1
|
Mu F, Luo P, Zhu Y, Nie P, Li B, Bai X. Iron Metabolism and Ferroptosis in Diabetic Kidney Disease. Cell Biochem Funct 2025; 43:e70067. [PMID: 40166850 DOI: 10.1002/cbf.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Diabetic kidney disease (DKD) is a major diabetic microvascular complication that still lacks effective therapeutic drugs. Ferroptosis is a recently identified form of programmed cell death that is triggered by iron overload. It is characterized by unrestricted lipid peroxidation and subsequent membrane damage and is found in various diseases. Accumulating evidence has highlighted the crucial roles of iron overload and ferroptosis in DKD. Here, we review iron metabolism and the biology of ferroptosis. The role of aberrant ferroptosis in inducing diverse renal intrinsic cell death, oxidative stress, and renal fibrosis in DKD is summarized, and we elaborate on critical regulatory factors related to ferroptosis in DKD. Finally, we focused on the significance of ferroptosis in the treatment of DKD and highlight recent data regarding the novel activities of some drugs as ferroptosis inhibitors in DKD, aiming to provide new research targets and treatment strategies on DKD.
Collapse
Affiliation(s)
- Fangxin Mu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Sun Y, Li B, Song B, Xia Y, Ye Z, Lin F, Zhou X, Li W, Rao T, Cheng F. UHRF1 promotes calcium oxalate-induced renal fibrosis by renal lipid deposition via bridging AMPK dephosphorylation. Cell Biol Toxicol 2025; 41:39. [PMID: 39899077 PMCID: PMC11790803 DOI: 10.1007/s10565-025-09991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Nephrolithiasis, a common urinary system disorder, exhibits high morbidity and recurrence rates, correlating with renal dysfunction and the increased risk of chronic kidney disease. Nonetheless, the precise role of disrupted cellular metabolism in renal injury induced by calcium oxalate (CaOx) crystal deposition is unclear. The purpose of this study is to investigate the involvement of the ubiquitin-like protein containing PHD and RING finger structural domain 1 (UHRF1) in CaOx-induced renal fibrosis and its impacts on cellular lipid metabolism. METHODS Various approaches, including snRNA-seq, transcriptome RNA-seq, immunohistochemistry, and western blot analyses, were employed to assess UHRF1 expression in kidneys of nephrolithiasis patients, hyperoxaluric mice, and CaOx-induced renal tubular epithelial cells. Subsequently, knockdown of UHRF1 in mice and cells corroborated its effect of UHRF1 on fibrosis, ectopic lipid deposition (ELD) and fatty acid oxidation (FAO). Rescue experiments using AICAR, ND-630 and Compound-C were performed in UHRF1-knockdown cells to explore the involvement of the AMPK pathway. Then we confirmed the bridging molecule and its regulatory pathway in vitro. Experimental results were finally confirmed using AICAR and chemically modified si-UHRF1 in vivo of hyperoxaluria mice model. RESULTS Mechanistically, UHRF1 was found to hinder the activation of the AMPK/ACC1 pathway during CaOx-induced renal fibrosis, which was mitigated by employing AICAR, an AMPK agonist. As a nuclear protein, UHRF1 facilitates nuclear translocation of AMPK and act as a molecular link targeting the protein phosphatase PP2A to dephosphorylate AMPK and inhibit its activity. CONCLUSION This study revealed that UHRF1 promotes CaOx -induced renal fibrosis by enhancing lipid accumulation and suppressing FAO via inhibiting the AMPK pathway. These findings underscore the feasible therapeutic implications of targeting UHRF1 to prevent renal fibrosis due to stones.
Collapse
Affiliation(s)
- Yushi Sun
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Bojun Li
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Baofeng Song
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Yuqi Xia
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Zehua Ye
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
3
|
Li R, He T, Yang M, Xu J, Li Y, Wang X, Guo X, Li M, Xu L. Regulation of Bacillus Calmette-Guérin-induced macrophage autophagy and apoptosis by the AMPK-mTOR-ULK1 pathway. Microbiol Res 2025; 290:127952. [PMID: 39476518 DOI: 10.1016/j.micres.2024.127952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/02/2024] [Accepted: 10/24/2024] [Indexed: 12/12/2024]
Abstract
Tuberculosis (TB) is a chronic wasting infectious disease caused by Mycobacterium tuberculosis (MTB) or Mycobacterium bovis that can be transmitted among people and domestic animals. During the development of TB, macrophages of the innate immune system can act against MTB via autophagy and apoptosis to prevent the spread of the disease. Among the many autophagy regulatory pathways, the adenosine monophosphate (AMP)-activated protein kinase (AMPK)-mammalian rapamycin target protein (mTOR)-Unc-51-like kinase 1 (ULK1) pathway has received considerable attention. This study investigates the regulatory role of the AMPK-mTOR-ULK1 pathway in attenuating M. bovis Bacillus Calmette-Guérin (BCG)-induced autophagy and apoptosis in murine monocyte macrophages (RAW264.7). Changes in macrophage autophagy and apoptosis were analyzed using the AMPK activator AICAR and inhibitor Compound C to interfere with the AMPK-mTOR-ULK1 pathway and siRNA to silence the pathway. Consequently, BCG stimulation of macrophages significantly activated the AMPK-mTOR-ULK1 pathway while BCG-induced macrophage AMPK activation promoted macrophage autophagy and apoptosis. Activation of the AMPK-mTOR-ULK1 pathway by AICAR significantly improved autophagy occurrence in BCG-induced macrophages and increased apoptosis while Compound C with siRNA produced opposing effects by attenuating autophagy and apoptosis in BCG-induced macrophages. Thus, the AMPK-mTOR-ULK1 pathway has a dual regulatory role in BCG-induced macrophage autophagy and apoptosis and may have synergistic effects. This study analyzes the mechanism of resistance of host cells to MTB and provides a theoretical basis for new therapeutic strategies and related drug development.
Collapse
Affiliation(s)
- Ruiqian Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Tianle He
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Min Yang
- Guyuan Vocational and Technical School, Guyuan, Ningxia 756000, China
| | - Jinghua Xu
- COFCO Feed (Yinchuan) Co., Ltd., Lingwu, Ningxia 750499, China
| | - Yongqin Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xueyan Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xuelian Guo
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Mingzhu Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Lihua Xu
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
4
|
Mahankali VB, Velraja S, Parvathi VD, Ramasamy S. Key Players in the Complex Pathophysiology of Obesity: A Cross-Talk Between the Obesogenic Genes and Unraveling the Metabolic Pathway of Action of Capsaicin and Orange Peel. Appl Biochem Biotechnol 2025; 197:649-666. [PMID: 39102081 DOI: 10.1007/s12010-024-04999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Obesity is a widespread prevailing health concern with multifactorial causes. Among the various defined molecular targets associated with obesity, peroxisome proliferator activated receptor gamma, leptin, ghrelin, and adiponectin play crucial roles in fundamental processes including energy balance, adipose tissue biology, and metabolic health, making them particularly significant in the study of obesity.Capsaicin and orange peel exhibit promising anti-obesity properties through their thermogenic, metabolic, and anti-inflammatory effects. Potential pathways for therapeutic approaches in the management of obesity are provided by these targets. The lipid-lowering and anti-obesity benefits of specific plant species have been highlighted in Asian medicine. Due to the potential anti-obesity qualities, capsaicin, which is derived from chilli peppers, and orange peel extract has been focused in this review. Capsaicin causes apoptosis in preadipocytes and adipocytes and suppresses adipogenesis. Citrus fruits are a significant source of bioactive substances, primarily flavonoids. Due to their ability to reduce adipocyte development and cellular lipid content, citrus polyphenols are helpful in the control of obesity. This extensive analysis offers insights into new treatment approaches for the prevention and management of obesity and metabolic syndrome by examining the interactions of molecular variables in obesity as well as the possible anti-obesity advantages of capsaicin and orange peel extract.
Collapse
Affiliation(s)
- Varshini Bhavanandam Mahankali
- Department of Clinical Nutrition, Sri Ramachandra Faculty of Allied Health Sciences, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, India
| | - Supriya Velraja
- Department of Clinical Nutrition, Sri Ramachandra Faculty of Allied Health Sciences, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, India.
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, India.
| | | |
Collapse
|
5
|
Zhang Y, Piao HL, Chen D. Identification of Spatial Specific Lipid Metabolic Signatures in Long-Standing Diabetic Kidney Disease. Metabolites 2024; 14:641. [PMID: 39590877 PMCID: PMC11596753 DOI: 10.3390/metabo14110641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Diabetic kidney disease (DKD) is a major complication of diabetes leading to kidney failure. Methods: This study investigates lipid metabolism profiles of long-standing DKD (LDKD, diabetes duration > 10 years) by integrative analysis of available single-cell RNA sequencing and spatial multi-omics data (focusing on spatial continuity samples) from the Kidney Precision Medicine Project. Results: Two injured cell types, an injured thick ascending limb (iTAL) and an injured proximal tubule (iPT), were identified and significantly elevated in LDKD samples. Both iTAL and iPT exhibit increased lipid metabolic and biosynthetic activities and decreased lipid and fatty acid oxidative processes compared to TAL/PT cells. Notably, compared to PT, iPT shows significant upregulation of specific injury and fibrosis-related genes, including FSHR and BMP7. Meanwhile, comparing iTAL to TAL, inflammatory-related genes such as ANXA3 and IGFBP2 are significantly upregulated. Furthermore, spatial metabolomics analysis reveals regionally distributed clusters in the kidney and notably differentially expressed lipid metabolites, such as triglycerides, glycerophospholipids, and sphingolipids, particularly pronounced in the inner medullary regions. Conclusions: These findings provide an integrative description of the lipid metabolism landscape in LDKD, highlighting injury-associated cellular processes and potential molecular mechanisms.
Collapse
Affiliation(s)
- Yiran Zhang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Long Piao
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Chen
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Cortés-Camacho F, Zambrano-Vásquez OR, Aréchaga-Ocampo E, Castañeda-Sánchez JI, Gonzaga-Sánchez JG, Sánchez-Gloria JL, Sánchez-Lozada LG, Osorio-Alonso H. Sodium-Glucose Cotransporter Inhibitors: Cellular Mechanisms Involved in the Lipid Metabolism and the Treatment of Chronic Kidney Disease Associated with Metabolic Syndrome. Antioxidants (Basel) 2024; 13:768. [PMID: 39061837 PMCID: PMC11274291 DOI: 10.3390/antiox13070768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolic syndrome (MetS) is a multifactorial condition that significantly increases the risk of cardiovascular disease and chronic kidney disease (CKD). Recent studies have emphasized the role of lipid dysregulation in activating cellular mechanisms that contribute to CKD progression in the context of MetS. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have demonstrated efficacy in improving various components of MetS, including obesity, dyslipidemia, and insulin resistance. While SGLT2i have shown cardioprotective benefits, the underlying cellular mechanisms in MetS and CKD remain poorly studied. Therefore, this review aims to elucidate the cellular mechanisms by which SGLT2i modulate lipid metabolism and their impact on insulin resistance, mitochondrial dysfunction, oxidative stress, and CKD progression. We also explore the potential benefits of combining SGLT2i with other antidiabetic drugs. By examining the beneficial effects, molecular targets, and cytoprotective mechanisms of both natural and synthetic SGLT2i, this review provides a comprehensive understanding of their therapeutic potential in managing MetS-induced CKD. The information presented here highlights the significance of SGLT2i in addressing the complex interplay between metabolic dysregulation, lipid metabolism dysfunction, and renal impairment, offering clinicians and researchers a valuable resource for developing improved treatment strategies and personalized approaches for patients with MetS and CKD.
Collapse
Affiliation(s)
- Fernando Cortés-Camacho
- Doctorado en Ciencias Biologicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico; (F.C.-C.); (O.R.Z.-V.)
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico; (J.G.G.-S.); (L.G.S.-L.)
| | - Oscar René Zambrano-Vásquez
- Doctorado en Ciencias Biologicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico; (F.C.-C.); (O.R.Z.-V.)
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico; (J.G.G.-S.); (L.G.S.-L.)
| | - Elena Aréchaga-Ocampo
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Mexico City 05348, Mexico;
| | | | - José Guillermo Gonzaga-Sánchez
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico; (J.G.G.-S.); (L.G.S.-L.)
| | - José Luis Sánchez-Gloria
- Department of Internal Medicine, Division of Nephrology, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico; (J.G.G.-S.); (L.G.S.-L.)
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico; (J.G.G.-S.); (L.G.S.-L.)
| |
Collapse
|
7
|
Mao TH, Huang HQ, Zhang CH. Clinical characteristics and treatment compounds of obesity-related kidney injury. World J Diabetes 2024; 15:1091-1110. [PMID: 38983811 PMCID: PMC11229974 DOI: 10.4239/wjd.v15.i6.1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
Disorders in energy homeostasis can lead to various metabolic diseases, particularly obesity. The obesity epidemic has led to an increased incidence of obesity-related nephropathy (ORN), a distinct entity characterized by proteinuria, glomerulomegaly, progressive glomerulosclerosis, and renal function decline. Obesity and its associated renal damage are common in clinical practice, and their incidence is increasing and attracting great attention. There is a great need to identify safe and effective therapeutic modalities, and therapeutics using chemical compounds and natural products are receiving increasing attention. However, the summary is lacking about the specific effects and mechanisms of action of compounds in the treatment of ORN. In this review, we summarize the important clinical features and compound treatment strategies for obesity and obesity-induced kidney injury. We also summarize the pathologic and clinical features of ORN as well as its pathogenesis and potential therapeutics targeting renal inflammation, oxidative stress, insulin resistance, fibrosis, kidney lipid accumulation, and dysregulated autophagy. In addition, detailed information on natural and synthetic compounds used for the treatment of obesity-related kidney disease is summarized. The synthesis of detailed information aims to contribute to a deeper understanding of the clinical treatment modalities for obesity-related kidney diseases, fostering the anticipation of novel insights in this domain.
Collapse
Affiliation(s)
- Tuo-Hua Mao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Han-Qi Huang
- Department of Endocrinology, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan 430033, Hubei Province, China
| | - Chuan-Hai Zhang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, United States
| |
Collapse
|
8
|
Wrońska A, Kieżun J, Kmieć Z. High-Dose Fenofibrate Stimulates Multiple Cellular Stress Pathways in the Kidney of Old Rats. Int J Mol Sci 2024; 25:3038. [PMID: 38474282 DOI: 10.3390/ijms25053038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
We investigated the age-related effects of the lipid-lowering drug fenofibrate on renal stress-associated effectors. Young and old rats were fed standard chow with 0.1% or 0.5% fenofibrate. The kidney cortex tissue structure showed typical aging-related changes. In old rats, 0.1% fenofibrate reduced the thickening of basement membranes, but 0.5% fenofibrate exacerbated interstitial fibrosis. The PCR array for stress and toxicity-related targets showed that 0.1% fenofibrate mildly downregulated, whereas 0.5% upregulated multiple genes. In young rats, 0.1% fenofibrate increased some antioxidant genes' expression and decreased the immunoreactivity of oxidative stress marker 4-HNE. However, the activation of cellular antioxidant defenses was impaired in old rats. Fenofibrate modulated the expression of factors involved in hypoxia and osmotic stress signaling similarly in both age groups. Inflammatory response genes were variably modulated in the young rats, whereas old animals presented elevated expression of proinflammatory genes and TNFα immunoreactivity after 0.5% fenofibrate. In old rats, 0.1% fenofibrate more prominently than in young animals induced phospho-AMPK and PGC1α levels, and upregulated fatty acid oxidation genes. Our results show divergent effects of fenofibrate in young and old rat kidneys. The activation of multiple stress-associated effectors by high-dose fenofibrate in the aged kidney warrants caution when applying fenofibrate therapy to the elderly.
Collapse
Affiliation(s)
- Agata Wrońska
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Jacek Kieżun
- Department of Human Histology and Embryology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Zbigniew Kmieć
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| |
Collapse
|
9
|
Ni J, Zhang X, Huang H, Ni Z, Luo J, Zhong Y, Hui M, Liu Z, Qian J, Zhang Q. Cyy-287, a novel pyrimidine-2,4-diamine derivative, efficiently mitigates inflammatory responses, fibrosis, and lipid synthesis in obesity-induced cardiac and hepatic dysfunction. PeerJ 2024; 12:e17009. [PMID: 38436035 PMCID: PMC10909366 DOI: 10.7717/peerj.17009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Background Inflammation and metabolic disorders are important factors in the occurrence and development of obesity complications. In this study, we investigated the protective effect and underlying mechanism of a novel pyrimidine-2,4-diamine derivative, Cyy-287, on mice fed a high-fat diet (HFD). Methods The mice were randomly separated into four groups (n ≥ 7): control (regular diet), HFD, HFD with Cyy-287 (5 mg/kg), and HFD with Cyy-287 (20 mg/kg) following HFD feeding for 10 weeks. After a 10-week administration, ALT and AST enzymes, echocardiography, immunohistochemical (IHC), Western blot (WB), Masson and Sirius Red staining were used to evaluate functional and morphological changes to the heart and liver. Microsomes from the mouse liver were extracted to quantify the total amount of CYP450 enzymes after drug treatment. Results Cyy-287 decreased the levels of serum glucose, LDL, TC, ALT, and AST activities in HFD-treated mice. However, Cyy-287 administration increased ejection fraction (EF) and fractional shortening (FS) index of the heart. Cyy-287 inhibited histopathological changes in the heart and liver; decreased inflammatory activity; significantly diminished p38 mitogen-activated protein kinase (MAPK), the nuclear factor-kappa B (NF-κB) axis, and sterol regulatory element-binding protein-1c (SREBP-1c); and upregulated the AMP-activated protein kinase (AMPK) pathway in HFD-treated mice. Cyy-287 restored the content of hepatic CYP450 enzymes. Conclusion These findings demonstrated that Cyy-287 protected heart and liver cells from obesity-induced damage by inhibiting inflammation, fibrosis, and lipid synthesis.
Collapse
Affiliation(s)
- Jinhuan Ni
- Institute of Molecular Toxicology and Pharmacology, Wenzhou Medical University, Wenzhou, China
| | - Xiaodan Zhang
- Institute of Molecular Toxicology and Pharmacology, Wenzhou Medical University, Wenzhou, China
| | - Huijing Huang
- Institute of Molecular Toxicology and Pharmacology, Wenzhou Medical University, Wenzhou, China
| | - Zefeng Ni
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianchao Luo
- Institute of Molecular Toxicology and Pharmacology, Wenzhou Medical University, Wenzhou, China
| | - Yunshan Zhong
- Institute of Molecular Toxicology and Pharmacology, Wenzhou Medical University, Wenzhou, China
| | - Min Hui
- Institute of Molecular Toxicology and Pharmacology, Wenzhou Medical University, Wenzhou, China
| | - Zhiguo Liu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianchang Qian
- Institute of Molecular Toxicology and Pharmacology, Wenzhou Medical University, Wenzhou, China
| | - Qianwen Zhang
- Institute of Molecular Toxicology and Pharmacology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Eritja À, Caus M, Belmonte T, de Gonzalo-Calvo D, García-Carrasco A, Martinez A, Martínez M, Bozic M. microRNA Expression Profile in Obesity-Induced Kidney Disease Driven by High-Fat Diet in Mice. Nutrients 2024; 16:691. [PMID: 38474819 DOI: 10.3390/nu16050691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Obesity is one of the main causes of chronic kidney disease; however, the precise molecular mechanisms leading to the onset of kidney injury and dysfunction in obesity-associated nephropathy remain unclear. The present study aimed to unveil the kidney microRNA (miRNA) expression profile in a model of obesity-induced kidney disease in C57BL/6J mice using next-generation sequencing (NGS) analysis. High-fat diet (HFD)-induced obesity led to notable structural alterations in tubular and glomerular regions of the kidney, increased renal expression of proinflammatory and profibrotic genes, as well as an elevated renal expression of genes involved in cellular lipid metabolism. The miRNA sequencing analysis identified a set of nine miRNAs differentially expressed in the kidney upon HFD feeding, with miR-5099, miR-551b-3p, miR-223-3p, miR-146a-3p and miR-21a-3p showing the most significant differential expression between standard diet (STD) and HFD mice. A validation analysis showed that the expression levels of miR-5099, miR-551b-3p and miR-146a-3p were consistent with NGS results, while Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses revealed that these three validated miRNAs modulated target genes involved in metabolic and adipocytokine pathways, fatty acid and lipid metabolism, and inflammatory, senescence and profibrotic pathways. Our results suggest that differentially expressed miRNAs play pivotal roles in the intricate pathophysiology of obesity-associated kidney disease and could potentially create novel treatment strategies to counteract the deleterious effects of obesity on kidney function.
Collapse
Affiliation(s)
- Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Maite Caus
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Thalia Belmonte
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Alicia García-Carrasco
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Ana Martinez
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Montserrat Martínez
- Biostatistics Unit (Biostat), Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Milica Bozic
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| |
Collapse
|
11
|
Zhu X, Si F, Hao R, Zheng J, Zhang C. Nuciferine Protects against Obesity-Induced Nephrotoxicity through Its Hypolipidemic, Anti-Inflammatory, and Antioxidant Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18769-18779. [PMID: 38006352 DOI: 10.1021/acs.jafc.3c05735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
High-fat diets (HFD) could cause obesity, trigger lipid accumulation, and induce oxidative stress and inflammation, leading to kidney damage. This study aimed to elucidate the protective effects of nuciferine on HFD-caused nephrotoxicity and explore the underlying mechanisms in Kunming mice and palmitic acid-exposed HK-2 cells. In obese mice, nuciferine notably alleviated HFD-induced chronic renal dysfunction and delayed renal fibrosis progression and podocyte apoptosis, as evidenced by the increased expressions of renal function factors BUN, CRE, and UA and the decreased expressions of key protein factors TGF-β1, p-Samd3, Wnt-1, and β-catenin. Nuciferine also effectively attenuated HFD-induced renal lipid accumulation via the AMPK-mediated regulation of FAS and HSL expressions and suppressed inflammation and oxidative stress via the AMPK-mediated Nrf-2/HO-1 and TLR4/MyD88/NF-κB pathways. In addition, consistent with the results of animal experiments, nuciferine remarkably reversed cell damage and attenuated lipid accumulation, inflammation, and oxidative stress in palmitic acid-exposed HK-2 cells through the AMPK-mediated signaling pathway. Therefore, nuciferine could be a new food-derived protective agent to offset obesity and correlative kidney damage.
Collapse
Affiliation(s)
- Xiangyang Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Fan Si
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, People's Republic of China
| | - Rili Hao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Jingjie Zheng
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Chen Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| |
Collapse
|
12
|
Tang C, Wang Y, Chen D, Zhang M, Xu J, Xu C, Liu J, Kan J, Jin C. Natural polysaccharides protect against diet-induced obesity by improving lipid metabolism and regulating the immune system. Food Res Int 2023; 172:113192. [PMID: 37689942 DOI: 10.1016/j.foodres.2023.113192] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Unhealthy dietary patterns-induced obesity and obesity-related complications pose a great threat to human health all over the world. Accumulating evidence suggests that the pathophysiology of obesity and obesity-associated metabolic disorders is closely associated with dysregulation of lipid and energy metabolism, and metabolic inflammation. In this review, three potential anti-obesity mechanisms of natural polysaccharides are introduced. Firstly, natural polysaccharides protect against diet-induced obesity directly by improving lipid and cholesterol metabolism. Since the immunity also affects lipid and energy metabolism, natural polysaccharides improve lipid and energy metabolism by regulating host immunity. Moreover, diet-induced mitochondrial dysfunction, prolonged endoplasmic reticulum stress, defective autophagy and microbial dysbiosis can disrupt lipid and/or energy metabolism in a direct and/or inflammation-induced manner. Therefore, natural polysaccharides also improve lipid and energy metabolism and suppress inflammation by alleviating mitochondrial dysfunction and endoplasmic reticulum stress, promoting autophagy and regulating gut microbiota composition. Specifically, this review comprehensively summarizes underlying anti-obesity mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates anti-obesity mechanisms of natural polysaccharides from the perspectives of their hypolipidemic, energy-regulating and immune-regulating mechanisms.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yuxin Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Man Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jingguo Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Chen Xu
- Nanjing Key Laboratory of Quality and safety of agricultural product, Nanjing Xiaozhuang University, Nanjing 211171, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| |
Collapse
|
13
|
Song D, Zhang A, Hu X, Zeng M, Zhou H. Wen-Shen-Jian-Pi-Hua-Tan decoction protects against early obesity-related glomerulopathy by improving renal bile acid composition and suppressing lipogenesis, inflammation, and fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154861. [PMID: 37167823 DOI: 10.1016/j.phymed.2023.154861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Obesity is an independent predictor of chronic kidney disease (CKD) development and may directly lead to kidney lesions such as obesity-related glomerulopathy (ORG) which might play a vital pathogenic role in obese patients with CKD. Wen-Shen-Jian-Pi-Hua-Tan decoction (WSHT) has been clinically used for the treatment of obesity and obesity-related metabolic diseases for years. However, the renoprotective effects and potential mechanism of action of WSHT against ORG remain unknown. PURPOSE This study aimed to explore the potential effect of WSHT on ORG and reveal its mechanisms in high-fat diet (HFD)-induced obese rats. METHODS An animal model of early stage ORG was established using HFD-induced obese rats. After treatment with WSHT for 6 weeks, an integrated metabolomics and molecular biology strategy was utilized to illustrate the effects and mechanism of WSHT on ORG. First, UPLC-ESI-MS/MS-based targeted metabolomics was used to analyze renal bile acid (BA) levels. Biochemical, histological, and immunofluorescence assays; electron microscopy; and western blotting were performed to evaluate the efficacy of WSHT against ORG and its underlying mechanisms in vivo. RESULTS Our results showed that an HFD led to hyperlipidemia, proteinuria, renal lipid deposition, effacement of podocyte foot processes, and increased expression of proinflammatory factors and profibrotic growth factors in ORG rats. In addition, an HFD decreased the levels of renal BAs such as cholic acid, chenodeoxycholic acid, and lithocholic acid. After 6 weeks of treatment, WSHT markedly attenuated dyslipidemia and reduced body, kidney and epididymal fat weights in ORG rats. WSHT also significantly increased BA levels, suggesting that it altered BA composition; the effects of BAs are closely associated with farnesoid X receptor (FXR) activation. WSHT alleviated fat accumulation, podocyte loss and proteinuria, and reduced the expression of proinflammatory cytokines and profibrotic growth factors in the kidneys of ORG rats. Finally, WSHT remarkably upregulated the renal expression of FXR and salt-induced kinase 1 and blocked the renal expression of sterol regulatory element-binding protein-1c and its target genes. CONCLUSION WSHT attenuated early renal lesions in ORG rats by improving renal BA composition and suppressing lipogenesis, inflammation and fibrosis. This study develops a new way to alleviate obesity-induced renal damages.
Collapse
Affiliation(s)
- Daofei Song
- Department of Endocrinology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan 430015, China
| | - Aijie Zhang
- Department of Gynaecology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, 430015, China
| | - Xu Hu
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - MingXing Zeng
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Huimin Zhou
- Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
14
|
Liu S, Jiang W, Liu C, Guo S, Wang H, Chang X. Chinese chestnut shell polyphenol extract regulates the JAK2/STAT3 pathway to alleviate high-fat diet-induced, leptin-resistant obesity in mice. Food Funct 2023; 14:4807-4823. [PMID: 37128963 DOI: 10.1039/d3fo00604b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chinese chestnut shell is a by-product of chestnut food processing and is rich in polyphenols. This study sought to investigate the effect of chestnut shell polyphenol extract (CSP) on weight loss and lipid reduction in a 12-week high-fat diet (HFD)-induced murine obesity model. CSP (300 mg per kg body weight) was administered intragastrically daily. AG490, a JAK2 protein tyrosine kinase inhibitor, was also intraperitoneally injected. The results showed that an HFD induced leptin resistance (LR). Compared to corresponding values in the HFD group, CSP treatment improved blood lipid levels, weight, and leptin levels in obese mice (p < 0.01). Additionally, CSP treatment enhanced enzyme activity by improving total antioxidant capacity, attenuating oxidative stress, and reducing fat droplet accumulation and inflammation in the liver, epididymal, and retroperitoneal adipose tissue. CSP also activated the LEPR-JAK2/STAT3-PTP1B-SOCS-3 signal transduction pathway in hypothalamus tissue and improved LR while regulating the expression of proteins related to lipid metabolism (PPARγ, FAS, and LPL) in white adipose tissue in the retroperitoneal cavity. However, the amelioration of lipid metabolism by CSP was dependent on JAK2. Molecular docking simulation further demonstrated the strong binding affinity of procyanidin C1 (-10.3983297 kcal mol-1) and procyanidin B1 (-9.12686729 kcal mol-1) to the crystal structure of JAK2. These results suggest that CSP may be used to reduce HFD-induced obesity with potential application as a functional food additive.
Collapse
Affiliation(s)
- Suwen Liu
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, Hebei Key Laboratory of Active Components and Functions in Natural Products, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China.
- Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, Hebei 066004, China
| | - Wenhong Jiang
- Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, Hebei 066004, China
- Cofco Great Wall Wine (Ningxia) Co., Ltd, Yinchuan, Ningxia, 750100, China
| | - Chang Liu
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, Hebei Key Laboratory of Active Components and Functions in Natural Products, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China.
| | - Shuo Guo
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, Hebei Key Laboratory of Active Components and Functions in Natural Products, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Xuedong Chang
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, Hebei Key Laboratory of Active Components and Functions in Natural Products, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China.
- Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, Hebei 066004, China
| |
Collapse
|
15
|
Chen HH, Zhang YX, Lv JL, Liu YY, Guo JY, Zhao L, Nan YX, Wu QJ, Zhao YH. Role of sirtuins in metabolic disease-related renal injury. Biomed Pharmacother 2023; 161:114417. [PMID: 36812714 DOI: 10.1016/j.biopha.2023.114417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Poor control of metabolic diseases induces kidney injury, resulting in microalbuminuria, renal insufficiency and, ultimately, chronic kidney disease. The potential pathogenetic mechanisms of renal injury caused by metabolic diseases remain unclear. Tubular cells and podocytes of the kidney show high expression of histone deacetylases known as sirtuins (SIRT1-7). Available evidence has shown that SIRTs participate in pathogenic processes of renal disorders caused by metabolic diseases. The present review addresses the regulatory roles of SIRTs and their implications for the initiation and development of kidney damage due to metabolic diseases. SIRTs are commonly dysregulated in renal disorders induced by metabolic diseases such as hypertensive nephropathy and diabetic nephropathy. This dysregulation is associated with disease progression. Previous literature has also suggested that abnormal expression of SIRTs affects cellular biology, such as oxidative stress, metabolism, inflammation, and apoptosis of renal cells, resulting in the promotion of invasive diseases. This literature reviews the research progress made in understanding the roles of dysregulated SIRTs in the pathogenesis of metabolic disease-related kidney disorders and describes the potential of SIRTs serve as biomarkers for early screening and diagnosis of these diseases and as therapeutic targets for their treatment.
Collapse
Affiliation(s)
- Huan-Huan Chen
- Department of Oncology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Yi-Xiao Zhang
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Urology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Jia-Le Lv
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Yu-Yang Liu
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Jing-Yi Guo
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Lu Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Yu-Xin Nan
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Qi-Jun Wu
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Yu-Hong Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| |
Collapse
|
16
|
Fu K, Gao X, Hua P, Huang Y, Dong R, Wang M, Li Q, Li Z. Anti-obesity effect of Angelica keiskei Jiaosu prepared by yeast fermentation on high-fat diet-fed mice. Front Nutr 2023; 9:1079784. [PMID: 36698478 PMCID: PMC9868866 DOI: 10.3389/fnut.2022.1079784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
In this study, an Angelica keiskei (A. keiskei) Jiaosu (FAK) was prepared by yeast fermentation to investigate its anti-obesity effect on high-fat diet (HFD)-fed mice. 70 SPF grade male C57BL/6J mice were randomly divided into 7 groups (n = 10): blank control group (N), high-fat model group (M), positive control group (Orl), unfermented control group (NF), high-dose intervention group (FH), medium-dose intervention group (FM), and low-dose intervention group (FL). The results showed that FAK intervention significantly reduced the body weight, Lee's index and liver index of HFD-fed mice (P < 0.05). Compared with M group, the serum levels of triglyceride (TG), total cholesterol (TC), leptin and glucose (GLU) in FH group were remarkably decreased and that of interleukin-27 (IL-27) were increased (P < 0.05). The levels of TG, and TC in the liver of mice were also markedly decreased in the FH group (P < 0.05). HE staining results showed that the liver cells in the three intervention groups had less degeneration and fatty vacuoles in the cytoplasm, and the liver cords were orderly arranged compared with that of M group. Furthermore, FAK significantly inhibited epididymal adipose tissue cell expansion induced by HFD. FAK up-regulated the protein expression levels of p-AMPK and PPARα to promote lipolysis and down-regulated the expression of PPARγ to reduce lipid synthesis (P < 0.05). Additionally, the results of gut microbiota showed that after the intervention, a decrease trend of F/B value and Deferribacterota was noticed in the FH group compared with M group. At the genus level, FAK intervention significantly increased that of Ileiobacterium compared to the M group (p < 0.05). A rising trend of norank_f_Muribaculaceae, Lactobacillus, and Bifidobacterium were also observed in the HF group. Conclusively, these findings demonstrated that FAK intervention can effectively improve obesity in mice caused by HFD and the potential mechanisms was related to the regulation of serum levels of leptin and IL-27, lipogenesis and lipolysis in adipose tissue and gut microbiota composition.
Collapse
Affiliation(s)
- Kunli Fu
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Qingdao, China
| | - Xiang Gao
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Qingdao, China,Anqiu Huatao Food Co., Ltd., Weifang, China
| | - Puyue Hua
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Qingdao, China
| | - Yuedi Huang
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Qingdao, China
| | - Ruitao Dong
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Mingji Wang
- Joint Institute of Angelica keiskei Health Industry Technology, Qingdao Balanson Biotech Co., Ltd., Qingdao, China
| | - Qun Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China,Joint Institute of Angelica keiskei Health Industry Technology, Qingdao Balanson Biotech Co., Ltd., Qingdao, China
| | - Zichao Li
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Qingdao, China,Joint Institute of Angelica keiskei Health Industry Technology, Qingdao Balanson Biotech Co., Ltd., Qingdao, China,*Correspondence: Zichao Li,
| |
Collapse
|
17
|
Zhou Y, Tao H, Xu N, Zhou S, Peng Y, Zhu J, Liu S, Chang Y. Chrysin improves diabetic nephropathy by regulating the AMPK-mediated lipid metabolism in HFD/STZ-induced DN mice. J Food Biochem 2022; 46:e14379. [PMID: 35976957 DOI: 10.1111/jfbc.14379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/17/2022] [Accepted: 08/01/2022] [Indexed: 01/13/2023]
Abstract
Diabetic nephropathy (DN) is a highly prevalent and severe diabetic complication. It is urgent to explore high efficiency and minor side effects therapy for DN. Chrysin is a natural flavonoid with various biological activities found in honey and propolis, and has considerable potential to improve DN. The study was designed to explore the effects and the specific underlying mechanism of chrysin for DN in high-fat-diet (HFD) and streptozotocin (STZ) induced DN mice. Firstly, the study revealed that chrysin effectively improved obesity, insulin resistance (IR), renal function, and pathological injury in DN mice. Secondly, the study found that chrysin improved the key indices and markers of lipid accumulation, oxidative stress, and inflammation which are closely related to the development or progression of DN. Moreover, chrysin markedly modulated lipid metabolism by regulating Adenosine 5' monophosphate-activated protein kinase (AMPK) and essential downstream proteins. Furthermore, AMPK inhibitor (Dorsomorphin) intervention partially suppressed the positive effects of chrysin on all testing indicators, indicating that activated AMPK is crucial for chrysin action on DN. The present study demonstrated that chrysin may improve DN by regulating lipid metabolism, and activated AMPK plays a critical role in the regulation of chrysin. PRACTICAL APPLICATIONS: The study verified the positive effects of chrysin on obesity, insulin resistance, kidney injury, renal function, lipid accumulation, inflammation, and oxidative stress, which are closely related to the development or progression of diabetic nephropathy (DN). Moreover, we explored that chrysin improves DN by regulating AMPK-mediated lipid metabolism. Furthermore, the AMPK inhibitor was used to confirm that activated AMPK plays a critical role in the effects of chrysin. These results could offer a full explanation and a potential option for adjuvant therapy of DN diabetes with chrysin.
Collapse
Affiliation(s)
- Yingjun Zhou
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Heng Tao
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Nuo Xu
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Shichun Zhou
- Agricultural and Rural Bureau, Haiyang, Shandong, People's Republic of China
| | - Yuke Peng
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jianxiang Zhu
- Shanghai Cao Yang No. 2 High School, Shanghai, People's Republic of China
| | - Shaowei Liu
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yaning Chang
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Sutthasupha P, Promsan S, Thongnak L, Pengrattanachot N, Phengpol N, Jaruan O, Jaikumkao K, Muanprasat C, Pichyangkura R, Chatsudthipong V, Lungkaphin A. Chitosan oligosaccharide mitigates kidney injury in prediabetic rats by improving intestinal barrier and renal autophagy. Carbohydr Polym 2022; 288:119405. [PMID: 35450657 DOI: 10.1016/j.carbpol.2022.119405] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022]
Abstract
Consumption of a high-fat diet (HFD) not only increases the risk of metabolic syndrome but also initiates kidney injury. Lipid accumulation-induced systemic low-grade inflammation is an upstream mechanism of kidney injury associated with prediabetes. Chitosan oligosaccharide (COS) provides potent anti-obesity effects through several mechanisms including fecal lipid excretion. In this study, we investigated the effects of COS on the prevention of obesity-related complications and its ability to confer renoprotection in a prediabetic model. Rats fed on a HFD developed obesity, glucose intolerance and kidney dysfunction. COS intervention successfully ameliorated these conditions (p < 0.05) by attenuating intestinal lipid absorption and the renal inflammation-autophagy-apoptosis axis. A novel anti-inflammatory effect of COS had been demonstrated by the strengthening of intestinal barrier integrity via calcium-sensing receptor (p < 0.05). The use of COS as a supplement may be useful in reducing prediabetic complications especially renal injury and the risk of type 2 diabetes.
Collapse
Affiliation(s)
- Prempree Sutthasupha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Nichakorn Phengpol
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Onanong Jaruan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Krit Jaikumkao
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Rath Pichyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Varanuj Chatsudthipong
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Functional Food Research Center for Well-Being, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
19
|
Atella T, Bittencourt-Cunha PR, Araujo MFC, Silva-Cardoso L, Maya-Monteiro CM, Atella GC. Trypanosoma cruzi modulates lipid metabolism and highjacks phospholipids from the midgut of Rhodnius prolixus. Acta Trop 2022; 233:106552. [PMID: 35671784 DOI: 10.1016/j.actatropica.2022.106552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022]
Abstract
Chagas disease is potentially life-threatening and caused by the protozoan parasite Trypanosoma cruzi. The parasite cannot synthesize some lipids and depends on the uptake of these lipids from its vertebrate and invertebrate hosts. To achieve this, T. cruzi may need to modify the physiology of the insect host for its own benefit. In this study, we investigated the interaction of T. cruzi (Y strain) with its insect vector Rhodnius prolixus and how it manipulates the vector lipid metabolism. We observed a physiological change in lipid flux in of infected insects. In the fat body of infected insects, triacylglycerol levels decreased by 80.6% and lipid storage droplet-1(LSD-1) mRNA levels were lower, when compared to controls. Lipid sequestration by infected midguts led to increased levels of 5' AMP-activated protein kinase (AMPK) phosphorylation and activation in the fat body, inhibiting the synthesis of fatty acids and stimulating their oxidation. This led to reduced lipid levels in the fat body of infected insets, despite the fact that T. cruzi does not colonize this tissue. There was a 3-fold increase, in lipid uptake and synthesis in the midgut of infected insects. Finally, our results suggest that the parasite modifies the lipid flux and metabolism of its vector R. prolixus through the increase in lipid delivery from the fat body to midgut that are then scavenge by T cruzi.
Collapse
Affiliation(s)
- T Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 343 Carlos Chagas Filho Avenue, Rio de Janeiro, RJ 21941902, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - P R Bittencourt-Cunha
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 343 Carlos Chagas Filho Avenue, Rio de Janeiro, RJ 21941902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - M F C Araujo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 343 Carlos Chagas Filho Avenue, Rio de Janeiro, RJ 21941902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - L Silva-Cardoso
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 343 Carlos Chagas Filho Avenue, Rio de Janeiro, RJ 21941902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - C M Maya-Monteiro
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - G C Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 343 Carlos Chagas Filho Avenue, Rio de Janeiro, RJ 21941902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
20
|
Cheng H, Wang M, Su J, Li Y, Long J, Chu J, Wan X, Cao Y, Li Q. Lipid Metabolism and Cancer. Life (Basel) 2022; 12:life12060784. [PMID: 35743814 PMCID: PMC9224822 DOI: 10.3390/life12060784] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Lipid metabolism is involved in the regulation of numerous cellular processes, such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, movement, membrane homeostasis, chemotherapy response, and drug resistance. Reprogramming of lipid metabolism is a typical feature of malignant tumors. In a variety of cancers, fat uptake, storage and fat production are up-regulated, which in turn promotes the rapid growth, invasion, and migration of tumors. This paper systematically summarizes the key signal transduction pathways and molecules of lipid metabolism regulating tumors, and the role of lipid metabolism in programmed cell death. In conclusion, understanding the potential molecular mechanism of lipid metabolism and the functions of different lipid molecules may facilitate elucidating the mechanisms underlying the occurrence of cancer in order to discover new potential targets for the development of effective antitumor drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qinglin Li
- Correspondence: ; Tel.: +86-0551-65169051
| |
Collapse
|
21
|
Yang Y, Shu X, Xie C. An Overview of Autophagy in Helicobacter pylori Infection and Related Gastric Cancer. Front Cell Infect Microbiol 2022; 12:847716. [PMID: 35463631 PMCID: PMC9033262 DOI: 10.3389/fcimb.2022.847716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is considered a class I carcinogen in the pathogenesis of gastric cancer. In recent years, the interaction relationship between H. pylori infection and autophagy has attracted increasing attention. Most investigators believe that the pathogenesis of gastric cancer is closely related to the formation of an autophagosome-mediated downstream signaling pathway by H. pylori infection-induced cells. Autophagy is involved in H. pylori infection and affects the occurrence and development of gastric cancer. In this paper, the possible mechanism by which H. pylori infection affects autophagy and the progression of related gastric cancer signaling pathways are reviewed.
Collapse
Affiliation(s)
| | - Xu Shu
- *Correspondence: Xu Shu, ; Chuan Xie,
| | - Chuan Xie
- *Correspondence: Xu Shu, ; Chuan Xie,
| |
Collapse
|
22
|
Yu Y, Mo H, Zhuo H, Yu C, Liu Y. High Fat Diet Induces Kidney Injury via Stimulating Wnt/β-Catenin Signaling. Front Med (Lausanne) 2022; 9:851618. [PMID: 35462998 PMCID: PMC9021428 DOI: 10.3389/fmed.2022.851618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
High fat diet could cause kidney injury, and the underlying mechanism remains incompletely understood. In this study, we investigated the role of Wnt signaling in this process. Mice were fed with high-fat diet in vivo, and podocytes were stimulated with palmitate in vitro. In mice fed with high-fat diet, renal function was impaired, accompanied by induction of various proinflammatory cytokines and proteinuria. Renal expression of Wnt ligands was also significantly induced, with Wnt1 and Wnt3a being the most pronounced, in high-fat diet mice, compared with normal diet controls. Intervention with ICG-001, a small molecule Wnt/β-catenin inhibitor, improved renal function, inhibited proinflammatory cytokines expression, reduced proteinuria and alleviated podocyte injury. In palmitate-treated podocytes, intracellular lipid deposition was increased, Wnt1 and Wnt3a expression was up-regulated, which was accompanied by an increased proinflammatory cytokines expression and podocyte injury. These lesions caused by palmitate were largely alleviated by ICG-001. Furthermore, ICG-001 also restored the expression of phosphorylated AMPK repressed by palmitate in podocytes or a high-fat diet in mice. These studies suggest that Wnt/β-catenin signaling is involved in the pathogenesis of high-fat diet-induced kidney injury. Targeting this signaling may be a potential therapeutic strategy for alleviating obesity-related nephropathy.
Collapse
Affiliation(s)
- Ying Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongyan Mo
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Hui Zhuo
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Chen Yu
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- State Key Laboratory of Organ Failure Research, Division of Nephrology, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Youhua Liu
| |
Collapse
|
23
|
Koriem KMM, Gad IB. Sinapic acid restores blood parameters, serum antioxidants, and liver and kidney functions in obesity. J Diabetes Metab Disord 2022; 21:293-303. [PMID: 35673480 PMCID: PMC9167363 DOI: 10.1007/s40200-022-00972-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/03/2022] [Indexed: 01/09/2023]
Abstract
Obesity is an additional body fat that causes a harmful effect on human health while sinapic acid (SA) is a phyto-constituent presents in spices, citrus, berry fruits, and vegetables. This study evaluates SA to amend blood parameters, serum glucose, proteins, lipids, and antioxidants, and liver and kidney functions in obese rats. Thirty male albino rats were divided into 2 groups (normal and obese rats). The normal, non-obese rats subdivided into 2 subgroups; Control and SA (40 mg/kg) subgroup: daily oral intake of 1 ml saline and 40 mg/kg SA, respectively once a day. The obese rats subdivided also into 3 subgroups; Obese, Obese + SA (20 mg/kg), and Obese + SA (40 mg/kg)-treated groups which received no treatment, 20 mg/kg SA, and 40 mg/kg SA, respectively once a day. All treatments were orally administrated for 1 month. The results showed that obesity caused an increase in body and organ weight, serum total cholesterol, triglycerides, low density lipoproteins, malondialdehyde, nitric oxide, glucose, bilirubin and blood urea nitrogen while decrease serum superoxide dismutase, glutathione peroxidase, glutathione, glutathione reductase, glutathione-S-transferase, hemoglobin, hematocrite, red blood cells, white blood cells, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, urea, creatinine, and uric acid compared to control group. Obesity caused disappearance of prothrombin and fibrinogen proteins and damages to liver and kidney tissues. The oral administration with SA daily for 1 month in obese rats returned all these parameters to the control values where the higher dose of SA was more effective than the lower dose. In conclusion, SA restores body and organ weight, blood parameters, serum glucose, proteins, lipids, antioxidants, and liver and kidney functions in obesity.
Collapse
Affiliation(s)
- Khaled M. M. Koriem
- Department of Medical Physiology, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Buhouth Street, P. O. Box 12622, Dokki, Cairo Egypt
| | - Islam B. Gad
- Department of Pathology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
24
|
Arabi T, Shafqat A, Sabbah BN, Fawzy NA, Shah H, Abdulkader H, Razak A, Sabbah AN, Arabi Z. Obesity-related kidney disease: Beyond hypertension and insulin-resistance. Front Endocrinol (Lausanne) 2022; 13:1095211. [PMID: 36726470 PMCID: PMC9884830 DOI: 10.3389/fendo.2022.1095211] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
Chronic kidney disease (CKD) causes considerable morbidity, mortality, and health expenditures worldwide. Obesity is a significant risk factor for CKD development, partially explained by the high prevalence of diabetes mellitus and hypertension in obese patients. However, adipocytes also possess potent endocrine functions, secreting a myriad of cytokines and adipokines that contribute to insulin resistance and induce a chronic low-grade inflammatory state thereby damaging the kidney. CKD development itself is associated with various metabolic alterations that exacerbate adipose tissue dysfunction and insulin resistance. This adipose-renal axis is a major focus of current research, given the rising incidence of CKD and obesity. Cellular senescence is a biologic hallmark of aging, and age is another significant risk factor for obesity and CKD. An elevated senescent cell burden in adipose tissue predicts renal dysfunction in animal models, and senotherapies may alleviate these phenotypes. In this review, we discuss the direct mechanisms by which adipose tissue contributes to CKD development, emphasizing the potential clinical importance of such pathways in augmenting the care of CKD.
Collapse
Affiliation(s)
- Tarek Arabi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- *Correspondence: Tarek Arabi,
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | | | - Hassan Shah
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Adhil Razak
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Ziad Arabi
- Division of Nephrology, Department of Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Caus M, Eritja À, Bozic M. Role of microRNAs in Obesity-Related Kidney Disease. Int J Mol Sci 2021; 22:ijms222111416. [PMID: 34768854 PMCID: PMC8583993 DOI: 10.3390/ijms222111416] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity is a major global health problem and is associated with a significant risk of renal function decline. Obesity-related nephropathy, as one of the complications of obesity, is characterized by a structural and functional damage of the kidney and represents one of the important contributors to the morbidity and mortality worldwide. Despite increasing data linking hyperlipidemia and lipotoxicity to kidney injury, the apprehension of molecular mechanisms leading to a development of kidney damage is scarce. MicroRNAs (miRNAs) are endogenously produced small noncoding RNA molecules with an important function in post-transcriptional regulation of gene expression. miRNAs have been demonstrated to be important regulators of a vast array of physiological and pathological processes in many organs, kidney being one of them. In this review, we present an overview of miRNAs, focusing on their functional role in the pathogenesis of obesity-associated renal pathologies. We explain novel findings regarding miRNA-mediated signaling in obesity-related nephropathies and highlight advantages and future perspectives of the therapeutic application of miRNAs in renal diseases.
Collapse
|
26
|
Su X, Zhou G, Tian M, Wu S, Wang Y. Silencing of RSPO1 mitigates obesity-related renal fibrosis in mice by deactivating Wnt/β-catenin pathway. Exp Cell Res 2021; 405:112713. [PMID: 34181940 DOI: 10.1016/j.yexcr.2021.112713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/14/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Obesity, a global epidemic, is one of the critical causes of chronic kidney disease (CKD). R-spondin1 (RSPO1) possessing the potential to activate Wnt/β-catenin pathway was reported to be elevated in circulation of obesity objects. However, the function of RSPO1 and the latent mechanism in obesity-related CKD are still left to be revealed. In the present study, renal RSPO1 expression was increased in mice fed on high-fat diet (HFD) for 12 weeks. Lentivirus-mediated RSPO1 knockdown partly recovered obesity-related metabolic symptoms, while distinctly remitted kidney dysfunction and renal fibrosis in obesity mice. In vitro, recombinant RSPO1 was found to elevate leucine-rich repeat-containing G protein coupled receptor 4 (LGR4) expression, promote Wnt/β-catenin signaling pathway activation, facilitate epithelial-mesenchymal transition (EMT) and increase collagen deposition in HK2 renal tubular cells. Such pro-fibrotic effect of RSPO1 was diminished by LGR4 siRNA in HK2 cells. In summary, we demonstrate that RSPO1/LGR4 axis is involved in obesity-related renal fibrosis at least through activating Wnt/β-catenin signaling pathway, providing a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Xuesong Su
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Guangyu Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Mi Tian
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Si Wu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yanqiu Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
27
|
Wang WJ, Jiang X, Gao CC, Chen ZW. Salusin‑β participates in high glucose‑induced HK‑2 cell ferroptosis in a Nrf‑2‑dependent manner. Mol Med Rep 2021; 24:674. [PMID: 34296310 PMCID: PMC8335735 DOI: 10.3892/mmr.2021.12313] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Ferroptosis is critically involved in the pathophysiology of diabetic nephropathy (DN). As a bioactive peptide, salusin‑β is abundantly expressed in the kidneys. However, it is unclear whether salusin‑β participates in the pathologies of diabetic kidney damage by regulating ferroptosis. The present study found that high glucose (HG) treatment upregulated the protein expressions of salusin‑β in a dose‑ and time‑dependent manner. Genetic knockdown of salusin‑β retarded, whereas overexpression of salusin‑β aggravated, HG‑triggered iron overload, antioxidant capability reduction, massive reactive oxygen species production and lipid peroxidation in HK‑2 cells. Mechanistically, salusin‑β inactivated nuclear factor erythroid‑derived 2‑like 2 (Nrf‑2) signaling, thus contributing to HG‑induced ferroptosis‑related changes in HK‑2 cells. Notably, the protein expression of salusin‑β was upregulated by ferroptosis activators, such as erastin, RSL3, FIN56 and buthionine sulfoximine. Pretreatment with ferrostatin‑1 (a ferroptosis inhibitor) prevented the upregulated protein expression of salusin‑β in HK‑2 cells exposed to HG. Taken together, these results suggested that a positive feedback loop between salusin‑β and ferroptosis primes renal tubular cells for injury in diabetes.
Collapse
Affiliation(s)
- Wen-Juan Wang
- Department of Nephrology, Center of Blood Purification, The Second People's Hospital of Nantong, Nantong, Jiangsu 226002, P.R. China
| | - Xia Jiang
- Department of Nephrology, Center of Blood Purification, The Second People's Hospital of Nantong, Nantong, Jiangsu 226002, P.R. China
| | - Chang-Chun Gao
- Department of Nephrology, Center of Blood Purification, The Second People's Hospital of Nantong, Nantong, Jiangsu 226002, P.R. China
| | - Zhi-Wei Chen
- Department of Nephrology, Center of Blood Purification, The Second People's Hospital of Nantong, Nantong, Jiangsu 226002, P.R. China
| |
Collapse
|