1
|
Cai Y, Yu Y, Zhang T, Qian B, Wang B, Yan W, Zhao J. GATAD1 is involved in sphingosylphosphorylcholine-attenuated myocardial ischemia-reperfusion injury by modulating myocardial fatty acid oxidation and glucose oxidation. Free Radic Biol Med 2024; 227:166-178. [PMID: 39626862 DOI: 10.1016/j.freeradbiomed.2024.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Modulating the equilibrium between glucose metabolism and fatty acid metabolism represents highly promising novel strategies for therapy of myocardial ischemia/reperfusion (I/R) injury. Sphingosylphosphorylcholine (SPC), an intermediate metabolite of sphingolipids, has shown cardioprotective roles during myocardial infarction by regulating the activities of various transcript factors. Gene microarray revealed that SPC significantly upregulated the expression of GATA zinc finger domain protein 1 (GATAD1), which is a vital transcript factor affecting heart development and various heart diseases. However, it remains unclear whether SPC is involved in the regulation of cardiac fatty acid and glucose metabolism via GATAD1. In this study, we found that myocardium-specific Gatad1 knockout (Gatad1 CKO) significantly increased the myocardial infarct size, impaired cardiac function in I/R mice, and disrupted the protective effect of SPC on the hearts of I/R mice. Immunofluorescence experiment and Western blot evaluation of the nuclear-cytoplasmic fractionation sample showed that GATAD1 acted as a transcription factor and was regulated by SPC. Double fluorescence reporting experiment and quantitative polymerase chain reaction (qPCR) revealed that GATAD1 could inhibit the expression of genes involved in fatty acid oxidation (FAO), i.e., acetyl-coenzyme A acyltransferase 2 (Acaa2) and medium-chain acyl-CoA dehydrogenase (Acadm), and promoted the expression of genes involved in glucose oxidation, i.e., pyruvate dehydrogenase E1 α subunit (Pdha1). Small interfering RNA (SiRNA) or overexpression strategies confirmed the pro-apoptotic roles of Acaa2 and Acadm and anti-apoptotic role of Pdha1 in cardiac myocytes challenged with I/R treatment. In summary, our findings suggest that SPC can be used as a candidate to prevent I/R injury by reshaping fatty acid and glucose metabolism. Transcription factor GATAD1 plays a crucial role in regulating fatty acid oxidation and glucose oxidation homeostasis and is involved in SPC-mediated cardioprotection during I/R of the heart. Our study identifies GATAD1 as a new therapeutic target for clinical treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Yuqing Cai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yifan Yu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Tianliang Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Baoshuo Qian
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Benlong Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Wenxiu Yan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jing Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
2
|
Zhou J, Liu H, Zhang T, Wang Z, Zhang J, Lu Y, Li Z, Kong W, Zhao J. MORN4 protects cardiomyocytes against ischemic injury via MFN2-mediated mitochondrial dynamics and mitophagy. Free Radic Biol Med 2023; 196:156-170. [PMID: 36682578 DOI: 10.1016/j.freeradbiomed.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023]
Abstract
The imbalance of mitochondrial fission and fusion dynamics causes ischemic cardiomyocyte apoptosis and heart injury by affecting mitophagy. Regulation of mitochondrial dynamics is an important therapeutic strategy for ischemic heart diseases. Considering the important roles of MORN motifs in heart diseases and chloroplast fission, we aimed to investigate the possible role of MORN repeat-containing protein 4 (MORN4) in the progression of myocardial infarction (MI), ischemic cardiomyocyte apoptosis, mitochondrial dynamics, and mitophagy. We found that in the MI mouse, MORN4 knockdown remarkably accelerated cardiac injury and fibrosis with deteriorating cardiac dysfunction. Sphingosylphosphorylcholine (SPC) alleviated ischemic cardiomyocyte apoptosis and heart injury through increased level of MORN4, indicating a vital function of MORN4 in heart with SPC used to clarify the molecular mechanisms underlying the functions of MORN4. Mechanistically, we found that MORN4 directly binds to MFN2 and promotes the phosphorylation of MFN2 S442 through Rho-associated protein kinase 2 (ROCK2), which mediates beneficial mitophagy induced by mitochondrial dynamics, while SPC promoted the binding of MORN4 and MFN2 and the process. Taken together, our data reveal a new perspective role of MORN4 in ischemic heart injury, and report that SPC could regulate myocardial mitochondrial homeostasis by activating the MORN4-MFN2 axis during the ischemic situation, this finding provides novel targets for improving myocardial ischemia tolerance and rescue of acute myocardial infarction.
Collapse
Affiliation(s)
- Jinrun Zhou
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Honghong Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Tianliang Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China; Experimental Center for Medical Research, Weifang Medical University, Weifang, 261000, PR China
| | - Zhaohui Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Jiaojiao Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Yao Lu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Zhiliang Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Weihua Kong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Jing Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
3
|
Wu L, Li Z, Li Y. The crosstalk between STAT3 and microRNA in cardiac diseases and protection. Front Cardiovasc Med 2022; 9:986423. [PMID: 36148063 PMCID: PMC9485608 DOI: 10.3389/fcvm.2022.986423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), an important transcription factor and signaling molecule, play an important role in cardiac disease and protection. As a transcription factor, STAT3 upregulates anti-oxidative and anti-apoptotic genes but suppresses anti-inflammatory and anti-fibrotic genes in cardiac disease and protection. As a signaling molecule, STAT3 is the downstream or upstream of other molecules for signaling transduction, also activated in cardiac disease and protection. MicroRNAs (miRNAs) are endogenous short non-coding RNAs that regulate mRNA expression at the transcriptional level and prevent protein translation. Recently, STAT3 is reported to be not only the target of miRNA but also the inhibitor or inducer of miRNA to modify the mRNA expression profiles in cardiomyocytes resulting in different effects on cardiac disease and protection. We summarize the current knowledge on STAT3 regulation of individual miRNAs and the modulation of STAT3 by miRNAs in cardiac diseases and protection.
Collapse
Affiliation(s)
- Lan Wu
- Affiliated Zhoupu Hospital and Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Lan Wu
| | - Zhizheng Li
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yanfei Li
- Affiliated Zhoupu Hospital and Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
4
|
Kim DS, Na HS, Cho KH, Lee KH, Choi J, Kwok SK, Bae YS, Cho ML, Park SH. Sphingosylphosphorylcholine ameliorates experimental sjögren's syndrome by regulating salivary gland inflammation and hypofunction, and regulatory B cells. Immunol Lett 2022; 248:62-69. [PMID: 35732207 DOI: 10.1016/j.imlet.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 11/24/2022]
Abstract
Sjögren syndrome (SS) is an autoimmune disease in which immune cells infiltrate the exocrine gland. Since SS is caused by a disorder of the immune system, treatments should regulate the immune response. Sphingosylphosphorylcholine (SPC) is a sphingolipid that mediates cellular signaling. In immune cells, SPC has several immunomodulatory functions. Accordingly, this study verifies the immunomodulatory ability and therapeutic effect of SPC in SS. To understand the function of SPC in SS, we treated SPC in female NOD/ShiJcl (NOD) mice. The mice were monitored for 10 weeks, and inflammation in the salivary glands was checked. After SPC treatment, we detected the expression of regulatory B (Breg) cells in mouse splenocytes and the level of salivary secretion-related genes in human submandibular gland (HSG) cells. Salivary flow rate was maintained in the SPC-treated group compared to the vehicle-treated group, and inflammation in the salivary gland tissues was relieved by SPC. SPC treatment in mouse cells and HSG cells enhanced Breg cells and salivary secretion markers, respectively. This study revealed that SPC can be considered as a new therapeutic agent against SS.
Collapse
Affiliation(s)
- Da Som Kim
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Hyun Sik Na
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Keun-Hyung Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Kun Hee Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - JeongWon Choi
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Ki Kwok
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea.
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea; Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Sung-Hwan Park
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|