1
|
Lan X, Yu R, Xu J. Identification of circRNA CDR1as/miR-214-3p regulatory axis in Legg-Calvé-Perthes disease. Orphanet J Rare Dis 2024; 19:380. [PMID: 39407304 PMCID: PMC11481470 DOI: 10.1186/s13023-024-03394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Legg-Calvé-Perthes disease (LCPD) commonly occurs among adolescents, threatening their health. However, the potential mechanism underlying LCPD remains unclear. miR-214-3p is shown as a critical role in LCPD development with unspecified upstream regulators. METHODS Levels of miR-214-3p and circCDR1as in healthy controls and LCPD patients were determined by qRT-PCR. The role of circCDR1as/miR-214-3p axis in LCPD was determined by testing the cell viability and apoptosis in TC28 cells and primary chondrocytes. Regulation between circCDR1as and miR-214-3p was examined by RIP and ChIP assays. The inflammatory response and angiogenesis were evaluated by M2 macrophage polarization and HUVECs tumor formation. RESULTS circCDR1as was overexpressed in LCPD patients with a negative correlation with miR-214-3p. Inhibition of circCDR1as alleviated the cell viability and apoptosis of DEX-treated chondrocytes, stimulated M2 macrophage polarization and angiogenesis. miR-214-3p was proved as a downstream effector to participate in circCDR1as mediated actions. circCDR1as recruited PRC2 complex to epigenetically suppress miR-214-3p. CONCLUSION Our study illustrated the role and mechanism of circCDR1as in LCPD development by targeting miR-214-3p, highlighting its potential in the therapy for LCPD.
Collapse
Affiliation(s)
- Xia Lan
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1519, Dongyue Avenue, Nanchang, Jiangxi Province, 330006, P.R. China.
| | - Ronghui Yu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1519, Dongyue Avenue, Nanchang, Jiangxi Province, 330006, P.R. China
| | - Jianyun Xu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1519, Dongyue Avenue, Nanchang, Jiangxi Province, 330006, P.R. China
| |
Collapse
|
2
|
Wang Q, Tong Q, Jiang Z, Tang B. Predictive value of miR-636 in patients with acute myocardial infarction undergoing percutaneous coronary intervention and its bioinformatics analysis. J Cardiothorac Surg 2024; 19:572. [PMID: 39354590 PMCID: PMC11443705 DOI: 10.1186/s13019-024-03079-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/15/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play an important role in the pathogenesis of cardiovascular diseases such as acute myocardial infarction (AMI). Percutaneous coronary intervention (PCI) is currently the most direct and effective procedure to treat AMI, but the occurrence of postoperative cardiovascular events (MACE) affects patients' quality of life. The objective of this study was to identify a new biomarker that could provide a theoretical basis for the prevention of MACE in patients with AMI undergoing PCI. METHODS 142 AMI patients who underwent PCI and 130 healthy volunteers were selected as study subjects. Detection of miR-636 expression level by fluorescence quantitative PCR. ROC, Kaplan-Meier and Cox regression analyses were applied to evaluate the diagnostic and prognostic value of miR-636 for AMI. The miR-636 target genes were predicted and enriched for GO function and KEGG pathway. RESULTS MiR-636 expression levels were elevated in patients with AMI. ROC curve analysis showed that miR-636 had a feasible diagnostic value in distinguishing AMI patients from healthy controls miR-636 expression levels were elevated in patients who developed MACEs. ROC results showed that miR-636 had significant diagnostic value in differentiating AMI patients with and without MACEs after PCI treatment. GO and KEGG enrichment analyses showed that miR-636 may transmit information to vesicles formed by the cell membrane. CONCLUSIONS MiR-636 expression serves as a biomarker for diagnosing AMI and predicting the occurrence of MACE after PCI.
Collapse
Affiliation(s)
- Qi Wang
- Department of Cardiovascular Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365, Renmin East Road, Jinhua, 321100, China
| | - Qiang Tong
- Department of Cardiovascular Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365, Renmin East Road, Jinhua, 321100, China
| | - Zenan Jiang
- Department of Cardiovascular Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365, Renmin East Road, Jinhua, 321100, China
| | - Biao Tang
- Department of Cardiovascular Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365, Renmin East Road, Jinhua, 321100, China.
| |
Collapse
|
3
|
Wang X, He B. Insight into endothelial cell-derived extracellular vesicles in cardiovascular disease: Molecular mechanisms and clinical implications. Pharmacol Res 2024; 207:107309. [PMID: 39009292 DOI: 10.1016/j.phrs.2024.107309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/15/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The endothelium is crucial in regulating vascular function. Extracellular vesicles (EVs) serve as membranous structures released by cells to facilitate intercellular communication through the delivery of nucleic acids, lipids, and proteins to recipient cells in an paracrine or endocrine manner. Endothelial cell-derived EVs (EndoEVs) have been identified as both biomarkers and significant contributors to the occurrence and progression of cardiovascular disease (CVD). The impact of EndoEVs on CVD is complex and contingent upon the condition of donor cells, the molecular cargo within EVs, and the characteristics of recipient cells. Consequently, elucidating the underlying molecular mechanisms of EndoEVs is crucial for comprehending their contributions to CVD. Moreover, a thorough understanding of the composition and function of EndoEVs is imperative for their potential clinical utility. This review aims provide an up-to-date overview of EndoEVs in the context of physiology and pathophysiology, as well as to discuss their prospective clinical applications.
Collapse
Affiliation(s)
- Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, China.
| |
Collapse
|
4
|
Xing T, Wang X, Xu Y, Sun F, Chen M, Yan Q, Ma Z, Jiang H, Chen X, Li X, Sultan R, Yan T, Wang Z, Jia J. Click method preserves but EDC method compromises the therapeutic activities of the peptide-activated hydrogels for critical ischemic vessel regeneration. Biomed Pharmacother 2024; 177:116959. [PMID: 38906023 DOI: 10.1016/j.biopha.2024.116959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/25/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Peptide-functionalized hydrogel is one of commonly used biomaterials to introduce hydrogel-induced vessel regeneration. Despite many reports about the discoveries of high-active peptides (or ligands) for regeneration, the study on the conjugating methods for the hydrogel functionalization with peptides is limited. Here, we compared the vasculogenic efficacy of the peptide-functionalized hydrogels prepared by two commonly used conjugating methods, 1-ethyl-3-(3-dimethylamino propyl) carbodiimide (EDC) and Click methods, through cell models, organ-on-chips models, animal models, and RNA sequencing analysis. Two vascular-related cell types, the human umbilical vein endothelial cells (HUVECs) and the adipose-derived stem cells (ADSCs), have been cultured on the hydrogel surfaces prepared by EDC/Click methods. It showed that the hydrogels prepared by Click method supported the higher vasculogenic activities while the ones made by EDC method compromised the peptide activities on hydrogels. The vasculogenesis assays further revealed that hydrogels prepared by Click method promoted a better vascular network formation. In a critical ischemic hindlimb model, only the peptide-functionalized hydrogels prepared by Click method successfully salvaged the ischemic limb, significantly improved blood perfusion, and enhanced the functional recoveries (through gait analysis and animal behavior studies). RNA sequencing studies revealed that the hydrogels prepared by Click method significantly promoted the PI3K-AKT pathway activation compared to the hydrogels prepared by EDC method. All the results suggested that EDC method compromised the functions of the peptides, while Click method preserved the vascular regenerating capacities of the peptides on the hydrogels, illustrating the importance of the conjugating method during the preparation of the peptide-functionalized hydrogels.
Collapse
Affiliation(s)
- Tongying Xing
- School of Life Sciences, Shanghai University, Shanghai, China; Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| | - Xuelin Wang
- School of Life Sciences, Shanghai University, Shanghai, China; Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Yongqiang Xu
- Department of colorectal surgery, The First People's Hospital of Huzhou, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Fei Sun
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Min Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qiang Yan
- Department of Surgery, Huzhou Central Hospital, Huzhou, Zhejiang, China; Department of Surgery, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang, China
| | - Zhihong Ma
- Department of Precision Medical Clinical Research Center, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Haihong Jiang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xingxing Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xueyi Li
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| | - Rabia Sultan
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Zhimin Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China.
| | - Jia Jia
- School of Life Sciences, Shanghai University, Shanghai, China; Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China.
| |
Collapse
|
5
|
Wang X, He B. Endothelial dysfunction: molecular mechanisms and clinical implications. MedComm (Beijing) 2024; 5:e651. [PMID: 39040847 PMCID: PMC11261813 DOI: 10.1002/mco2.651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
Cardiovascular disease (CVD) and its complications are a leading cause of death worldwide. Endothelial dysfunction plays a crucial role in the initiation and progression of CVD, serving as a pivotal factor in the pathogenesis of cardiovascular, metabolic, and other related diseases. The regulation of endothelial dysfunction is influenced by various risk factors and intricate signaling pathways, which vary depending on the specific disease context. Despite numerous research efforts aimed at elucidating the mechanisms underlying endothelial dysfunction, the precise molecular pathways involved remain incompletely understood. This review elucidates recent research findings on the pathophysiological mechanisms involved in endothelial dysfunction, including nitric oxide availability, oxidative stress, and inflammation-mediated pathways. We also discuss the impact of endothelial dysfunction on various pathological conditions, including atherosclerosis, heart failure, diabetes, hypertension, chronic kidney disease, and neurodegenerative diseases. Furthermore, we summarize the traditional and novel potential biomarkers of endothelial dysfunction as well as pharmacological and nonpharmacological therapeutic strategies for endothelial protection and treatment for CVD and related complications. Consequently, this review is to improve understanding of emerging biomarkers and therapeutic approaches aimed at reducing the risk of developing CVD and associated complications, as well as mitigating endothelial dysfunction.
Collapse
Affiliation(s)
- Xia Wang
- Department of CardiologyShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ben He
- Department of CardiologyShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
6
|
Liu J, Lin C, Li B, Huang Q, Chen X, Tang S, Luo X, Lu R, Liu Y, Liao S, Ding X. Biochanin A inhibits endothelial dysfunction induced by IL‑6‑stimulated endothelial microparticles in Perthes disease via the NFκB pathway. Exp Ther Med 2024; 27:137. [PMID: 38476892 PMCID: PMC10928846 DOI: 10.3892/etm.2024.12425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/15/2023] [Indexed: 03/14/2024] Open
Abstract
Endothelial dysfunction caused by the stimulation of endothelial microparticles (EMPs) by the inflammatory factor IL-6 is one of the pathogenic pathways associated with Perthes disease. The natural active product biochanin A (BCA) has an anti-inflammatory effect; however, whether it can alleviate endothelial dysfunction in Perthes disease is not known. The present in vitro experiments on human umbilical vein endothelial cells showed that 0-100 pg/ml IL-6-EMPs could induce endothelial dysfunction in a concentration-dependent manner, and the results of the Cell Counting Kit 8 assay revealed that, at concentrations of <20 µM, BCA had no cytotoxic effect. Reverse transcription-quantitative PCR demonstrated that BCA reduced the expression levels of the endothelial dysfunction indexes E-selectin and intercellular cell adhesion molecule-1 (ICAM-1) in a concentration-dependent manner. Immunofluorescence and western blotting illustrated that BCA increased the expression levels of zonula occludens-1 and decreased those of ICAM-1. Mechanistic studies showed that BCA inhibited activation of the NFκB pathway. In vivo experiments demonstrated that IL-6 was significantly increased in the rat model of ischemic necrosis of the femoral head, whereas BCA inhibited IL-6 production. Therefore, in Perthes disease, BCA may inhibit the NFκB pathway to suppress IL-6-EMP-induced endothelial dysfunction, and could thus be regarded as a potential treatment for Perthes disease.
Collapse
Affiliation(s)
- Jianhong Liu
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Chengsen Lin
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Boxiang Li
- Department of Orthopedics, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530001, P.R. China
| | - Qian Huang
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xianxiang Chen
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Shengping Tang
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiaolin Luo
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rongbin Lu
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yun Liu
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Shijie Liao
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
- Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiaofei Ding
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
- Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
7
|
Qin W, He M, Qin H, Wei Q, Yan H. Global trends in the research on Legg-Calve-Perthes disease in Web of Science. Front Pediatr 2024; 12:1335118. [PMID: 38516353 PMCID: PMC10954890 DOI: 10.3389/fped.2024.1335118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Background Legg-Calve-Perthes disease (LCPD) is a form of idiopathic femoral head necrosis that can lead to permanent femoral head deformities and premature osteoarthritis in children under the age of 15. Its pathogenesis is utterly and remains to be clarified. Although many research publications on LCPD have emerged during the last few decades, few systematic bibliometric analyses of these articles have been reported. Methods A bibliometric analysis was performed to investigate the development processes and hotspots, as well as the collaboration and influence among countries, institutions, authors, journals, and keywords of papers relevant to LCPD from the Web of Science Core Collection (WoSCC) during the period from 1 January 2000 to 30 June 2023. Results A total of 2,205 researchers from 916 institutions across 53 countries/regions have contributed to 673 papers published in 199 academic journals. The research on LCPD has shown significant fluctuations but a gradual increase in the number of articles published over the last two decades. The United States leads in the number of publications of LCPD, with the Texas Scottish Rite Hospital for Children being the most productive institution. English, as the most widely used language in the world, was undoubtedly the most popular language. Herring JA, who acted as both the corresponding and first author, has contributed to the most co-cited papers published. The most number of LCPD papers are published in the Journal of Pediatric Orthopaedics, whereas the Journal of Bone and Joint Surgery American Volume garnered the highest total citations, indicating the great importance of these two journals in the field of orthopedics. The most frequently used keywords in published articles were related to the symptoms, mechanisms, and prognosis, revealing the research focus of most scholars. Conclusion Our research described the development trends and hotspots in the research field of LCPD and will help researchers make better decisions.
Collapse
Affiliation(s)
- Wenbao Qin
- Department of Orthopaedics, Hechi Third People’s Hospital, Hechi, Guangxi, China
| | - Mingwei He
- Department of Orthopaedic Trauma and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hongsheng Qin
- Department of Orthopaedics, Hechi Third People’s Hospital, Hechi, Guangxi, China
| | - Qingjun Wei
- Department of Orthopaedic Trauma and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haiwei Yan
- Department of Orthopaedics, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou Worker’s Hospital, Liuzhou, Guangxi, China
| |
Collapse
|
8
|
Liu J, Hua Z, Liao S, Li B, Tang S, Huang Q, Wei Z, Lu R, Lin C, Ding X. Prediction of the active compounds and mechanism of Biochanin A in the treatment of Legg-Calvé-Perthes disease based on network pharmacology and molecular docking. BMC Complement Med Ther 2024; 24:26. [PMID: 38195507 PMCID: PMC10775507 DOI: 10.1186/s12906-023-04298-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Legg-Calvé-Perthes disease is a special self-limited disease in pediatric orthopedics with a high disability rate and a long-term course, and there is still no clear and effective therapeutic drug in clinic. This study aimed to investigate the potential efficacy of biochanin A, a kind of oxygen-methylated isoflavone compound, in treating Perthes disease based on network pharmacology, molecular docking and in vitro experiments. METHODS IL-6 was used to stimulate human umbilical vein endothelial cells to construct endothelial cell dysfunction model. We demonstrated whether biochanin A could alleviate endothelial dysfunction through CCK8 assay, immunofluorescence. Targets of biochanin A from pharmMappeer, SWISS, and TargetNet databases were screened. Targets of endothelial dysfunction were obtained from Genecards and OMIM databases. Protein-protein interaction, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomics analyses were used to analyze the potential target and the key pathway of the anti-endothelial dysfunction activity of biochanin A. To validate the potential target-drug interactions, molecular docking and molecular dynamics simulations were performed and the result was proved by western blot. RESULTS It was found that biochanin A can promote the expression of ZO-1, reduce the expression of ICAM-1, which means improving endothelial dysfunction. A total of 585 targets of biochanin A from pharmMappeer, SWISS, and TargetNet databases were screened. A total of 10,832 targets of endothelial dysfunction were obtained from Genecards and OMIM databases. A total of 527 overlapping targets of endothelial dysfunction and biochanin A were obtained. AKT1, TNF-α, VCAM1, ICAM1, and NOS3 might be the key targets of the anti-endothelial dysfunction activity of biochanin A, and the key pathways might be PI3K-Akt and TNF signaling pathways. Molecular docking results indicated that the AKT1 and TNF-α had the highest affinity binding with biochanin A. CONCLUSION This study indicates that biochanin A can target AKT1 and TNF-α to alleviate endothelial dysfunction induced by IL-6 in Perthes disease, which provides a theoretical basis for the treatment of Perthes disease by using biochanin A.
Collapse
Affiliation(s)
- Jianhong Liu
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Zhirui Hua
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shijie Liao
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Boxiang Li
- Department of Orthopedics, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Shengping Tang
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qian Huang
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Zhendi Wei
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Rongbin Lu
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Chengsen Lin
- Trauma Center, Emergency Department, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China.
| | - Xiaofei Ding
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
- Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
9
|
Ma Z, Zheng M, Liu Z, Lu H, Liu Y, Yang Y, Fang Z, Lu S. Identification of potential angiotensin-I-converting enzyme inhibitory components in celery seed using UHPLC-MS and molecular docking. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
10
|
Wang T, Luo X, Li B, Huang Q, Liu J, Tang S, Liu Y, Lu R, Liao S, Ding X. Platelet to lymphocyte ratio was a risk factor in Perthes disease. Sci Rep 2023; 13:5052. [PMID: 36977732 PMCID: PMC10050405 DOI: 10.1038/s41598-023-32000-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The study was aimed to determine the relationship between PLR (platelet to lymphocyte ratio) and the lateral pillar classification of Perthes disease, and to provide an alternative index for clinical diagnosis. In addition, the association of the PLR with the necrosis stage of Perthes disease was also explored. This was a retrospective study. 74 children with Perthes disease and 60 children in the healthy control group without femoral head necrosis in our hospital from 2012 to 2021 were collected. The general data and clinical parameters were collected from the hospital information system. The modified herring lateral pillar classification was collected for the fragmentation stage case group and the PLR, NLR (neutrophil to lymphocyte ratio), LMR (lymphocyte to monocyte ratio) and PNR (platelet to neutrophil ratio) were calculated. The cases were divided into four groups, herring A and B were group I, herring B/C and C were group II, the healthy control group was group III, and the necrosis stage was group IV. The hematological indexes (NLR, PLR, LMR, PNR) of children at different stages were statistically analyzed. Group I consisted of 36 patients, with an average age of 7.4 ± 2.0 years (3-11 years). Group II consisted of 23 patients, with an average age of 7.4 ± 1.9 years (4-12 years). Group III consisted of 60 patients, with a mean age of 7.4 ± 2.7 years (4-13 years). Group IV consisted of 15 patients, with an average age of 6.4 ± 1.7 years (3-10 years). The average values of PLR in groups I, II, III and IV were 131.98 ± 47.44, 122.19 ± 37.88, 102.46 ± 30.68 and 128.90 ± 28.11, respectively. It's worth noting that there was statistically significant difference among groups I, II and III (P = 0.003). The optimal threshold of PLR was 130.25, the sensitivity was 45.8% and the specificity was 85%. PLR was also significantly different between groups III and group IV. PLR was higher in Herring A and B classifications than in Herring B/C and C classifications. PLR had certain diagnostic value in both the necrosis stage and fragmentation stage as a risk factor.
Collapse
Affiliation(s)
- TianTian Wang
- Department of Orthopedics, Ordos Central Hospital, 23 Ekin Hollow West Street, Ordos, 017000, China
| | - XiaoLin Luo
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - BoXiang Li
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Qian Huang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - JianHong Liu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - ShengPing Tang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Yun Liu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - RongBin Lu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - ShiJie Liao
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China.
| | - XiaoFei Ding
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China.
| |
Collapse
|
11
|
Molecular Biomarkers in Perthes Disease: A Review. Diagnostics (Basel) 2023; 13:diagnostics13030471. [PMID: 36766577 PMCID: PMC9914190 DOI: 10.3390/diagnostics13030471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Perthes disease is a juvenile form of osteonecrosis of the femoral head that affects children under the age of 15. One hundred years after its discovery, some light has been shed on its etiology and the biological factors relevant to its etiology and disease severity. METHODS The aim of this study was to summarize the literature findings on the biological factors relevant to the pathogenesis of Perthes disease, their diagnostic and clinical significance, and their therapeutic potential. A special focus on candidate genes as susceptibility factors and factors relevant to clinical severity was made, where studies reporting clinical or preclinical results were considered as the inclusion criteria. PubMed databases were searched by two independent researchers. Sixty-eight articles were included in this review. Results on the factors relevant to vascular involvement and inflammatory molecules indicated as factors that contribute to impaired bone remodeling have been summarized. Moreover, several candidate genes relevant to an active phase of the disease have been suggested as possible biological therapeutic targets. CONCLUSIONS Delineation of molecular biomarkers that underlie the pathophysiological process of Perthes disease can allow for the provision of earlier and more accurate diagnoses of the disease and more precise follow-ups and treatment in the early phases of the disease.
Collapse
|
12
|
Zhang HJ, Li JY, Wang C, Zhong GQ. Microvesicles with mitochondrial content are increased in patients with sepsis and associated with inflammatory responses. World J Clin Cases 2023; 11:342-356. [PMID: 36686348 PMCID: PMC9850980 DOI: 10.12998/wjcc.v11.i2.342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/03/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Endothelial activation plays an important role in sepsis-mediated inflammation, but the triggering factors have not been fully elucidated. Microvesicles carrying mitochondrial content (mitoMVs) have been implicated in several diseases and shown to induce endothelial activation.
AIM To explore whether mitoMVs constitute a subset of MVs isolated from plasma of patients with sepsis and contribute to endothelial activation.
METHODS MVs were isolated from human plasma and characterized by confocal microscopy and flow cytometry. Proinflammatory cytokines, including interleukin (IL)-6, IL-8 and tumour necrosis factor (TNF)-α, and soluble vascular cell adhesion molecule (sVCAM)-1 were detected by ELISA. Human umbilical vein endothelial cells (HUVECs) were stimulated with the circulating MVs to evaluate their effect on endothelial activation.
RESULTS MitoMVs were observed in plasma from patients with sepsis. Compared with those in healthy controls, expression of MVs, mitoMVs, proinflammatory cytokines and sVCAM-1 was increased. The number of mitoMVs was positively associated with TNF-α and sVCAM-1. In vitro, compared with MVs isolated from the plasma of healthy controls, MVs isolated from the plasma of patients with sepsis induced expression of OAS2, RSAD2, and CXCL10 in HUVECs. MitoMVs were taken up by HUVECs, and sonication of MVs significantly reduced the uptake of mitoMVs by HUVECs and expression of the above three type I IFN-dependent genes.
CONCLUSION MitoMVs are increased in the plasma of patients with sepsis, which induces elevated expression of type I IFN-dependent genes. This suggests that circulating mitoMVs activate the type I IFN signalling pathway in endothelial cells and lead to endothelial activation.
Collapse
Affiliation(s)
- Hai-Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan Province, China
| | - Jin-Yi Li
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin 541000, Guangxi Zhuang Autonomous Region, China
| | - Chao Wang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Guo-Qiang Zhong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
13
|
Zhu Y, Wang S, Chen X. Extracellular Vesicles and Ischemic Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:57-68. [PMID: 37603272 DOI: 10.1007/978-981-99-1443-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Characterized by coronary artery obstruction or stenosis, ischemic cardiovascular diseases as advanced stages of coronary heart diseases commonly lead to left ventricular aneurysm, ventricular septal defect, and mitral insufficiency. Extracellular vesicles (EVs) secreted by diverse cells in the body exert roles in cell-cell interactions and intrinsic cellular regulations. With a lipid double-layer membrane and biological components such as DNA, protein, mRNA, microRNAs (miRNA), and siRNA inside, the EVs function as paracrine signaling for the pathophysiology of ischemic cardiovascular diseases and maintenance of the cardiac homeostasis. Unlike stem cell transplantation with the potential tumorigenicity and immunogenicity, the EV-based therapeutic strategy is proposed to satisfy the demand for cardiac repair and regeneration while the circulating EVs detected by a noninvasive approach can act as precious biomarkers. In this chapter, we extensively summarize the cardioprotective functions of native EVs and bioengineered EVs released from stem cells, cardiomyocytes, cardiac progenitor cells (CPCs), endothelial cells, fibroblast, smooth muscle cells, and immune cells. In addition, the potential of EVs as robust molecule biomarkers is discussed for clinical diagnosis of ischemic cardiovascular disease, attributed to the same pathology of EVs as that of their origin. Finally, we highlight EV-based therapy as a biocompatible alternative to direct cell-based therapy for ischemic cardiovascular diseases.
Collapse
Affiliation(s)
- Yujiao Zhu
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Siqi Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Xuerui Chen
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China.
| |
Collapse
|
14
|
Huang Q, Li B, Lin C, Chen X, Wang T, Liu J, Liu Y, Lu R, Liao S, Ding X. MicroRNA sequence analysis of plasma exosomes in early Legg-Calvé-Perthes disease. Cell Signal 2021; 91:110184. [PMID: 34740784 DOI: 10.1016/j.cellsig.2021.110184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/24/2021] [Accepted: 10/31/2021] [Indexed: 02/08/2023]
Abstract
The pathogenesis of Legg-Calvé-Perthes disease (LCPD) has not been fully elucidated, and studies on epigenetic changes that may contribute to the pathogenesis of LCPD are rare. MicroRNAs (miRNAs) are epigenetic modifications that play a critical role in gene regulation. This study aimed to determine the expression profiles of circulating exosomal miRNAs and examine the role of exosomal miRNAs in LCPD. Exosomes were extracted from the plasma of three patients with LCPD and three matched healthy volunteers. Total exosomal miRNAs were isolated, and next-generation sequencing and bioinformatic approaches were performed. The top 10 most differentially upregulated miRNAs were identified, and qRT-PCR validation was performed using additional 10 matches. In Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, plasma exosomes were used in verifying osteoclastogenesis and the endothelial dysfunction phenotypes involved. The elevated miRNAs in LCPD plasma exosomes were tested for osteoclastogenesis and endothelial dysfunction in vitro. Sequencing results revealed the expression profiles of plasma exosomal miRNAs with differential expression from the DESeq-identified miRNA profiles in LCPD versus controls in a pairwise comparison. Gene Ontology and KEGG pathway analyses indicated that the predicted target genes of different miRNAs were mainly enriched in the endothelial and osteoclast cells related to signaling pathways. Functional phenotype experiments showed that the plasma exosomes in the LCPD group promoted osteoclastogenesis and endothelial cell dysfunction. qRT-PCR experiments showed that nine miRNAs in circulating exosomes in LCPD patients were higher than those in the healthy controls. miR-3133, miR-4644, miR-4693-3p, and miR-4693-5p promoted endothelial dysfunction, and miR-3133, miR-4693-3p, miR-4693-5p, miR-141-3p and miR-30a promoted osteoclastogenesis in vitro. This study demonstrated that plasma exosomes from LCPD promote endothelial cell dysfunction and osteoclastogenesis likely through their miRNAs, which might contribute to the development of LCPD.
Collapse
Affiliation(s)
- Qian Huang
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Boxiang Li
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chengsen Lin
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xianxiang Chen
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tiantian Wang
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jianhong Liu
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yun Liu
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rongbin Lu
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shijie Liao
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.
| | - Xiaofei Ding
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
15
|
Liu Y, Feng W, Dai Y, Bao M, Yuan Z, He M, Qin Z, Liao S, He J, Huang Q, Yu Z, Zeng Y, Guo B, Huang R, Yang R, Jiang Y, Liao J, Xiao Z, Zhan X, Lin C, Xu J, Ye Y, Ma J, Wei Q, Mo Z. Single-Cell Transcriptomics Reveals the Complexity of the Tumor Microenvironment of Treatment-Naive Osteosarcoma. Front Oncol 2021; 11:709210. [PMID: 34367994 PMCID: PMC8335545 DOI: 10.3389/fonc.2021.709210] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/02/2021] [Indexed: 12/03/2022] Open
Abstract
Osteosarcoma (OS), which occurs most commonly in adolescents, is associated with a high degree of malignancy and poor prognosis. In order to develop an accurate treatment for OS, a deeper understanding of its complex tumor microenvironment (TME) is required. In the present study, tissues were isolated from six patients with OS, and then subjected to single-cell RNA sequencing (scRNA-seq) using a 10× Genomics platform. Multiplex immunofluorescence staining was subsequently used to validate the subsets identified by scRNA-seq. ScRNA-seq of six patients with OS was performed prior to neoadjuvant chemotherapy, and data were obtained on 29,278 cells. A total of nine major cell types were identified, and the single-cell transcriptional map of OS was subsequently revealed. Identified osteoblastic OS cells were divided into five subsets, and the subsets of those osteoblastic OS cells with significant prognostic correlation were determined using a deconvolution algorithm. Thereby, different transcription patterns in the cellular subtypes of osteoblastic OS cells were reported, and key transcription factors associated with survival prognosis were identified. Furthermore, the regulation of osteolysis by osteoblastic OS cells via receptor activator of nuclear factor kappa-B ligand was revealed. Furthermore, the role of osteoblastic OS cells in regulating angiogenesis through vascular endothelial growth factor-A was revealed. C3_TXNIP+ macrophages and C5_IFIT1+ macrophages were found to regulate regulatory T cells and participate in CD8+ T cell exhaustion, illustrating the possibility of immunotherapy that could target CD8+ T cells and macrophages. Our findings here show that the role of C1_osteoblastic OS cells in OS is to promote osteolysis and angiogenesis, and this is associated with survival prognosis. In addition, T cell depletion is an important feature of OS. More importantly, the present study provided a valuable resource for the in-depth study of the heterogeneity of the OS TME.
Collapse
Affiliation(s)
- Yun Liu
- Department of Spinal Bone Disease, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenyu Feng
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Dai
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Mengying Bao
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Zhenchao Yuan
- Department of Bone and Soft Tissue Surgery, The Affiliated Tumor Hospital, Guangxi Medical University, Nanning, China
| | - Mingwei He
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhaojie Qin
- Department of Spinal Bone Disease, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shijie Liao
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Juliang He
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qian Huang
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhenyuan Yu
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Yanyu Zeng
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Binqian Guo
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Rong Huang
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Rirong Yang
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Yonghua Jiang
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Jinling Liao
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Zengming Xiao
- Department of Spinal Bone Disease, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinli Zhan
- Department of Spinal Bone Disease, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chengsen Lin
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yu Ye
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qingjun Wei
- Department of Spinal Bone Disease, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|