1
|
Guignabert C, Aman J, Bonnet S, Dorfmüller P, Olschewski AJ, Pullamsetti S, Rabinovitch M, Schermuly RT, Humbert M, Stenmark KR. Pathology and pathobiology of pulmonary hypertension: current insights and future directions. Eur Respir J 2024; 64:2401095. [PMID: 39209474 PMCID: PMC11533988 DOI: 10.1183/13993003.01095-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 09/04/2024]
Abstract
In recent years, major advances have been made in the understanding of the cellular and molecular mechanisms driving pulmonary vascular remodelling in various forms of pulmonary hypertension, including pulmonary arterial hypertension, pulmonary hypertension associated with left heart disease, pulmonary hypertension associated with chronic lung disease and hypoxia, and chronic thromboembolic pulmonary hypertension. However, the survival rates for these different forms of pulmonary hypertension remain unsatisfactory, underscoring the crucial need to more effectively translate innovative scientific knowledge into healthcare interventions. In these proceedings of the 7th World Symposium on Pulmonary Hypertension, we delve into recent developments in the field of pathology and pathophysiology, prioritising them while questioning their relevance to different subsets of pulmonary hypertension. In addition, we explore how the latest omics and other technological advances can help us better and more rapidly understand the myriad basic mechanisms contributing to the initiation and progression of pulmonary vascular remodelling. Finally, we discuss strategies aimed at improving patient care, optimising drug development, and providing essential support to advance research in this field.
Collapse
Affiliation(s)
- Christophe Guignabert
- Université Paris-Saclay, Hypertension Pulmonaire: Physiopathology and Innovation Thérapeutique, HPPIT, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, HPPIT, Le Kremlin-Bicêtre, France
| | - Jurjan Aman
- Department of Pulmonary Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Sébastien Bonnet
- Pulmonary Hypertension research group, Centre de Recherche de l'Institut de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada
- Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Peter Dorfmüller
- Department of Pathology, University Hospital Giessen/Marburg, Giessen, Germany
| | - Andrea J Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Soni Pullamsetti
- Max Planck Institute for Heart and Lung Research Bad Nauheim, Bad Nauheim, Germany
- Department of Internal Medicine, German Center for Lung Research (DZL) Cardio-Pulmonary Institute (CPI)
- Universities of Giessen and Marburg Lung Centre, Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Marlene Rabinovitch
- BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ralph T Schermuly
- Department of Internal Medicine, German Center for Lung Research (DZL) Cardio-Pulmonary Institute (CPI)
| | - Marc Humbert
- Université Paris-Saclay, Hypertension Pulmonaire: Physiopathology and Innovation Thérapeutique, HPPIT, Faculté de Médecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, HPPIT, Le Kremlin-Bicêtre, France
- Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, ERN-LUNG, Le Kremlin-Bicêtre, France
| | - Kurt R Stenmark
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado, Denver, CO, USA
| |
Collapse
|
2
|
Jiang T, Xu L, Qu X, Li R, Cheng Y, He H. Hsa_circ_0014606 Derived from Exosomes Promotes Gastric Carcinoma Tumorigenesis and Proliferation by Sponging miR-514b-3p to Upregulate HNRNPC. Dig Dis Sci 2024; 69:811-820. [PMID: 38217675 DOI: 10.1007/s10620-023-08254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Gastric cancer is a common malignant tumor, and due to its insidious onset and limited screening methods, most patients are diagnosed with advanced disease and have a poor prognosis. The circRNA in exosomes has an essential role in cancer diagnosis and treatment. However, the part of hsa_circ_0014606 within exosomes in gastric cancer progression is unclear. Firstly, we extracted exosomes from the serum of gastric cancer patients and healthy individuals by ultracentrifugation and analyzed the expression of hsa_circ_0014606 in both exosomes; then knocked down hsa_circ_0014606 in vivo and in vitro, respectively, to observe its effect on the physiological function of gastric cancer cells; finally, we used bioinformatics to screen hsa_circ_0014606 targeting miRNAs and mRNAs, and experiments were performed to verify the interrelationship between the three. The results showed that the level of hsa_circ_0014606 in the serum exosomes of gastric cancer patients was significantly higher than that of the healthy population. The knockdown of hsa_circ_0014606 slowed the proliferation of gastric cancer cells, significantly reduced migration and invasion ability, accelerated apoptosis, and reduced tumor size in mice. In addition, the expression of hsa_circ_0014606 was negatively correlated with the expression of miR-514b-3p and positively correlated with the expression of heterogeneous nuclear ribonucleoprotein C (HNRNPC). In conclusion, hsa_circ_0014606 exerted a pro-cancer effect indirectly through miR-514b-3p targeting gene HNRNPC, and this study provides a new potential target for treating gastric cancer.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Otolaryngology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Lingling Xu
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaona Qu
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Rui Li
- Department of Otolaryngology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Ye Cheng
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hongmei He
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
3
|
Zheng H, Wu D, Chen X, He W, Hua J, Li Q, Ji Y. Endothelial downregulation of nuclear m6A reader YTHDC1 promotes pulmonary vascular remodeling in sugen hypoxia model of pulmonary hypertension. Heliyon 2024; 10:e24963. [PMID: 38318069 PMCID: PMC10838804 DOI: 10.1016/j.heliyon.2024.e24963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Background Pulmonary hypertension (PH) is characterized with vascular remodeling, which is intiated by vascular endothelial dysfunction. N6-methyladenosine (m6A) modification mediates gene expression in many ways including mediating RNA degradation, splicing, nuclear export et al. m6A modification have been found to be associated with the development of PH. However, the role of m6A regulators in pulmonary artery endothelial cells (PAECs) dysfunction of PH is still under research. Methods The expression levels of m6A regulators in PAECs were analyzed with the single-cell sequencing Data(scRNA). Next, the target differentially expressed genes (DEGs) of m6A regulators in PAECs were functionally annotated. The analysis of cellular interactions included the examination of receptor-ligand pairs regulated by m6A regulators. Pseudo-time trajectory analyses and a ceRNA network involving lncRNAs, miRNAs, and mRNAs were conducted in PAECs. Furthermore, microarray data (GSE180169) for Sugen Hypoxia PH (SuHx PH) mouse models was screened for DEGs and m6A regulators in PAECs. Moreover, the expression of YTHDC1 in the lung samples of SuHx PH models was determined using immunofluorescence. In vitro, the mRNA expression of YTHDC1 in HPAECs under hypoxia conditions was detected. The effect of YTHDC1 recombinant protein on HPAEC proliferation was detected by Cell Counting Kit-8 (CCK8). Results Dysregulation of m6A regulators was observed in mouse PAECs. The m6A reader of YTHDC1 was decreased in PAECs in scRNA data and RNAseq data of isolated PAECs of SuHx PH models. Downregulation of YTHDC1 was caused by hypoxia in PAECs in vitro and similar results was observed in PAECs of SuHx PH mouse models. Next, YTHDC1 recombinant protein was found to inhibit HPAECs proliferation. The DEGs targeted by YTHDC1 were enriched in angiogenesis, endothelial cell migration, fluid shear stress, and stem cell maintenance. Analysis indicates that interactions among endothelial cells, smooth muscle cells, fibroblasts, and immune cells, mediated by specific YTHDC1 target genes (e.g., PTPRC-MRC1, ITBG2-ICAM1, COL4A1-CD44), contribute to PH development. Also, the YTHDC1 expression were consistent with Thioredoxin interacting protein (TXNIP). What's more, the predicted transcription factors showed that NFKB1, Foxd3 may be involved in the regulation of YTHDC1. Lastly, our data suggest that YTHDC1 may be involved in regulating PAECs dysfunction through lncRNA/miRNA/mRNA network. Conclusion For the first time, we analyzed changes in the expression and biological functions of m6A regulators in SuHx PH mouse models. We causatively linked YTHDC1 to PAECs dysfunction, providing novel insight into and opportunities to diagnose and treat PH.
Collapse
Affiliation(s)
| | | | - Xiangyu Chen
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Wenjuan He
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Jing Hua
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Qiang Li
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - YingQun Ji
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing, 210009, China
| |
Collapse
|
4
|
Lv Z, Ma G, Zhong Z, Xie X, Li B, Long D. O-GlcNAcylation of RAB10 promotes hepatocellular carcinoma progression. Carcinogenesis 2023; 44:785-794. [PMID: 37218374 DOI: 10.1093/carcin/bgad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023] Open
Abstract
Ras-related protein Rab-10 (RAB10) is involved in tumorigenesis and progression of hepatocellular carcinoma (HCC). Here, we found RAB10, O-GlcNAc transferase (OGT), and O-GlcNAcylation were upregulated in HCC. In addition, RAB10 protein level was prominently positively correlated with the expression of OGT. O-GlcNAcylation modification of RAB10 was then investigated. Here we showed that RAB10 interacts directly with OGT in HCC cell lines, Meanwhile, O-GlcNAcylation enhanced RAB10 protein stability. Furthermore, knockdown of OGT suppressed aggressive behaviors of HCC in vitro and in vivo, while elevated RAB10 reversed these. Taken together, these results indicated that OGT mediated O-GlcNAcylation stabilized RAB10, thus accelerating HCC progression.
Collapse
Affiliation(s)
- Zhuo Lv
- Department of Oncology, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China
| | - Guolu Ma
- Cancer Center, Integrated Hospital of Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Zhuo Zhong
- Department of Oncology, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China
| | - Xiong Xie
- Department of Oncology, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China
| | - Bin Li
- Li Bin's Clinic of Traditional Chinese Medicine, Guangzhou, China
| | - De Long
- Department of Oncology, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China
| |
Collapse
|
5
|
Peng W, Xie Y, Xia J, Qi H, Liu K, Li B, Zhang F, Wen F, Zhang L. Integrated analysis of the lncRNA-associated competing endogenous RNA network in salt sensitivity of blood pressure. Heliyon 2023; 9:e22466. [PMID: 38125519 PMCID: PMC10731005 DOI: 10.1016/j.heliyon.2023.e22466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Accumulating evidence showed that competing endogenous RNA (ceRNA) mechanism plays a pivotal role in salt sensitivity of blood pressure (SSBP). We constructed a ceRNA network based on SSBP-related differently expressed lncRNAs (2), mRNAs (73) and miRNAs (18). Bioinformatic analyses were utilized to analyze network and found network genes participate in biological pathways related to SSBP pathogenesis such as regulation of nitric oxide biosynthetic process (GO:0045,428) and cellular response to cytokine stimulus (GO:0071,345). Fourteen candidate ceRNA pathways were selected from network to perform qRT-PCR validation and found nine RNAs (KCNQ1OT1, SLC8A1-AS1, IL1B, BCL2L11, KCNJ15, CX3CR1, KLF2, hsa-miR-362-5p and hsa-miR-423-5p) differently expressed between salt-sensitive (SS) and salt-resistant (SR) groups (P < 0.05). Four ceRNA pathways were further validated by luciferase reporter assay and found KCNQ1OT1→hsa-miR-362-5p/hsa-miR-423-5p→IL1B pathways may influence the pathogenic mechanism of SS. Our findings suggested the ceRNA pathway and network may affect SS occurrence mainly through endothelial dysfunction and inflammatory activation.
Collapse
Affiliation(s)
- Wenjuan Peng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yunyi Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Juan Xia
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Han Qi
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Kuo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Bingxiao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Fengxu Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Fuyuan Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| |
Collapse
|
6
|
Chen S, Zhong J, Hu B, Shao N, Deng C. Whole-genome microRNA sequencing analysis in patients with pulmonary hypertension. Front Genet 2023; 14:1250629. [PMID: 38125751 PMCID: PMC10731455 DOI: 10.3389/fgene.2023.1250629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/23/2023] [Indexed: 12/23/2023] Open
Abstract
Pulmonary hypertension (PH) is a pathological disorder with multiple clinical manifestations that lead to cardiovascular and respiratory diseases in most patients. Recent studies have revealed that microRNAs (miRNAs) play important roles as upstream signaling molecules in several diseases, including PH. However, miRNAs that can be used as diagnostic or prognostic biomarkers for PH have not been identified. Thus, in this study, peripheral blood samples obtained from patients with PH and healthy individuals were subjected to genome-wide miRNA sequencing and transcriptome analysis. We screened 136 differentially expressed miRNAs in patients with PH and verified that four differentially expressed miRNAs, namely, hsa-miR-1304-3p, hsa-miR-490-3p, hsa-miR-11400, and hsa-miR-31-5p, could be used as clinical diagnostic biomarkers for pulmonary arterial hypertension. Our findings provide a basis for further in-depth investigations of the specific mechanisms of miRNAs in PH.
Collapse
Affiliation(s)
- Shi Chen
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Respiratory and Critical Care, Wuhan No. 6 Hospital, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | - Jinnan Zhong
- Department of Respiratory and Critical Care, Wuhan No. 6 Hospital, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | - Bingzhu Hu
- Department of Respiratory and Critical Care, Wuhan No. 6 Hospital, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | - Nan Shao
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Chaosheng Deng
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
7
|
Chen JM, Li XL, Yang Ye, Xu SM, Chen QF, Xu JW. Competing endogenous RNA network analysis of the molecular mechanisms of ischemic stroke. BMC Genomics 2023; 24:67. [PMID: 36755220 PMCID: PMC9906963 DOI: 10.1186/s12864-023-09163-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Ischemic stroke (IS) is a serious neurological disease that largely results in long-term disability and death. Extensive evidence has indicated that the activation of inflammation and ferroptosis significantly contribute to the development of IS pathology. However, the underlying molecular mechanism remains unclear. In this study, we aimed to identify potential biomarkers associated with IS through the construction of a competing endogenous RNA (ceRNA) network and to investigate the possible inflammatory and ferroptosis-related molecular mechanisms. RESULTS We identified 178 differentially expressed target messenger RNAs (DETmRNAs) associated with IS. As revealed through enrichment analysis, the DEmRNAs were mainly enriched in the inflammatory signaling pathways and also related to ferroptosis mechanism. The CIBERSORT algorithm showed immune infiltration landscapes in which the naïve B cells, naïve T cells, and monocytes had statistically different numbers in the cerebral infarction group compared with the control group. A ceRNA network was constructed in this study involving 44 long non-coding RNAs (lncRNAs), 15 microRNAs (miRNAs), and 160 messenger RNAs (mRNAs). We used the receiver operating characteristic (ROC) analysis to identify three miRNAs (miR-103a-3p, miR-140-3p, and miR-17-5p), one mRNA (TLR4), and one lncRNA (NEAT1) as the potential key biomarkers of the ceRNA network. The key mRNA and lncRNA were shown to be highly related to the ferroptosis mechanism of IS. The expression of these key biomarkers was also further validated by a method of quantitative real-time polymerase chain reaction in SH-SY5Y cells, and the validated results were consistent with the findings predicted by bioinformatics. CONCLUSION Our results suggest that the ceRNA network may exert an important role in the inflammatory and ferroptosis molecular mechanisms of IS, providing new insight into therapeutic IS targets.
Collapse
Affiliation(s)
- Jian-Min Chen
- grid.412683.a0000 0004 1758 0400Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian China ,grid.412594.f0000 0004 1757 2961Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi China
| | - Xiao-Lu Li
- grid.412594.f0000 0004 1757 2961Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi China
| | - Yang Ye
- grid.412594.f0000 0004 1757 2961Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi China
| | - Sen-Ming Xu
- grid.412594.f0000 0004 1757 2961Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi China
| | - Qing-Fa Chen
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
| | - Jian-Wen Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
8
|
Li C, Xia J, Yiminniyaze R, Dong L, Li S. Hub Genes and Immune Cell Infiltration in Hypoxia-Induced Pulmonary Hypertension: Bioinformatics Analysis and In Vivo Validation. Comb Chem High Throughput Screen 2023; 26:2085-2097. [PMID: 36718060 DOI: 10.2174/1386207326666230130093325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Hypoxia-induced pulmonary hypertension (HPH) represents a severe pulmonary disorder with high morbidity and mortality, which necessitates identifying the critical molecular mechanisms underlying HPH pathogenesis. METHODS The mRNA expression microarray GSE15197 (containing 8 pulmonary tissues from HPH and 13 normal controls) was downloaded from Gene Expression Omnibus (GEO). Gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) were executed by RStudio software. The Protein-Protein Interaction (PPI) network was visualized and established using Cytoscape, and the cytoHubba app from Cytoscape was used to pick out the hub modules. The infiltration of immune cells in HPH was analyzed using the CIBERSORTx. To confirm the potential hub genes, real-time quantitative reverse transcription PCR (qRT-PCR) was conducted using lung tissues of rat HPH models and controls. RESULTS A total of 852 upregulated and 547 downregulated genes were identified. The top terms in biological processes were apoptosis, proliferation, and regulation of the MAPK cascade, including ERK1/2. Cytoplasm, cytosol, and membrane were enriched in cellular component groups. Molecular functions mainly focus on protein binding, protein serine/threonine kinase activity and identical protein binding. KEGG analysis identified pathways in cancer, regulation of actin cytoskeleton and rap1 signaling pathway. There was significantly different immune cell infiltration between HPH and normal control samples. High proportions of the memory subsets of B cells and CD4 cells, Macrophages M2 subtype, and resting Dendritic cells were found in HPH samples, while high proportions of naive CD4 cells and resting mast cells were found in normal control samples. The qRT-PCR results showed that among the ten identified hub modules, FBXL3, FBXL13 and XCL1 mRNA levels were upregulated, while NEDD4L, NPFFR2 and EDN3 were downregulated in HPH rats compared with control rats. CONCLUSION Our study revealed the key genes and the involvement of immune cell infiltration in HPH, thus providing new insight into the pathogenesis of HPH and potential treatment targets for patients with HPH.
Collapse
Affiliation(s)
- Chengwei Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jingwen Xia
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ruzetuoheti Yiminniyaze
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Liang Dong
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shengqing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
9
|
Wu W, Chen A, Lin S, Wang Q, Lian G, Luo L, Xie L. The identification and verification of hub genes associated with pulmonary arterial hypertension using weighted gene co-expression network analysis. BMC Pulm Med 2022; 22:474. [PMID: 36514015 PMCID: PMC9746192 DOI: 10.1186/s12890-022-02275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is characterized by a progressive increase in pulmonary vascular resistance and pulmonary arterial pressure, with complex etiology, difficult treatment and poor prognosis. The objective of this study was to investigate the potential biomarkers for PAH based on bioinformatics analysis. METHODS The GSE117261 datasets were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified by screening PAH patients and controls. Then the DEGs were analyzed using a Weighted Gene Co-expression Network Analysis (WGCNA) and the key modules were determined, and to further explore their potential biological functions via Gene Ontology analysis (GO), Kyoto Encyclopedia of Genes and Genomes Pathway analysis (KEGG), and Gene Set Enrichment Analysis (GSEA). Moreover, Protein-protein interaction (PPI) networks were constructed to identify hub gene candidates in the key modules. Finally, real-time quantitative polymerase chain reaction was supplied to detect the expressions of hub genes in human pulmonary arterial smooth cells treated with cobalt chloride (COCl2) which was used to mimic hypoxia. RESULTS There were 2299 DEGs identified. WGCNA indicated that yellow module was the key one correlated with PAH. GO and KEGG analysis demonstrated that genes in the yellow module were mainly enriched in 'Pathways in cancer'. GSEA revealed that 'HALLMARK_MYC_TARGETS_V1' was remarkably enriched in PAH. Based on the PPI network, vascular endothelial growth factor A, proto-oncogene receptor tyrosine kinase (KIT), PNN interacting serine and arginine rich protein (PNISR) and heterogeneous nuclear ribonucleoprotein H1 (HNRNPH1) were identified as the hub genes. Additionally, the PCR indicated that the elevated expressions of PNISR and HNRNPH1 were in line with the bioinformatics analysis. ROC analysis determined that PNISR and HNRNPH1 may be potential biomarkers to provide better diagnosis of PAH. CONCLUSION PNISR and HNRNPH1 were potential biomarkers to diagnosis PAH. In summary, the identified DEGs, modules, pathways, and hub genes provide clues and shed light on the potential molecular mechanisms of PAH.
Collapse
Affiliation(s)
- Weibin Wu
- grid.412683.a0000 0004 1758 0400Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005 Fujian People’s Republic of China ,grid.412683.a0000 0004 1758 0400Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China ,grid.412683.a0000 0004 1758 0400Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China ,grid.412683.a0000 0004 1758 0400Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian People’s Republic of China ,grid.256112.30000 0004 1797 9307Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Ai Chen
- grid.412683.a0000 0004 1758 0400Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005 Fujian People’s Republic of China ,grid.412683.a0000 0004 1758 0400Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China ,grid.412683.a0000 0004 1758 0400Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China ,grid.412683.a0000 0004 1758 0400Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian People’s Republic of China ,grid.256112.30000 0004 1797 9307Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Siming Lin
- grid.412683.a0000 0004 1758 0400Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Qiuran Wang
- grid.412683.a0000 0004 1758 0400Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005 Fujian People’s Republic of China ,grid.412683.a0000 0004 1758 0400Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China ,grid.412683.a0000 0004 1758 0400Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China ,grid.412683.a0000 0004 1758 0400Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian People’s Republic of China ,grid.256112.30000 0004 1797 9307Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Guili Lian
- grid.412683.a0000 0004 1758 0400Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005 Fujian People’s Republic of China ,grid.412683.a0000 0004 1758 0400Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China ,grid.412683.a0000 0004 1758 0400Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China ,grid.412683.a0000 0004 1758 0400Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian People’s Republic of China ,grid.256112.30000 0004 1797 9307Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Li Luo
- grid.412683.a0000 0004 1758 0400Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005 Fujian People’s Republic of China ,grid.412683.a0000 0004 1758 0400Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China ,grid.412683.a0000 0004 1758 0400Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China ,grid.412683.a0000 0004 1758 0400Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian People’s Republic of China ,grid.256112.30000 0004 1797 9307Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Liangdi Xie
- grid.412683.a0000 0004 1758 0400Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005 Fujian People’s Republic of China ,grid.412683.a0000 0004 1758 0400Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China ,grid.412683.a0000 0004 1758 0400Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China ,grid.412683.a0000 0004 1758 0400Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian People’s Republic of China ,grid.256112.30000 0004 1797 9307Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
10
|
Zheng H, Hua J, Li H, He W, Chen X, Ji Y, Li Q. Comprehensive analysis of the expression of N6-methyladenosine RNA methylation regulators in pulmonary artery hypertension. Front Genet 2022; 13:974740. [PMID: 36171892 PMCID: PMC9510777 DOI: 10.3389/fgene.2022.974740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Background: Pulmonary arterial hypertension (PAH) is a progressive disease characterized by pulmonary vascular remodeling. The development of PAH involves N6-methyladenosine (m6A) modification. However, the functional role of m6A regulators in PAH and the underlying regulatory mechanisms remain unknown so far. Methods: Microarray data (GSE149713) for monocrotaline induced PAH (MCT-PAH) rat models were downloaded and screened for differentially expressed genes (DEGs) and m6A regulators. Next, we screened for differentially expressed m6A regulators in endothelial cells (ECs), smooth muscle cells (SMCs), fibroblasts, interstitial macrophages, NK cells, B cells, T cells, regulatory T cells (Tregs) using scRNA sequencing data. The target DEGs of m6A regulators in ECs, SMCs, fibroblasts, and Tregs were functionally annotated using the Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. In addition, the cellular interaction analysis was performed to reveal the receptor—ligand pairs regulated by m6A regulators. Pseudo-time trajectory analyses were performed and a ceRNA network of lncRNAs-miRNAs-mRNAs was constructed in SMCs. Furthermore, the RNA transcriptome sequencing data for the SMCs isolated from idiopathic PAH (IPAH) patients (GSE144274) were validated for differentially expressed m6A regulators. Moreover, the HNRNPA2B1 levels in the lung samples from PAH patients and MCT-PAH were determined using immunohistochemistry. Results: The m6A regulators were observed to be dysregulated in PAH. HNRNPA2B1expression level was increased in the PASMCs of scRNAs and IPAH patients. The target DEGs of HNRNPA2B1 were enriched in the regulation of muscle cell differentiation and vasculature development in PASMCs. The HNRNPA2B1 expression levels determined were consistent with the proliferation-related and collagen synthesis-related gene COL4A1. Moreover, the predicted transcription factors (TFs) foxd2/3 and NFκB could be involved in the regulation of HNRNPA2B1. HNRNPA2B1 might be regulating SMCs proliferation and phenotypic transition via rno-miR-330–3p/TGFβR3 and rno-miR-125a-3p/slc39a1. In addition, HNRNPA2B1 was observed to be highly expressed in the lung samples from MCT-PAH rat models and patients with PAH. Conclusion: In summary, the present study identified certain key functional m6A regulators that are involved in pulmonary vascular remodeling. The investigation of m6A patterns might be promising and provide biomarkers for diagnosis and treatment of PAH in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Yingqun Ji
- *Correspondence: Yingqun Ji, ; Qiang Li,
| | - Qiang Li
- *Correspondence: Yingqun Ji, ; Qiang Li,
| |
Collapse
|
11
|
Pu Y, Wei J, Wu Y, Zhao K, Wu Y, Wu S, Yang X, Xing C. THUMPD3-AS1 facilitates cell growth and aggressiveness by the miR-218-5p/SKAP1 axis in colorectal cancer. Cell Biochem Biophys 2022; 80:483-494. [PMID: 35538197 DOI: 10.1007/s12013-022-01074-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is a malignant cancer with a high mortality. Accumulating studies have revealed that mRNAs involved in ceRNA (competing endogenous RNA) network are implicated in the tumorigenesis and development of CRC. Here, we aimed to elucidate the ceRNA network involving Src kinase associated phosphoprotein 1 (SKAP1) in the biological characteristics of CRC. METHODS Expression levels of genes in colon adenocarcinoma (COAD) samples and prognosis of COAD patients were predicted using publicly available online tool. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), clony formation and Transwell assays were conducted to test the biological functions of SKAP1 and THUMPD3 antisense RNA 1 (THUMPD3-AS1) in CRC cells. Western blot was used to measure the protein levels of SKAP1. Gene expression in CRC cells was detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR). The interaction between miR-218-5p and THUMPD3-AS1 (or SKAP1) was verified by RNA pulldown and luciferase reporter assays. RESULTS SKAP1 was upregulated in COAD tissues and CRC cells and it reflected a poor prognosis in patients with COAD. SKAP1 knockdown inhibited CRC (HT-29 and HCT-116) cell proliferation, migration and invasion. Mechanistically, THUMPD3-AS1 acted as a ceRNA to sponge miR-218-5p and subsequently upregulated SKAP1 expression in CRC cells. SKAP1 overexpression reversed the suppressive effect of THUMPD3-AS1 knockdown on proliferation, migration and invision of CRC cells. CONCLUSIONS THUMPD3-AS1 promotes CRC cell growth and aggressiveness by regulating the miR-218-5p/SKAP1 axis.
Collapse
Affiliation(s)
- Yuwei Pu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Jinrong Wei
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Yong Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Kui Zhao
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Yongyou Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Shu Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Xiaodong Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
| | - Chungen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|