, Mongolian National University of Medical Sciences, 24210, Ulaanbaatar, Mongolia
| | - Xiao-Xue Li
- Department of Cardiology, School of Medicine, Zhongda Hospital, Southeast University, 87 Ding Jiaqiao, Nanjing, 210009, People's Republic of China
| | - Ming Xu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
3
|
Marín-Blázquez M, Rovira J, Ramírez-Bajo MJ, Zapata-Pérez R, Rabadán-Ros R. NAD + enhancers as therapeutic agents in the cardiorenal axis. Cell Commun Signal 2024; 22:537. [PMID: 39516787 PMCID: PMC11546376 DOI: 10.1186/s12964-024-01903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiorenal diseases represent a complex interplay between heart failure and renal dysfunction, being clinically classified as cardiorenal syndromes (CRS). Recently, the contributions of altered nicotinamide adenine dinucleotide (NAD+) metabolism, through deficient NAD+ synthesis and/or elevated consumption, have proved to be decisive in the onset and progress of cardiorenal disease. NAD+ is a pivotal coenzyme in cellular metabolism, being significant in various signaling pathways, such as energy metabolism, DNA damage repair, gene expression, and stress response. Convincing evidence suggests that strategies designed to boost cellular NAD+ levels are a promising therapeutic option to address cardiovascular and renal disorders. Here, we review and discuss the implications of NAD+ metabolism in cardiorenal diseases, focusing on the propitious NAD+ boosting therapeutic strategies, based on the use of NAD+ precursors, poly(ADP-ribose) polymerase inhibitors, sirtuin activators, and other alternative approaches, such as CD38 blockade, nicotinamide phosphoribosyltransferase activation and combined interventions.
Collapse
Affiliation(s)
- Mariano Marín-Blázquez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - Rubén Zapata-Pérez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| | - Rubén Rabadán-Ros
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| |
Collapse
|
4
|
Yin Z, Zhang J, Shen Z, Qin J, Wan J, Wang M. Regulated vascular smooth muscle cell death in vascular diseases. Cell Prolif 2024; 57:e13688. [PMID: 38873710 PMCID: PMC11533065 DOI: 10.1111/cpr.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024] Open
Abstract
Regulated cell death (RCD) is a complex process that involves several cell types and plays a crucial role in vascular diseases. Vascular smooth muscle cells (VSMCs) are the predominant elements of the medial layer of blood vessels, and their regulated death contributes to the pathogenesis of vascular diseases. The types of regulated VSMC death include apoptosis, necroptosis, pyroptosis, ferroptosis, parthanatos, and autophagy-dependent cell death (ADCD). In this review, we summarize the current evidence of regulated VSMC death pathways in major vascular diseases, such as atherosclerosis, vascular calcification, aortic aneurysm and dissection, hypertension, pulmonary arterial hypertension, neointimal hyperplasia, and inherited vascular diseases. All forms of RCD constitute a single, coordinated cell death system in which one pathway can compensate for another during disease progression. Pharmacologically targeting RCD pathways has potential for slowing and reversing disease progression, but challenges remain. A better understanding of the role of regulated VSMC death in vascular diseases and the underlying mechanisms may lead to novel pharmacological developments and help clinicians address the residual cardiovascular risk in patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research Institute, Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research Institute, Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Zican Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research Institute, Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Juan‐Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Center for Healthy Aging, Wuhan University School of NursingWuhanChina
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research Institute, Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research Institute, Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| |
Collapse
|
5
|
Alabarse PG, Oliveira P, Qin H, Yan T, Migaud M, Terkeltaub R, Liu-Bryan R. The NADase CD38 is a central regulator in gouty inflammation and a novel druggable therapeutic target. Inflamm Res 2024; 73:739-751. [PMID: 38493256 PMCID: PMC11058052 DOI: 10.1007/s00011-024-01863-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 03/18/2024] Open
Abstract
OBJECTIVES Cellular NAD+ declines in inflammatory states associated with increased activity of the leukocyte-expressed NADase CD38. In this study, we tested the potential role of therapeutically targeting CD38 and NAD+ in gout. METHODS We studied cultured mouse wild type and CD38 knockout (KO) murine bone marrow derived macrophages (BMDMs) stimulated by monosodium urate (MSU) crystals and used the air pouch gouty inflammation model. RESULTS MSU crystals induced CD38 in BMDMs in vitro, associated with NAD+ depletion, and IL-1β and CXCL1 release, effects reversed by pharmacologic CD38 inhibitors (apigenin, 78c). Mouse air pouch inflammatory responses to MSU crystals were blunted by CD38 KO and apigenin. Pharmacologic CD38 inhibition suppressed MSU crystal-induced NLRP3 inflammasome activation and increased anti-inflammatory SIRT3-SOD2 activity in macrophages. BMDM RNA-seq analysis of differentially expressed genes (DEGs) revealed CD38 to control multiple MSU crystal-modulated inflammation pathways. Top DEGs included the circadian rhythm modulator GRP176, and the metalloreductase STEAP4 that mediates iron homeostasis, and promotes oxidative stress and NF-κB activation when it is overexpressed. CONCLUSIONS CD38 and NAD+ depletion are druggable targets controlling the MSU crystal- induced inflammation program. Targeting CD38 and NAD+ are potentially novel selective molecular approaches to limit gouty arthritis.
Collapse
Affiliation(s)
- Paulo Gil Alabarse
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| | - Patricia Oliveira
- University of California San Diego, La Jolla, San Diego, CA, USA
- The Janssen Pharmaceutical Companies of Johnson & Johnson, La Jolla, San Diego, CA, USA
| | - Huaping Qin
- University of California San Diego, La Jolla, San Diego, CA, USA
| | - Tiffany Yan
- University of California San Diego, La Jolla, San Diego, CA, USA
- Gritstone Bio, Emeryville, CA, USA
| | - Marie Migaud
- Department of Pharmacology, F. Whiddon College of Medicine, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Robert Terkeltaub
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- University of California San Diego, La Jolla, San Diego, CA, USA
| | - Ru Liu-Bryan
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.
- University of California San Diego, La Jolla, San Diego, CA, USA.
| |
Collapse
|
6
|
Kong XY, Lauritzen KH, Dahl TB, Holm S, Olsen MB, Skjelland M, Nielsen C, Michelsen AE, Ueland T, Aukrust P, Halvorsen B, Sandanger Ø. CD38 deficient mice are not protected from atherosclerosis. Biochem Biophys Res Commun 2024; 705:149734. [PMID: 38430607 DOI: 10.1016/j.bbrc.2024.149734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
CD38 is a multifunctional enzyme implicated in chemotaxis of myeloid cells and lymphocyte activation, but also expressed by resident cells such as endothelial and smooth muscle cells. CD38 is important for host defense against microbes. However, CD38's role in the pathogenesis of atherosclerosis is controversial with seemingly conflicting results reported so far. To clarify the discrepancy of current literature on the effect of CD38 ablation on atherosclerosis development, we implanted a shear stress modifier around the right carotid artery in CD38-/- and WT mice. Hypercholesterolemia was induced by human gain-of-function PCSK9 (D374Y), introduced using AAV vector (serotype 9), combined with an atherogenic diet for a total of 9 weeks. Atherosclerosis was assessed at the aortic root, aortic arch and the right carotid artery. The findings can be summarized as follows: i) CD38-/- and WT mice had a similar atherosclerotic burden in all three locations, ii) No significant differences in monocyte infiltration or macrophage content could be seen in the plaques, and iii) The amount of collagen deposition in the plaques were also similar between CD38-/- and WT mice. In conclusion, our data suggest that CD38-/- mice are neither protected against nor prone to atherosclerosis compared to WT mice.
Collapse
Affiliation(s)
- Xiang Yi Kong
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| | - Knut H Lauritzen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tuva Børresdatter Dahl
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Maria Belland Olsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Mona Skjelland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Christopher Nielsen
- Department of Chronic Diseases, Norwegian Institute of Public Health, Oslo, Norway; Department of Pain Management and Research, Oslo University Hospital, Oslo, Norway
| | - Annika E Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øystein Sandanger
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Section of Dermatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
7
|
Hu C, Shi Z, Liu X, Sun C. The Research Progress of Mitochondrial Transplantation in the Treatment of Mitochondrial Defective Diseases. Int J Mol Sci 2024; 25:1175. [PMID: 38256247 PMCID: PMC10816172 DOI: 10.3390/ijms25021175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Mitochondria are double-membrane organelles that are involved in energy production, apoptosis, and signaling in eukaryotic cells. Several studies conducted over the past decades have correlated mitochondrial dysfunction with various diseases, including cerebral ischemia, myocardial ischemia-reperfusion, and cancer. Mitochondrial transplantation entails importing intact mitochondria from healthy tissues into diseased tissues with damaged mitochondria to rescue the injured cells. In this review, the different mitochondrial transplantation techniques and their clinical applications have been discussed. In addition, the challenges and future directions pertaining to mitochondrial transplantation and its potential in the treatment of diseases with defective mitochondria have been summarized.
Collapse
Affiliation(s)
- Cuilan Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Z.S.); (X.L.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Shi
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Z.S.); (X.L.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Z.S.); (X.L.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Z.S.); (X.L.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Liu Y, Li H, Chen L, Zhao H, Liu J, Gong S, Ma D, Chen C, Zeng S, Long H, Ren W. Mechanism and Pharmacodynamic Substance Basis of Raw and Wine-Processed Evodia rutaecarpa on Smooth Muscle Cells of Dysmenorrhea Mice. Pain Res Manag 2023; 2023:7711988. [PMID: 37305097 PMCID: PMC10250099 DOI: 10.1155/2023/7711988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Objectives Evodia rutaecarpa (ER) is a well-known herbal Chinese medicine traditionally used for analgesia in dysmenorrhea, headaches, abdominal pain, etc. Notably, the analgesic effect of wine-processed Evodia rutaecarpa (PER) was more potent than that of raw ER. This research aimed to investigate the mechanism and pharmacodynamic substance basis of raw ER and PER on smooth muscle cells of dysmenorrhea mice. Methods Metabolomics methods based on UPLC-Q-TOF-MS were utilized to analyse the differential components of ER before and after wine processing. Afterwards, the uterine smooth muscle cells were isolated from the uterine tissue of dysmenorrhea and normal mice. The isolated dysmenorrhea uterine smooth muscle cells were randomly divided into four groups: model group, 7-hydroxycoumarin group (1 mmol/L), chlorogenic acid (1 mmol/L), and limonin (50 μmol/L). The normal group consisted of the isolated normal mouse uterine smooth muscle cells, which were repeated 3 times in each group. The cell contraction and the expression of P2X3 and Ca2+ in vitro were determined using immunofluorescence staining and laser confocal; ELISA was used for detection of PGE2, ET-1, and NO content after 7-hydroxycoumarin, chlorogenic acid, and limonin administered for 24 h. Results The metabolomics results suggested that seven differential compounds were identified in the extracts of raw ER and PER, including chlorogenic acid, 7-hydroxycoumarin, hydroxy evodiamine, laudanosine, evollionines A, limonin, and 1-methyl-2-[(z)-4-nonenyl]-4 (1H)-quinolone. The in vitro results showed that 7-hydroxycoumarin, chlorogenic acid, and limonin were able to inhibit cell contraction and PGE2, ET-1, P2X3, and Ca2+ in dysmenorrhea mouse uterine smooth muscle cells and increase the content of NO. Conclusion Our finding suggested that the compounds of the PER were different from those of the raw ER, and 7-hydroxycoumarin, chlorogenic acid, and limonin could improve dysmenorrhea in mice whose uterine smooth muscle cell contraction was closed with endocrine factors and P2X3-Ca2+ pathway.
Collapse
Affiliation(s)
- Yeqian Liu
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Hong Li
- Department of Pharmacy, The Second People's Hospital of Anhui Province, No. 1868 Dangshan Road, Hefei, Anhui Province, China
| | - Lei Chen
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Hongxia Zhao
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Jian Liu
- Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Shan Gong
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Danfeng Ma
- Department of Pharmacy, The Children's Hospital of Hunan Province, No. 86 Ziyuan Road, Changsha, Hunan Province, China
| | - Chunming Chen
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Shuiqing Zeng
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Hongping Long
- Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| | - Weiqiong Ren
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Changsha, Hunan Province, China
| |
Collapse
|
9
|
Hogan KA, Zeidler JD, Beasley HK, Alsaadi AI, Alshaheeb AA, Chang YC, Tian H, Hinton AO, McReynolds MR. Using mass spectrometry imaging to visualize age-related subcellular disruption. Front Mol Biosci 2023; 10:906606. [PMID: 36968274 PMCID: PMC10032471 DOI: 10.3389/fmolb.2023.906606] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 01/24/2023] [Indexed: 03/10/2023] Open
Abstract
Metabolic homeostasis balances the production and consumption of energetic molecules to maintain active, healthy cells. Cellular stress, which disrupts metabolism and leads to the loss of cellular homeostasis, is important in age-related diseases. We focus here on the role of organelle dysfunction in age-related diseases, including the roles of energy deficiencies, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, changes in metabolic flux in aging (e.g., Ca2+ and nicotinamide adenine dinucleotide), and alterations in the endoplasmic reticulum-mitochondria contact sites that regulate the trafficking of metabolites. Tools for single-cell resolution of metabolite pools and metabolic flux in animal models of aging and age-related diseases are urgently needed. High-resolution mass spectrometry imaging (MSI) provides a revolutionary approach for capturing the metabolic states of individual cells and cellular interactions without the dissociation of tissues. mass spectrometry imaging can be a powerful tool to elucidate the role of stress-induced cellular dysfunction in aging.
Collapse
Affiliation(s)
- Kelly A. Hogan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Julianna D. Zeidler
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Abrar I. Alsaadi
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Abdulkareem A. Alshaheeb
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Yi-Chin Chang
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States
| | - Hua Tian
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States
- *Correspondence: Hua Tian, ; Antentor O. Hinton Jr, ; Melanie R. McReynolds,
| | - Antentor O. Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
- *Correspondence: Hua Tian, ; Antentor O. Hinton Jr, ; Melanie R. McReynolds,
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- *Correspondence: Hua Tian, ; Antentor O. Hinton Jr, ; Melanie R. McReynolds,
| |
Collapse
|
10
|
The Role of CD38 in the Pathogenesis of Cardiorenal Metabolic Disease and Aging, an Approach from Basic Research. Cells 2023; 12:cells12040595. [PMID: 36831262 PMCID: PMC9954496 DOI: 10.3390/cells12040595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Aging is a major risk factor for the leading causes of mortality, and the incidence of age-related diseases including cardiovascular disease, kidney disease and metabolic disease increases with age. NAD+ is a classic coenzyme that exists in all species, and that plays a crucial role in oxidation-reduction reactions. It is also involved in the regulation of many cellular functions including inflammation, oxidative stress and differentiation. NAD+ declines with aging in various organs, and the reduction in NAD+ is possibly involved in the development of age-related cellular dysfunction in cardiorenal metabolic organs through the accumulation of inflammation and oxidative stress. Levels of NAD+ are regulated by the balance between its synthesis and degradation. CD38 is the main NAD+-degrading enzyme, and CD38 is activated in response to inflammation with aging, which is associated with the reduction in NAD+ levels. In this review, focusing on CD38, we discuss the role of CD38 in aging and the pathogenesis of age-related diseases, including cardiorenal metabolic disease.
Collapse
|
11
|
Zeidler JD, Hogan KA, Agorrody G, Peclat TR, Kashyap S, Kanamori KS, Gomez LS, Mazdeh DZ, Warner GM, Thompson KL, Chini CCS, Chini EN. The CD38 glycohydrolase and the NAD sink: implications for pathological conditions. Am J Physiol Cell Physiol 2022; 322:C521-C545. [PMID: 35138178 PMCID: PMC8917930 DOI: 10.1152/ajpcell.00451.2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) acts as a cofactor in several oxidation-reduction (redox) reactions and is a substrate for a number of nonredox enzymes. NAD is fundamental to a variety of cellular processes including energy metabolism, cell signaling, and epigenetics. NAD homeostasis appears to be of paramount importance to health span and longevity, and its dysregulation is associated with multiple diseases. NAD metabolism is dynamic and maintained by synthesis and degradation. The enzyme CD38, one of the main NAD-consuming enzymes, is a key component of NAD homeostasis. The majority of CD38 is localized in the plasma membrane with its catalytic domain facing the extracellular environment, likely for the purpose of controlling systemic levels of NAD. Several cell types express CD38, but its expression predominates on endothelial cells and immune cells capable of infiltrating organs and tissues. Here we review potential roles of CD38 in health and disease and postulate ways in which CD38 dysregulation causes changes in NAD homeostasis and contributes to the pathophysiology of multiple conditions. Indeed, in animal models the development of infectious diseases, autoimmune disorders, fibrosis, metabolic diseases, and age-associated diseases including cancer, heart disease, and neurodegeneration are associated with altered CD38 enzymatic activity. Many of these conditions are modified in CD38-deficient mice or by blocking CD38 NADase activity. In diseases in which CD38 appears to play a role, CD38-dependent NAD decline is often a common denominator of pathophysiology. Thus, understanding dysregulation of NAD homeostasis by CD38 may open new avenues for the treatment of human diseases.
Collapse
Affiliation(s)
- Julianna D Zeidler
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Kelly A Hogan
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Guillermo Agorrody
- Departamento de Fisiopatología, Hospital de Clínicas, Montevideo, Uruguay
- Laboratorio de Patologías del Metabolismo y el Envejecimiento, Instituto Pasteur de Montevideo, Montevideo, Uruguay
| | - Thais R Peclat
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Sonu Kashyap
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida
| | - Karina S Kanamori
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Lilian Sales Gomez
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Delaram Z Mazdeh
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Gina M Warner
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Katie L Thompson
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Claudia C S Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida
| | - Eduardo Nunes Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
12
|
Zeng F, Zhu L, Liao Q, Li X, Zhou Y. Adenosine diphosphate ribose cyclase: An important regulator of human pathological and physiological processes. J Cell Physiol 2022; 237:2064-2077. [PMID: 35098541 DOI: 10.1002/jcp.30688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/17/2021] [Accepted: 01/08/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Feng Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Ling Zhu
- Department of Neurology, Xiangtan Central Hospital Xiangtan Central Hospital Xiangtan Hunan China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Xin Li
- Breast Cancer Center, Department of General Surgery, Xiangya Hospital Central South University Changsha China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| |
Collapse
|
13
|
Wen S, Arakawa H, Tamai I. CD38 activation by monosodium urate crystals contributes to inflammatory responses in human and murine macrophages. Biochem Biophys Res Commun 2021; 581:6-11. [PMID: 34637964 DOI: 10.1016/j.bbrc.2021.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/01/2021] [Indexed: 01/15/2023]
Abstract
Cluster of differentiation (CD) 38, a major enzyme for nicotinamide adenine dinucleotide (NAD+) degradation, plays a key role in inflammation. Meanwhile, intracellular NAD+ decline is also associated with inflammatory responses. However, whether CD38 activation is involved in gouty inflammation has not been elucidated. The present study aimed to clarify the role of CD38 in monosodium urate crystals (MSU)-triggered inflammatory responses. The results showed that MSU crystals increased the protein expression of CD38 in time- and concentration-dependent manner in THP-1 macrophages and mouse bone marrow-derived macrophages (BMDMs). Moreover, intracellular NAD+ levels were reduced by MSU crystals along with the increased IL-1β release. However, CD38 inhibition by 78c elevated intracellular NAD+ levels and suppressed IL-1β release in MSU crystals-treated THP-1 macrophages and BMDMs. Interestingly, CD38 inhibition without significant elevation of intracellular NAD+ also decreased IL-1β release driven by MSU crystals in THP-1 macrophages. In conclusion, the present study revealed that MSU crystals could activate CD38 with the ensuing intracellular NAD+ decline to promote inflammatory responses in THP-1 macrophages and BMDMs, while CD38 inhibition could suppress MSU crystals-triggered inflammatory responses, indicating that CD38 is a potential therapeutic target for gout.
Collapse
Affiliation(s)
- Shijie Wen
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hiroshi Arakawa
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|