1
|
Chen H, Xuan A, Shi X, Fan T, Xue S, Ruan J, Wang X, Tang S, Qi W, Sun H, Liu C, He S, Ding C, Zhu Z. RNA N6-methyladenosine modification in arthritis: New insights into pathogenesis. Mod Rheumatol 2025; 35:203-214. [PMID: 39235765 DOI: 10.1093/mr/roae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024]
Abstract
The commonest type of eukaryotic RNA modification, N6-methyladenosine (m6A), has drawn increased scrutiny in the context of pathological functioning as well as relevance in determination of RNA stability, splicing, transportation, localization, and translation efficiency. The m6A modification plays an important role in several types of arthritis, especially osteoarthritis and rheumatoid arthritis. Recent studies have reported that m6A modification regulates arthritis pathology in cells, such as chondrocytes and synoviocytes via immune responses and inflammatory responses through functional proteins classified as writers, erasers, and readers. The aim of this review was to highlight recent advances relevant to m6A modification in the context of arthritis pathogenesis and detail underlying molecular mechanisms, regulatory functions, clinical applications, and future perspectives of m6A in arthritis with the aim of providing a foundation for future research directions.
Collapse
Affiliation(s)
- Haowei Chen
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Anran Xuan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaorui Shi
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tianxiang Fan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Song Xue
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianzhao Ruan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoshuai Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Su'an Tang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weizhong Qi
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Canzhao Liu
- Department of Cardiovascular Medicine, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuai He
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Zhaohua Zhu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology, Royal North Shore Hospital and Sydney Musculoskeletal Health, Kolling Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
2
|
Yang W, Hu L, Tian Y, Yang Y, Guo W, Xiao K, Yang R, Yang H, Zhou Z, Cheng C. WTAP improves chondrocyte loss and dysfunctions to ameliorate osteoarthritis through mediating the mA methylation and mRNA stability of IL-33. Int J Biol Macromol 2025:141330. [PMID: 39984079 DOI: 10.1016/j.ijbiomac.2025.141330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/13/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Osteoarthritis (OA) is a multifactorial degenerative disorder entailing cartilage loss and progressive joint failure. m6A RNA methylation could impact multiple disorders, including OA. In this study, m6A methylation regulator WTAP was down-regulated in OA cartilage, accompanied by significantly lower m6A methylation levels in OA tissues. In the DMM-induced mice OA model and IL-1β- or TNF-α-stimulated chondrocytes, WTAP and m6A methylation levels were decreased, but IL-1β, IL-6, and TNF-α cytokine contents were elevated. In vivo and in vitro, WTAP overexpression increased m6A methylation levels but reduced proinflammatory cytokine contents. Furthermore, WTAP overexpression (OE) increased chondrocyte viability and proliferation, aggrecan and collagen II protein, and decreased cell apoptosis, MMP3, MMP13, and ADAMTS5. WTAP-mediated m6A methylation of IL-33 and impaired IL-33 mRNA stability. IL-33 OE caused no changes to WTAP expression; however, IL-33 OE partially attenuated WTAP OE-induced IL-33 downregulation. IL-33 overexpression inhibited chondrocyte viability and proliferation, decreased aggrecan and collagen II but elevated MMP3, MMP13, and ADAMTS5, and increased cell apoptosis and proinflammatory cytokine contents. More importantly, IL-33 eliminated the effects of WTAP OE on chondrocytes. Therefore, WTAP is down-regulated in OA; WTAP improves chondrocyte proliferation and function, thereby ameliorating OA through mediating m6A methylation of IL-33 and impairing IL-33 mRNA stability.
Collapse
Affiliation(s)
- Wenjian Yang
- Department of Orthopaedics, Yiyang Central Hospital, Hunan University of Chinese Medicine, Yiyang, Hunan 413000, China; Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, Hunan 413000, China
| | - Lianghua Hu
- Department of Orthopaedics, Yiyang Central Hospital, Hunan University of Chinese Medicine, Yiyang, Hunan 413000, China; Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, Hunan 413000, China
| | - Ye Tian
- Department of Orthopaedics, Yiyang Central Hospital, Hunan University of Chinese Medicine, Yiyang, Hunan 413000, China; Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, Hunan 413000, China
| | - Yufan Yang
- Department of Orthopaedics, Yiyang Central Hospital, Hunan University of Chinese Medicine, Yiyang, Hunan 413000, China; Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, Hunan 413000, China
| | - Wei Guo
- Department of Orthopaedics, Yiyang Central Hospital, Hunan University of Chinese Medicine, Yiyang, Hunan 413000, China; Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, Hunan 413000, China
| | - Kai Xiao
- Department of Orthopaedics, Yiyang Central Hospital, Hunan University of Chinese Medicine, Yiyang, Hunan 413000, China; Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, Hunan 413000, China
| | - Ruiqi Yang
- Department of Orthopaedics, Yiyang Central Hospital, Hunan University of Chinese Medicine, Yiyang, Hunan 413000, China; Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, Hunan 413000, China
| | - Hua Yang
- Department of Orthopaedics, Yiyang Central Hospital, Hunan University of Chinese Medicine, Yiyang, Hunan 413000, China; Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, Hunan 413000, China
| | - Zhihong Zhou
- Department of Orthopaedics, Yiyang Central Hospital, Hunan University of Chinese Medicine, Yiyang, Hunan 413000, China; Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, Hunan 413000, China; Yiyang Medical College, Yiyang, Hunan 413000, China
| | - Chao Cheng
- Department of Orthopaedics, Yiyang Central Hospital, Hunan University of Chinese Medicine, Yiyang, Hunan 413000, China; Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, Hunan 413000, China; The fourth people's hospital of Yiyang city, Yiyang, Hunan 413000, China.
| |
Collapse
|
3
|
Han N, Yu N, Yu L. The mRNA Stability of PIEZO1, Regulated by Methyltransferase-Like 3 via N 6-Methylation of Adenosine Modification in a YT521-B Homology Domain Family 2-Dependent Manner, Facilitates the Progression of Diabetic Retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:265-280. [PMID: 39476953 DOI: 10.1016/j.ajpath.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 11/09/2024]
Abstract
Diabetic retinopathy (DR) is the major ocular complication of diabetes caused by chronic hyperglycemia, which leads to incurable blindness. Currently, the effectiveness of therapeutic interventions is limited. This study aimed to investigate the function of piezo-type mechanosensitive ion channel component 1 (PIEZO1) and its potential regulatory mechanism in DR progression. PIEZO1 expression was up-regulated in the retinal tissues of streptozotocin-induced diabetic mice and high-glucose (HG)-triggered Müller cells. Functionally, the knockdown of PIEZO1 improved the abnormal retinal function of diabetic mice and impeded inflammatory cytokine secretion and gliosis of Müller cells under HG conditions. Mechanistic investigations using RNA immunoprecipitation-real-time quantitative PCR, methylation RNA immunoprecipitation-real-time quantitative PCR, and luciferase reporter assays demonstrated that PIEZO1 was a downstream target of methyltransferase-like 3 (METTL3). METTL3-mediated N6-methyladenosine (m6A) modification within the coding sequence of PIEZO1 mRNA significantly shortened its half-life. In HG-stimulated cells, there was a negative regulatory relationship between PIEZO1 and YTH (YT521-B homology) domain family 2 (YTHDF2), a recognized m6A reader. The loss of YTHDF2 resulted in an extended half-life of PIEZO1 in cells with overexpression of METTL3, indicating that the effect of METTL3 on the mRNA stability of PIEZO1 was dependent on YTHDF2. Taken together, this study demonstrated the protective role of the PIEZO1 silencing in DR development, and that the degradation of PIEZO1 mRNA is accelerated by METTL3/YTHDF2-mediated m6A modification.
Collapse
Affiliation(s)
- Ning Han
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Na Yu
- Department of Blood Transfusion, The Second Hospital of Jilin University, Changchun, China
| | - Li Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Nie G, Li Y, Zhao H, Liu C, Zhang Y, Yang X, Tian F, Wen X. Inflammatory microenvironment promotes extracellular matrix degradation of chondrocytes through ALKBH5-dependent Runx2 m 6A modification in the pathogenesis of osteoarthritis. Int Immunopharmacol 2025; 144:113638. [PMID: 39580858 DOI: 10.1016/j.intimp.2024.113638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the breakdown of cartilage and extracellular matrix (ECM). The degradation of ECM in chondrocytes plays a crucial role in OA pathogenesis, but the underlying molecular mechanisms remain largely unclear. METHODS A sodium monoiodoacetate (MIA) mouse model was used to mimic OA. ECM integrity was accessed by Hematoxylin and Eosin (H&E) staining, Safranin O/fast green staining, and microcomputerized tomography. Enzyme-linked immunosorbent assay measured circulating proinflammatory cytokines. Reverse transcription-quantitative polymerase chain reaction and western blotting analyzed mRNA and protein expression levels. RNA and chromatin immunoprecipitation evaluated RNA-protein and DNA-protein interactions. RESULTS MIA mice showed significant upregulation of the RNA m6A demethylase ALKBH5 (alkylated DNA repair protein AlkB homolog 5), the transcription factor Runx2 (runt-related transcription factor 2), and matrix-degrading enzymes Mmps (matrix metallopeptidase) and Adamts(s) (a disintegrin and metalloproteinase with thrombospondin motifs). In vitro, proinflammatory cytokines induced these proteins in chondrocytes. Mechanically, Alkbh5 cooperated with Ythdf1 (YTH N6-methyladenosine RNA binding protein 1) in the inflammatory microenvironment to regulate the expression and stability of RUNX2 mRNA. Runx2, in turn, activated the expression of MMPs and ADAMTSs, promoting ECM degradation in chondrocytes, thereby contributing to OA progression. Notably, inhibition of Alkbh5 and Runx2 in MIA-treated mice significantly alleviated the pathological progression of OA. CONCLUSION Our results reveal a novel mechanism of OA pathogenesis and suggest that targeting Alkbh5 and Runx2 may represent a new therapeutic strategy for OA treatment.
Collapse
Affiliation(s)
- Guanghua Nie
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yi Li
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chengyi Liu
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Zhang
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinquan Yang
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Feng Tian
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaodong Wen
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
5
|
Zhou X, Wu Y, Song Y, Wang B, Cai Y, Miao C. Mechanistic and therapeutic insights into the function of N6-methyladenosine in arthritic diseases. Inflamm Res 2025; 74:7. [PMID: 39762508 DOI: 10.1007/s00011-024-01969-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/22/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE Arthritis is a class of diseases, characterized by joint and surrounding inflammation, accompanied by joint swelling, pain, dysfunction. According to different factors, arthritis can be divided into osteoarthritis, rheumatoid arthritis, ankylosing spondylitis and so on. N6-methyladenosine (m6A) is the most common internal modification of eukaryotic mRNA and is involved in splicing, stabilization, output and degradation of RNA metabolism. This review systematically summarized current insights into the mechanism of m6A in arthritis. METHODS The studies related to the involvement of m6A in the pathogenesis of arthritis reported in PubMed, Google scholar, and other open source literatures were investigated to evaluate the important roles of m6A in arhtritis, and the clinical relevances. RESULTS AND CONCLUSIONS M6A methylation regulators play the roles of writers, erasers, and readers, are crucial for regulating gene expression, and play important roles in many biological processes such as virus replication and cell differentiation. In addition, more and more studies have shown that m6A is closely related to the development of arthritis. As a new therapeutic target for arthritis, m6A has a wide influence on the pathological mechanism of arthritis. However, further research is needed to determine how m6A affects arthritis pathology and its use in target therapy and diagnosis.
Collapse
Affiliation(s)
- Xinyue Zhou
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, China
| | - Yajie Wu
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, China
| | - Yingqiu Song
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, China
| | - Bing Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, China
| | - Yikang Cai
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, China
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, China.
- Institute of Prevention and Treatment of Rheumatoid Arthritis, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, Hong Kong SAR, China.
| |
Collapse
|
6
|
Bao T, Liao T, Cai X, Lu B, Dai G, Pei S, Zhang Y, Li Y, Xu B. METTL3 mediated ferroptosis in chondrocytes and promoted pain in KOA via HMGB1 m6A modification. Cell Biol Int 2024; 48:1755-1765. [PMID: 39129231 DOI: 10.1002/cbin.12229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Methyltransferase-like 3 (METTL3) plays a role in the development of knee osteoarthritis (KOA). However, the mechanism underlying the role of METTL3 in KOA is unclear. This work investigated the effects of MELLT3 on ferroptosis and pain relief in in vitro and in vivo KOA models. Chondrocytes were treated with 10 ng/mL interleukin-1β (IL-1β) or 5 μM Erastin (ferroptosis inducer). IL-1β or Erastin treatment inhibited cell viability and glutathione levels; increased Fe2+, lipid reactive oxygen species and malondialdehyde production; and decreased glutathione peroxidase 4, ferritin light chain and solute carrier family 7 member 11 levels. The overexpression of METTL3 facilitated the N6-methyladenosine methylation of high mobility group box 1 (HMGB1). HMGB1 overexpression reversed the effect of sh-METTL3 on IL-1β-treated chondrocytes. A KOA rat model was established by the injection of monosodium iodoacetate into the joints and successful model establishment was confirmed by haematoxylin and eosin staining and Safranin O/Fast Green staining. METTL3 depletion alleviated cartilage damage, the inflammatory response, ferroptosis and knee pain in KOA model rats, and these effects were reversed by the addition of HMGB1. In conclusion, METTL3 depletion inhibited ferroptosis and the inflammatory response, and ameliorated cartilage damage and knee pain during KOA progression by regulating HMGB1.
Collapse
Affiliation(s)
- Tianchi Bao
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Taiyang Liao
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xuefeng Cai
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Binjie Lu
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Gaole Dai
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Shuai Pei
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yunqing Zhang
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yuwei Li
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Bo Xu
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| |
Collapse
|
7
|
Chen X, Yuan Y, Zhou F, Li L, Pu J, Jiang X. RNA modification in normal hematopoiesis and hematologic malignancies. MedComm (Beijing) 2024; 5:e787. [PMID: 39445003 PMCID: PMC11496571 DOI: 10.1002/mco2.787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotic cells. Previous studies have shown that m6A plays a critical role under both normal physiological and pathological conditions. Hematopoiesis and differentiation are highly regulated processes, and recent studies on m6A mRNA methylation have revealed how this modification controls cell fate in both normal and malignant hematopoietic states. However, despite these insights, a comprehensive understanding of its complex roles between normal hematopoietic development and malignant hematopoietic diseases remains elusive. This review first provides an overview of the components and biological functions of m6A modification regulators. Additionally, it highlights the origin, differentiation process, biological characteristics, and regulatory mechanisms of hematopoietic stem cells, as well as the features, immune properties, and self-renewal pathways of leukemia stem cells. Last, the article systematically reviews the latest research advancements on the roles and mechanisms of m6A regulatory factors in normal hematopoiesis and related malignant diseases. More importantly, this review explores how targeting m6A regulators and various signaling pathways could effectively intervene in the development of leukemia, providing new insights and potential therapeutic targets. Targeting m6A modification may hold promise for achieving more precise and effective leukemia treatments.
Collapse
Affiliation(s)
- Xi Chen
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Yixiao Yuan
- Department of MedicineUF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
- Department of Medicine and Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Fan Zhou
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Jun Pu
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Xiulin Jiang
- Department of MedicineUF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
- Department of Medicine and Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
8
|
van Vroonhoven ECN, Picavet LW, Scholman RC, Sijbers LJPM, Kievit CRE, van den Dungen NAM, Mokry M, Evers A, Lebbink RJ, Mocholi E, Coffer PJ, Calis JJA, Vastert SJ, van Loosdregt J. N6-methyladenosine promotes TNF mRNA degradation in CD4+ T lymphocytes. J Leukoc Biol 2024; 116:807-815. [PMID: 38657004 DOI: 10.1093/jleuko/qiae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
N6-methyladenosine (m6A) is a RNA modification that can regulate post-transcriptional processes including RNA stability, translation, splicing, and nuclear export. In CD4+ lymphocytes, m6A modifications have been demonstrated to play a role in early differentiation processes. The role of m6A in CD4+ T cell activation and effector function remains incompletely understood. To assess the role of m6A in CD4+ T lymphocyte activation and function, we assessed the transcriptome-wide m6A landscape of human primary CD4+ T cells by methylated RNA immunoprecipitation sequencing. Stimulation of the T cells impacted the m6A pattern of hundreds of transcripts including tumor necrosis factor (TNF). m6A methylation was increased on TNF messenger RNA (mRNA) after activation, predominantly in the 3' untranslated region of the transcript. Manipulation of m6A levels in primary human T cells, the directly affected the expression of TNF. Furthermore, we identified that the m6A reader protein YTHDF2 binds m6A-methylated TNF mRNA, and promotes its degradation. Taken together, this study demonstrates that TNF expression in CD4+ T lymphocytes is regulated via m6A and YTHDF2, thereby providing novel insight into the regulation of T cell effector functions.
Collapse
Affiliation(s)
- Ellen C N van Vroonhoven
- Center for Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Lucas W Picavet
- Center for Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Rianne C Scholman
- Center for Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Lyanne J P M Sijbers
- Center for Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Corlinda R E Kievit
- Center for Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Noortje A M van den Dungen
- Department of Experimental Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Michal Mokry
- Department of Experimental Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Anouk Evers
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Robert J Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Enric Mocholi
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Paul J Coffer
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Jorg J A Calis
- Center for Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Sebastiaan J Vastert
- Center for Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
- Department of Pediatric Rheumatology and Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| |
Collapse
|
9
|
Zhou H, Xie Z, Qian Y, Ni W, Cui L, Fang X, Wan S, Zhao X, Qin A, Fan S, Wu Y. FTO-mediated SMAD2 m6A modification protects cartilage against Osteoarthritis. Exp Mol Med 2024; 56:2283-2295. [PMID: 39363112 PMCID: PMC11542000 DOI: 10.1038/s12276-024-01330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 10/05/2024] Open
Abstract
N6-methyladenosine (m6A) modification is one of the most prevalent forms of epigenetic modification and plays an important role in the development of degenerative diseases such as osteoarthritis (OA). However, the evidence concerning the role of m6A modification in OA is insufficient. Here, m6A modification was increased in human OA cartilage and degenerated chondrocytes. Among all of the m6A enzymes, the expression of the demethylase fat mass and obesity-associated protein (FTO) decreased dramatically. Conditional knockout of FTO in chondrocytes accelerates OA progression. FTO transcription is regulated by runt-related transcription factor-1 (RUNX1). Reduced FTO elevates m6A modification at the adenosine N6 position in SMAD family member 2 (SMAD2) mRNA, whose stability is subsequently modulated by the recruited m6A reader protein YTH N6-methyladenosine RNA binding protein F2 (YTHDF2). Collectively, these findings reveal the function and mechanism of the m6A family member FTO in OA progression. Therefore, reducing m6A modification to increase SMAD2 stability by activating FTO might be a potential therapeutic strategy for OA treatment.
Collapse
Affiliation(s)
- Hongyi Zhou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yu Qian
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Weiyu Ni
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Lei Cui
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shuanglin Wan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiangde Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Yizheng Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
10
|
Zhang Q, Yang X, Deng X, Niu H, Zhao Y, Wen J, Wang S, Liu H, Guo X, Wu C. Transcriptome-wide RNA m6A methylation profiles in an endemic osteoarthropathy, Kashin-Beck disease. J Cell Mol Med 2024; 28:e70047. [PMID: 39428571 PMCID: PMC11491295 DOI: 10.1111/jcmm.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/12/2024] [Accepted: 08/20/2024] [Indexed: 10/22/2024] Open
Abstract
Kashin-Beck disease (KBD) is a chronic degenerative, disabling disease of the bones and joints and its exact aetiology and pathogenesis remain uncertain. This study is to investigate the role of m6A modification in the pathogenesis of KBD. Combined analysis of m6A MeRIP-Seq and RNA-Seq were used to analyse human peripheral blood samples from three KBD patients and three normal controls (NC). Bioinformatic methods were used to analyse m6A-modified differential genes and RT-qPCR was performed to validate the mRNA expression of several KBD-related genes. The results indicated that the total of 16,811 genes were modified by m6A in KBD group, of which 4882 genes were differential genes. A large number of differential genes were associated with regulation of transcription, signal transduction and protein binding. KEGG analysis showed that m6A-enriched genes participated the pathways of Vitamin B6 metabolism, endocytosis and Rap 1 signalling pathway. There was a positive association between m6A abundance and levels of gene expression, that there were 6 hypermethylated and upregulated genes (hyper-up), 23 hypomethylated and downregulated genes (hypo-down) in KBD group compared with NC. In addition, the mRNA expression of levels of MMP8, IL32 and GPX1 were verified and the protein-protein interaction networks of these key factors were constructed. Our study showed that m6A modifications may play a vital role in modulating gene expression, which represents a new clue to reveal the pathogenesis of KBD.
Collapse
Affiliation(s)
- Qian Zhang
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Xiaodong Yang
- Shaanxi Provincial Institute for Endemic Disease Prevention and ControlXi'anPeople's Republic of China
| | - Xingxing Deng
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Hui Niu
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Yijun Zhao
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Jinfeng Wen
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Sen Wang
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Huan Liu
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Xiong Guo
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Cuiyan Wu
- School of Public Health, Health Science CenterKey Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| |
Collapse
|
11
|
Wang L, Shao T, Liu C, Han Z, Zhang S, Dong Y, Han T, Cheng B, Ren W. Liensinine inhibits IL-1β-stimulated inflammatory response in chondrocytes and attenuates papain-induced osteoarthritis in rats. Int Immunopharmacol 2024; 138:112601. [PMID: 38971106 DOI: 10.1016/j.intimp.2024.112601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Osteoarthritis (OA) is a joint disease caused by inflammation of cartilage and synovial tissue. Suppressing the process of inflammatory reaction and the generation of oxidative stress is an effective strategy to alleviate the progression of OA. Liensinine is one of the main components of lotus seeds, which has anti-hypertensive and anti-arrhythmia activities. In this study, we aimed to determine the anti-inflammatory effect of liensinine in an OA. Here, we found that liensinine significantly inhibited the inflammatory response of SW1353 cells and primary chondrocytes by inhibiting the release of inflammatory cytokines and oxidative stress. Moreover, we showed that liensinine was able to inhibit the activation of the NF-κB signaling pathway in IL-1β-induced SW1353 cells. Lastly, we found that liensinine significantly ameliorated cartilage damage and inflammatory response in papain-induced rats. Our study demonstrated a significant protective effect of liensinine against OA, which might be by inhibiting the activation of the NF-κB signaling pathway, and provide a new insight for the treatment of OA using liensinine.
Collapse
Affiliation(s)
- Lei Wang
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, Henan, China; Xinxiang Key Laboratory of Cellular Stress Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Tianci Shao
- Xinxiang Key Laboratory of Cellular Stress Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Chen Liu
- Xinxiang Key Laboratory of Cellular Stress Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Ziyu Han
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Shenghui Zhang
- Xinxiang Key Laboratory of Cellular Stress Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yuqian Dong
- Xinxiang Key Laboratory of Cellular Stress Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Tao Han
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Binfeng Cheng
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Xinxiang Key Laboratory of Cellular Stress Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China.
| | - Wenjie Ren
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China; Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, Henan, China.
| |
Collapse
|
12
|
Liu L, Yu L, Wang Y, Zhou L, Liu Y, Pan X, Huang J. Unravelling the impact of RNA methylation genetic and epigenetic machinery in the treatment of cardiomyopathy. Pharmacol Res 2024; 207:107305. [PMID: 39002868 DOI: 10.1016/j.phrs.2024.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Cardiomyopathy (CM) represents a heterogeneous group of diseases primarily affecting cardiac structure and function, with genetic and epigenetic dysregulation playing a pivotal role in its pathogenesis. Emerging evidence from the burgeoning field of epitranscriptomics has brought to light the significant impact of various RNA modifications, notably N6-methyladenosine (m6A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N1-methyladenosine (m1A), 2'-O-methylation (Nm), and 6,2'-O-dimethyladenosine (m6Am), on cardiomyocyte function and the broader processes of cardiac and vascular remodelling. These modifications have been shown to influence key pathological mechanisms including mitochondrial dysfunction, oxidative stress, cardiomyocyte apoptosis, inflammation, immune response, and myocardial fibrosis. Importantly, aberrations in the RNA methylation machinery have been observed in human CM cases and animal models, highlighting the critical role of RNA methylating enzymes and their potential as therapeutic targets or biomarkers for CM. This review underscores the necessity for a deeper understanding of RNA methylation processes in the context of CM, to illuminate novel therapeutic avenues and diagnostic tools, thereby addressing a significant gap in the current management strategies for this complex disease.
Collapse
Affiliation(s)
- Li Liu
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Baise 533000, China; Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Linxing Yu
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yubo Wang
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Liufang Zhou
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yan Liu
- Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xingshou Pan
- Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China; Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Jianjun Huang
- Youjiang Medical University for Nationalities, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
| |
Collapse
|
13
|
Yu H, Lou J, Ni L, Yan M, Zhu K, Mao S, Zhu J. Isoquercetin Ameliorates Osteoarthritis via Nrf2/NF-κB Axis: An In Vitro and In Vivo Study. Chem Biol Drug Des 2024; 104:e14620. [PMID: 39251394 DOI: 10.1111/cbdd.14620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 09/11/2024]
Abstract
Osteoarthritis (OA) is a progressive joint disease characterized by extracellular matrix (ECM) degradation and inflammation, which is involved with pathological microenvironmental alterations induced by damaged chondrocytes. However, current therapies are not effective in alleviating the progression of OA. Isoquercetin is a natural flavonoid glycoside compound that has various pharmacological effects including anticancer, anti-diabetes and blood lipid regulation. Previous evidence suggests that isoquercetin has anti-inflammatory properties in various diseases, but its effect on OA has not been investigated yet. In this study, through western bolt, qRT-PCR and ELISA, it was found that isoquercetin could reduce the increase of ADAMTS5, MMP13, COX-2, iNOS and IL-6 induced by IL-1β, suggesting that isoquercetin could inhibit the inflammation and ECM degradation of chondrocytes. Through nuclear-plasma separation technique, western blot and immunocytochemistry, it can be found that Nrf2 and NF-κB pathways are activated in this process, and isoquercetin may rely on this process to play its protective role. In vivo, the results of X-ray and SO staining show that intra-articular injection of isoquercetin reduces the degradation of cartilage in the mouse OA model. In conclusion, the present work suggests that isoquercetin may benefit chondrocytes by regulating the Nrf2/NF-κB signaling axis, which supports isoquercetin as a potential drug for the treatment of OA.
Collapse
Affiliation(s)
- He Yu
- Department of Orthopaedics, Zhejiang Hospital, Zhejiang, Hangzhou, China
| | - Junsheng Lou
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Libin Ni
- Department of Orthopaedics, Zhejiang Hospital, Zhejiang, Hangzhou, China
| | - Minwei Yan
- Department of Orthopaedics, Zhejiang Hospital, Zhejiang, Hangzhou, China
| | - Kewu Zhu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Su Mao
- Department of Orthopaedics, Zhejiang Hospital, Zhejiang, Hangzhou, China
| | - Jungao Zhu
- Department of Orthopaedics, Zhejiang Hospital, Zhejiang, Hangzhou, China
| |
Collapse
|
14
|
Sheng R, Meng W, Zhang Z, Yin Q, Jiang S, Li Q, Gan X, Zhang D, Zhou Z, Lin S, Lyu M, Yang X, Yuan Q. METTL3 regulates cartilage development and homeostasis by affecting Lats1 mRNA stability in an m 6A-YTHDF2-dependent manner. Cell Rep 2024; 43:114535. [PMID: 39088322 DOI: 10.1016/j.celrep.2024.114535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 08/03/2024] Open
Abstract
Cartilage maintains the structure and function of joints, with disturbances leading to potential osteoarthritis. N6-methyladenosine (m6A), the most widespread post-transcriptional modification in eukaryotes, plays a crucial role in regulating biological processes. While current research has indicated that m6A affects the progression of osteoarthritis, its function in the development and homeostasis of articular cartilage remains unclear. Here we report that Mettl3 deficiency in chondrocytes leads to mandibular condylar cartilage morphological alterations, early temporomandibular joint osteoarthritis, and diminished adaptive response to abnormal mechanical stimuli. Mechanistically, METTL3 modulates Lats1 mRNA methylation and facilitates its degradation in an m6A-YTHDF2-dependent manner, which subsequently influences the degradation and nuclear translocation of YAP1. Intervention with the Hippo pathway inhibitor XMU-MP-1 alleviates condylar abnormality caused by Mettl3 knockout. Our findings demonstrate the role of METTL3 in cartilage development and homeostasis, offering insights into potential treatment strategies for osteoarthritis.
Collapse
Affiliation(s)
- Rui Sheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Weikun Meng
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhong Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qi Yin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuang Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiwen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinyan Gan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Danting Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zongke Zhou
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuibin Lin
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Mingyue Lyu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xingmei Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Deng W, Zhou Y, Wan Q, Li L, Deng H, Yin Y, Zhou Q, Li Q, Cheng D, Hu X, Wang Y, Feng G. Nano-enzyme hydrogels for cartilage repair effectiveness based on ternary strategy therapy. J Mater Chem B 2024; 12:6242-6256. [PMID: 38842217 DOI: 10.1039/d4tb00307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Designing artificial nano-enzymes for scavenging reactive oxygen species (ROS) in chondrocytes (CHOs) is considered the most feasible pathway for the treatment of osteoarthritis (OA). However, the accumulation of ROS due to the amount of nano-enzymatic catalytic site exposure and insufficient oxygen supply seriously threatens the clinical application of this therapy. Although metal-organic framework (MOF) immobilization of artificial nano-enzymes to enhance active site exposure has been extensively studied, artificial nano-enzymes/MOFs for ROS scavenging in OA treatment are still lacking. In this study, a biocompatible lubricating hydrogel-loaded iron-doped zeolitic imidazolate framework-8 (Fe/ZIF-8/Gel) centrase was engineered to scavenge endogenous overexpressed ROS synergistically generating dissolved oxygen and enhancing sustained lubrication for CHOs as a ternary artificial nano-enzyme. This property enabled the nano-enzymatic hydrogels to mitigate OA hypoxia and inhibit oxidative stress damage successfully. Ternary strategy-based therapies show excellent cartilage repair in vivo. The experimental results suggest that nano-enzyme-enhanced lubricating hydrogels are a potentially effective OA treatment and a novel strategy.
Collapse
Affiliation(s)
- Wei Deng
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 17 Gaopeng Avenue, Chengdu 610041, China.
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China
| | - Yue Zhou
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinlin Wan
- Medical College of Soochow University, Suzhou, 215123, China
| | - Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Hui Deng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yong Yin
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China
| | - Qingsong Zhou
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China
| | - Qiujiang Li
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 17 Gaopeng Avenue, Chengdu 610041, China.
| | - Duo Cheng
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Ganjun Feng
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 17 Gaopeng Avenue, Chengdu 610041, China.
| |
Collapse
|
16
|
Thakore VP, Patel KD, Vora HH, Patel PS, Jain NK. Up-regulation of extracellular-matrix and inflammation related genes in oral squamous cell carcinoma. Arch Oral Biol 2024; 161:105925. [PMID: 38442470 DOI: 10.1016/j.archoralbio.2024.105925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVE Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy with late-presentation, site-specific heterogeneity, and high-propensity for recurrence/metastasis that has shown rise in mortality. Lately, research emphasize on dynamic interactions between tumor-cells and extracellular-matrix components within tumor-microenvironment that promote tissue integrity loss and carcinogenesis. Therefore, OSCC clinical-management is still challenging. DESIGN Present study validated clinical utility of a 13 gene-panel in two chief sub-sites of OSCC: Buccal mucosa squamous cell carcinoma (BMSCC) (N = 50) and Tongue squamous cell carcinoma (TSCC) (N = 52) using qRT-PCR. Principal component analysis and binary logistic regression analysis were applied to acquire definite multi gene models. Protein expression analysis was employed using the Human Protein Atlas, UALCAN and TIMER 2.0 databases to explore potential correlation between immune cells and gene-panels. RESULTS Significant up-regulation of CXCL8, CXCL10, FN1, GBP1, IFIT3, ISG15, MMP1, MMP3, MMP10, PLAU, SERPINE1 and SPP1 except OASL was observed in OSCC tissue in comparison of absolute normal controls. Although, this gene-panel could potentially discriminate OSCC tissues from absolute normal controls as solitarily diagnostic and/or predictive biomarkers, models generated also showed substantial discriminating efficacy. Eight-genes were found to be significantly associated with poor-prognosis on clinico-pathological association. Protein-expression confirmed overexpression of gene-panel and added advantage of being secretory-protein. Importantly, up-regulated genes in our study showed significant relation with immune-cells infiltration suggesting their contribution in immune-escape. CONCLUSION Thus, we propose that the 13 gene-panel could pave the way to effective and personalized clinical-management of OSCC in terms of diagnostic and prognostic measures and thereby as therapeutic targets.
Collapse
Affiliation(s)
- Vaidehi P Thakore
- Life Science Department, School of Science, Gujarat University, Ahmedabad 380009, Gujarat, India; Cancer Biology Department, The Gujarat Cancer & Research Institute, Civil, Ahmedabad, Gujarat, India
| | - Kinjal D Patel
- Cancer Biology Department, The Gujarat Cancer & Research Institute, Civil, Ahmedabad, Gujarat, India
| | - Hemangini H Vora
- Cancer Biology Department, The Gujarat Cancer & Research Institute, Civil, Ahmedabad, Gujarat, India
| | - Prabhudas S Patel
- Cancer Biology Department, The Gujarat Cancer & Research Institute, Civil, Ahmedabad, Gujarat, India
| | - Nayan K Jain
- Life Science Department, School of Science, Gujarat University, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
17
|
Zhang Q, Li J, Wang C, Li Z, Luo P, Gao F, Sun W. N6-Methyladenosine in Cell-Fate Determination of BMSCs: From Mechanism to Applications. RESEARCH (WASHINGTON, D.C.) 2024; 7:0340. [PMID: 38665846 PMCID: PMC11045264 DOI: 10.34133/research.0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/21/2024] [Indexed: 04/28/2024]
Abstract
The methylation of adenosine base at the nitrogen-6 position is referred to as "N6-methyladenosine (m6A)" and is one of the most prevalent epigenetic modifications in eukaryotic mRNA and noncoding RNA (ncRNA). Various m6A complex components known as "writers," "erasers," and "readers" are involved in the function of m6A. Numerous studies have demonstrated that m6A plays a crucial role in facilitating communication between different cell types, hence influencing the progression of diverse physiological and pathological phenomena. In recent years, a multitude of functions and molecular pathways linked to m6A have been identified in the osteogenic, adipogenic, and chondrogenic differentiation of bone mesenchymal stem cells (BMSCs). Nevertheless, a comprehensive summary of these findings has yet to be provided. In this review, we primarily examined the m6A alteration of transcripts associated with transcription factors (TFs), as well as other crucial genes and pathways that are involved in the differentiation of BMSCs. Meanwhile, the mutual interactive network between m6A modification, miRNAs, and lncRNAs was intensively elucidated. In the last section, given the beneficial effect of m6A modification in osteogenesis and chondrogenesis of BMSCs, we expounded upon the potential utility of m6A-related therapeutic interventions in the identification and management of human musculoskeletal disorders manifesting bone and cartilage destruction, such as osteoporosis, osteomyelitis, osteoarthritis, and bone defect.
Collapse
Affiliation(s)
- Qingyu Zhang
- Department of Orthopedics,
Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250021, China
| | - Junyou Li
- School of Mechanical Engineering,
Sungkyunkwan University, Suwon 16419, South Korea
| | - Cheng Wang
- Department of Orthopaedic Surgery,
Peking UniversityThird Hospital, Peking University, Beijing 100191, China
| | - Zhizhuo Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital,
the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Pan Luo
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Fuqiang Gao
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wei Sun
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing 100029, China
- Department of Orthopaedic Surgery of the Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Mi H, Wang M, Chang Y. The potential impact of polymorphisms in METTL3 gene on knee osteoarthritis susceptibility. Heliyon 2024; 10:e28035. [PMID: 38560129 PMCID: PMC10981020 DOI: 10.1016/j.heliyon.2024.e28035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Objective This study was aimed to explore the correlation between METTL3 polymorphisms and susceptibility to knee osteoarthritis (KOA). Methods The relationship of five single nucleotide polymorphisms (SNPs) in the METTL3 gene with the susceptibility of KOA was analyzed through multinomial logistic regression analysis in this a case-control study. Genotyping was performed on 228 KOA patients and 252 unaffected individuals from South China based on the TaqMan method. The MDR software (version 3.0.2) was utilized for the analysis of SNP interactions. Results Out of the five SNPs examined, the T > G change in the METTL3 gene at the rs1061026 locus increased the risk of KOA, while rs1139130 A > G and rs1263802 C > T variants were found to be linked with a reduced risk of developing KOA with statistical significance. The rs1061027 A > C and rs1263801 C > G variants did not show significant association (p>0.05). The rs1061026 TG/GG genotype showed a significant correlation with an increased risk of KOA in the following subgroups: the males, individuals with a BMI ranging from 24 to 28, smokers, those who were not engaged in physical exercise (PE), patients who had experienced KOA symptoms for eight years or longer, and those without a family history of the disease or reported swelling. On the other hand, the rs1139130 AG/GG genotype demonstrated a protective effect against KOA among the females, individuals with a BMI greater than or equal to 24, a unilateral KOA, or a KOA duration of 8 years or less, non-smokers, non-alcohol drinkers, those who were not engaged in PE, and those who had no injury or family history, or no experience of knee swelling. Additionally, it was observed that the rs1263802 CT/TT genotypes showed a protective effect among patients without a history of injury. Furthermore, individuals with the haplotypes GAT, GGC, TAT, and TGC were found to have a significantly lower susceptibility to KOA compared to the reference haplotype TAC. Conclusions The METTL3 gene variant rs1061026 could increase the risk of KOA, whereas the variants of rs1139130 as well as rs1263802 might exert a protective effect against KOA. These variants could potentially function as susceptibility markers for KOA among the population from South China.
Collapse
Affiliation(s)
- Houlin Mi
- Department of Orthopedics, South China Hospital Affiliated to Shenzhen University, 1# Fuxin Road, Longgang District, Shenzhen City, Guangdong Province, 518111, China
| | - Mingzhi Wang
- Department of Thoracic Surgery, Guangdong Second Provincial General Hospital, 466# Xingang Middle Road, Haizhu District, Guangzhou City, Guangdong Province, 510006, China
| | - Yongmei Chang
- Department of Respiratory Medicine, Guangdong Second Provincial General Hospital, 466# Xingang Middle Road, Haizhu District, Guangzhou City, Guangdong Province, 510006, China
| |
Collapse
|
19
|
Liang J, Yi Q, Liu Y, Li J, Yang Z, Sun W, Sun W. Recent advances of m6A methylation in skeletal system disease. J Transl Med 2024; 22:153. [PMID: 38355483 PMCID: PMC10868056 DOI: 10.1186/s12967-024-04944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Skeletal system disease (SSD) is defined as a class of chronic disorders of skeletal system with poor prognosis and causes heavy economic burden. m6A, methylation at the N6 position of adenosine in RNA, is a reversible and dynamic modification in posttranscriptional mRNA. Evidences suggest that m6A modifications play a crucial role in regulating biological processes of all kinds of diseases, such as malignancy. Recently studies have revealed that as the most abundant epigentic modification, m6A is involved in the progression of SSD. However, the function of m6A modification in SSD is not fully illustrated. Therefore, make clear the relationship between m6A modification and SSD pathogenesis might provide novel sights for prevention and targeted treatment of SSD. This article will summarize the recent advances of m6A regulation in the biological processes of SSD, including osteoporosis, osteosarcoma, rheumatoid arthritis and osteoarthritis, and discuss the potential clinical value, research challenge and future prospect of m6A modification in SSD.
Collapse
Affiliation(s)
- Jianhui Liang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646099, Sichuan, China
| | - Yang Liu
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Jiachen Li
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Zecheng Yang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
20
|
Cheng C, Yu F, Yuan G, Jia J. Update on N6-methyladenosine methylation in obesity-related diseases. Obesity (Silver Spring) 2024; 32:240-251. [PMID: 37989724 DOI: 10.1002/oby.23932] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 11/23/2023]
Abstract
Obesity is a chronic metabolic disease that is closely related to type 2 diabetes mellitus, cardiovascular diseases, nonalcoholic fatty liver disease, obstructive sleep apnea, and osteoarthritis. The prevalence of obesity is increasing rapidly every year and is recognized as a global public health problem. In recent years, the role of epigenetics in the development of obesity and related diseases has been recognized and is currently a research hotspot. N6-methyladenosine (m6A) methylation is the most abundant epigenetic modification in the eukaryotic RNA, including mRNA and noncoding RNA. Several studies have shown that the m6A modifications in the target mRNA and the corresponding m6A regulators play a significant role in lipid metabolism and are strongly associated with the pathogenesis of obesity-related diseases. In this review, the latest research findings regarding the role of m6A methylation in obesity and related metabolic diseases are summarized. The authors' aim is to highlight evidence that suggests the clinical utility of m6A modifications and the m6A regulators as novel early prediction biomarkers and precision therapeutics for obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Caiqin Cheng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University; Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fan Yu
- Department of Endocrinology and Metabolism, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University; Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jue Jia
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University; Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
21
|
An X, Wang R, Lv Z, Wu W, Sun Z, Wu R, Yan W, Jiang Q, Xu X. WTAP-mediated m 6A modification of FRZB triggers the inflammatory response via the Wnt signaling pathway in osteoarthritis. Exp Mol Med 2024; 56:156-167. [PMID: 38172596 PMCID: PMC10834961 DOI: 10.1038/s12276-023-01135-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 01/05/2024] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis. However, the exact pathogenesis remains unclear. Emerging evidence shows that N6-methyladenosine (m6A) modification may have an important role in OA pathogenesis. This study aimed to investigate the role of m6A writers and the underlying mechanisms in osteoarthritic cartilage. Among m6A methyltransferases, Wilms tumor 1-associated protein (WTAP) expression most significantly differed in clinical osteoarthritic cartilage. WTAP regulated extracellular matrix (ECM) degradation, inflammation and antioxidation in human chondrocytes. Mechanistically, the m6A modification and relative downstream targets in osteoarthritic cartilage were assessed by methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing, which indicated that the expression of frizzled-related protein (FRZB), a secreted Wnt antagonist, was abnormally decreased and accompanied by high m6A modification in osteoarthritic cartilage. In vitro dysregulated WTAP had positive effects on β-catenin expression by targeting FRZB, which finally contributed to the cartilage injury phenotype in chondrocytes. Intra-articular injection of adeno-associated virus-WTAP alleviated OA progression in a mouse model, while this protective effect could be reversed by the application of a Wnt/β-catenin activator. In summary, this study revealed that WTAP-dependent RNA m6A modification contributed to Wnt/β-catenin pathway activation and OA progression through post-transcriptional regulation of FRZB mRNA, thus providing a potentially effective therapeutic strategy for OA treatment.
Collapse
Affiliation(s)
- Xueying An
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P.R. China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, P.R. China
| | - Rongliang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P.R. China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, P.R. China
| | - Zhongyang Lv
- Department of Orthopedic, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, P.R. China
| | - Wenshu Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P.R. China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, P.R. China
| | - Ziying Sun
- Department of Orthopedic, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, P.R. China
| | - Rui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P.R. China
| | - Wenjin Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P.R. China.
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, P.R. China.
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P.R. China.
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, P.R. China.
| | - Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P.R. China.
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, P.R. China.
| |
Collapse
|
22
|
Li W, Li X, Gao Y, Xiong C, Tang Z. Emerging roles of RNA binding proteins in intervertebral disc degeneration and osteoarthritis. Orthop Surg 2023; 15:3015-3025. [PMID: 37803912 PMCID: PMC10694020 DOI: 10.1111/os.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 10/08/2023] Open
Abstract
The etiology of intervertebral disc degeneration (IDD) and osteoarthritis (OA) is complex and multifactorial. Both predisposing genes and environmental factors are involved in the pathogenesis of IDD and OA. Moreover, epigenetic modifications affect the development of IDD and OA. Dysregulated phenotypes of nucleus pulposus (NP) cells and OA chondrocytes, including apoptosis, extracellular matrix disruption, inflammation, and angiogenesis, are involved at all developmental stages of IDD and OA. RNA binding proteins (RBPs) have recently been recognized as essential post-transcriptional regulators of gene expression. RBPs are implicated in many cellular processes, such as proliferation, differentiation, and apoptosis. Recently, several RBPs have been reported to be associated with the pathogenesis of IDD and OA. This review briefly summarizes the current knowledge on the RNA-regulatory networks controlled by RBPs and their potential roles in the pathogenesis of IDD and OA. These initial findings support the idea that specific modulation of RBPs represents a promising approach for managing IDD and OA.
Collapse
Affiliation(s)
- Wen Li
- Department of EmergencyGeneral Hospital of Central Theater Command of PLAWuhanChina
| | - Xing‐Hua Li
- Department of EmergencyGeneral Hospital of Central Theater Command of PLAWuhanChina
| | - Yang Gao
- Department of OrthopaedicGeneral Hospital of Central Theater Command of PLAWuhanChina
| | - Cheng‐Jie Xiong
- Department of OrthopaedicGeneral Hospital of Central Theater Command of PLAWuhanChina
| | - Zhong‐Zhi Tang
- Department of EmergencyGeneral Hospital of Central Theater Command of PLAWuhanChina
| |
Collapse
|
23
|
Jin A, Li L, Zhao Y, Li M, Zhang S, Chen J, Li Y, Huang L, Ren H, Lu S, Yang X, Sun Q. Modulating the m6A Modified Transcription Factor GATA6 Impacts Epithelial Cytokines in Acute Lung Injury. Am J Respir Cell Mol Biol 2023; 69:521-532. [PMID: 37494067 DOI: 10.1165/rcmb.2022-0243oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/26/2023] [Indexed: 07/27/2023] Open
Abstract
The methylation of m6A (N6-position of adenosine) has been found to be associated with inflammatory response. We hypothesize that m6A modification plays a role in the inflammation of airway epithelial cells during lung inflammation. However, the precise changes and functions of m6A modification in airway epithelial cells in acute lung injury (ALI) are not well understood. Here we report that METTL3 (methyltransferase-like 3)-mediated m6A of GATA6 (GATA-binding factor 6) mRNA inhibits ALI and the secretion of proinflammatory cytokines in airway epithelial cells. The expression of METTL3 and m6A levels decrease in lung tissues of mice with ALI. In cocultures, peripheral blood monocytes secreted TNF-α, which reduces METTL3 and m6A levels in the human bronchial epithelial cell line BEAS-2B. Knockdown of METTL3 promotes IL-6 and TNF-α release in BEAS-2B cells. Conversely, overexpression of METTL3 increases total RNA m6A level and reduces the levels of proinflammatory cytokines TNF-α, transforming growth factor-β, and thymic stromal lymphopoietin. Increasing METTL3 in mouse lungs prevented LPS-induced ALI and reduced the synthesis of proinflammatory cytokines. Mechanistically, sequencing and functional analysis show that METTL3 catalyzes m6A in the 3' untranslated region of GATA6 read by YTH N6-Methyladenosine RNA Binding Protein 2 and triggers mRNA degradation. GATA6 knockdown rescues TNF-α-induced inflammatory cytokine secretion of epithelial cells, indicating that GATA6 is a main substrate of METTL3 in airway epithelial cells. Overall, this study provides evidence of a novel role for METTL3 in the inflammatory cytokine release of epithelial cells and provides an innovative therapeutic target for ALI.
Collapse
Affiliation(s)
- Ai Jin
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Li Li
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Yan Zhao
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Mei Li
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Shanshan Zhang
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Jian Chen
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Yuwen Li
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Lei Huang
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Hui Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China; and
| | - Xiaojun Yang
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Qingzhu Sun
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| |
Collapse
|
24
|
Tang Y, Liu Y, Zhu X, Chen Y, Jiang X, Ding S, Zheng Q, Zhang M, Yang J, Ma Y, Xing M, Zhang Z, Ding H, Jin Y, Ma C. ALKBH5-mediated m 6A demethylation of HS3ST3B1-IT1 prevents osteoarthritis progression. iScience 2023; 26:107838. [PMID: 37752950 PMCID: PMC10518728 DOI: 10.1016/j.isci.2023.107838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 06/15/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023] Open
Abstract
HS3ST3B1-IT1 was identified as a downregulated long noncoding RNA in osteoarthritic cartilage. However, its roles and mechanisms in the pathogenesis of osteoarthritis (OA) are unclear. In this study, we demonstrated that the expressions of HS3ST3B1-IT1 and its maternal gene HS3ST3B1 were downregulated and positively correlated in osteoarthritic cartilage. Overexpression of HS3ST3B1-IT1 significantly increased chondrocyte viability, inhibited chondrocyte apoptosis, and upregulated extracellular matrix (ECM) proteins, whereas HS3ST3B1-IT1 knockdown had the opposite effects. In addition, HS3ST3B1-IT1 significantly ameliorated monosodium-iodoacetate-induced OA in vivo. Mechanistically, HS3ST3B1-IT1 upregulated HS3ST3B1 expression by blocking its ubiquitination-mediated degradation. Knockdown of HS3ST3B1 reversed the effects of HS3ST3B1-IT1 on chondrocyte viability, apoptosis, and ECM metabolism. AlkB homolog 5 (ALKBH5)-mediated N6-methyladenosine (m6A) demethylation stabilized HS3ST3B1-IT1 RNA. Together, our data revealed that ALKBH5-mediated upregulation of HS3ST3B1-IT1 suppressed OA progression by elevating HS3ST3B1 expression, suggesting that HS3ST3B1-IT1/HS3ST3B1 may serve as potential therapeutic targets for OA treatment.
Collapse
Affiliation(s)
- Yuting Tang
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
| | - Yang Liu
- Department of Orthopedics, Nanjing First Hospital, Nanjing, P.R. China
| | - Xiaoshu Zhu
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
| | - Yanlin Chen
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
| | - Xinluan Jiang
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
| | - Siyang Ding
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
| | - Que Zheng
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
| | - Ming Zhang
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
| | - Jiashu Yang
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
| | - Yunfei Ma
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
| | - Mengying Xing
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
| | - Zongyu Zhang
- Department of Orthopedics, the Traditional Chinese Medical Hospital of Lianyungang, Lianyungang, P.R. China
| | - Huimin Ding
- Department of Orthopedics, BenQ Medical Center, the Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Yucui Jin
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
| | - Changyan Ma
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Longmian Road 101, Nanjing, P.R. China
| |
Collapse
|
25
|
Song B, Zeng Y, Cao Y, Zhang J, Xu C, Pan Y, Zhao X, Liu J. Emerging role of METTL3 in inflammatory diseases: mechanisms and therapeutic applications. Front Immunol 2023; 14:1221609. [PMID: 37671161 PMCID: PMC10475571 DOI: 10.3389/fimmu.2023.1221609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/27/2023] [Indexed: 09/07/2023] Open
Abstract
Despite improvements in modern medical therapies, inflammatory diseases, such as atherosclerosis, diabetes, non-alcoholic fatty liver, chronic kidney diseases, and autoimmune diseases have high incidence rates, still threaten human health, and represent a huge financial burden. N6-methyladenosine (m6A) modification of RNA contributes to the pathogenesis of various diseases. As the most widely discussed m6A methyltransferase, the pathogenic role of METTL3 in inflammatory diseases has become a research hotspot, but there has been no comprehensive review of the topic. Here, we summarize the expression changes, modified target genes, and pathogenesis related to METTL3 in cardiovascular, metabolic, degenerative, immune, and infectious diseases, as well as tumors. In addition to epithelial cells, endothelial cells, and fibroblasts, METTL3 also regulates the function of inflammation-related immune cells, including macrophages, neutrophils, dendritic cells, Th17 cells, and NK cells. Regarding therapeutic applications, METTL3 serves as a target for the treatment of inflammatory diseases with natural plant drug components, such as emodin, cinnamaldehyde, total flavonoids of Abelmoschus manihot, and resveratrol. This review focuses on recent advances in the initiation, development, and therapeutic application of METTL3 in inflammatory diseases. Knowledge of the specific regulatory mechanisms involving METTL3 can help to deepen understanding of inflammatory diseases and lay the foundation for the development of precisely targeted drugs to address inflammatory processes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jingbo Liu
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
26
|
Wang Y, Liu J, Wang Y. Role of TNF-α-induced m6A RNA methylation in diseases: a comprehensive review. Front Cell Dev Biol 2023; 11:1166308. [PMID: 37554306 PMCID: PMC10406503 DOI: 10.3389/fcell.2023.1166308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023] Open
Abstract
Tumor Necrosis Factor-alpha (TNF-α) is ubiquitous in the human body and plays a significant role in various physiological and pathological processes. However, TNF-α-induced diseases remain poorly understood with limited efficacy due to the intricate nature of their mechanisms. N6-methyladenosine (m6A) methylation, a prevalent type of epigenetic modification of mRNA, primarily occurs at the post-transcriptional level and is involved in intranuclear and extranuclear mRNA metabolism. Evidence suggests that m6A methylation participates in TNF-α-induced diseases and signaling pathways associated with TNF-α. This review summarizes the involvement of TNF-α and m6A methylation regulators in various diseases, investigates the impact of m6A methylation on TNF-α-induced diseases, and puts forth potential therapeutic targets for treating TNF-α-induced diseases.
Collapse
Affiliation(s)
- Youlin Wang
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jing Liu
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yongchen Wang
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- General Practice Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
27
|
Yang S, Zhou X, Jia Z, Zhang M, Yuan M, Zhou Y, Wang J, Xia D. Epigenetic regulatory mechanism of ADAMTS12 expression in osteoarthritis. Mol Med 2023; 29:86. [PMID: 37400752 DOI: 10.1186/s10020-023-00661-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/01/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative joint disease with lacking effective prevention targets. A disintegrin and metalloproteinase with thrombospondin motifs 12 (ADAMTS12) is a member of the ADAMTS family and is upregulated in OA pathologic tissues with no fully understood molecular mechanisms. METHODS The anterior cruciate ligament transection (ACL-T) method was used to establish rat OA models, and interleukin-1 beta (IL-1β) was administered to induce rat chondrocyte inflammation. Cartilage damage was analyzed via hematoxylin-eosin, Periodic Acid-Schiff, safranin O-fast green, Osteoarthritis Research Society International score, and micro-computed tomography assays. Chondrocyte apoptosis was detected by flow cytometry and TdT dUTP nick-end labeling. Signal transducer and activator of transcription 1 (STAT1), ADAMTS12, and methyltransferase-like 3 (METTL3) levels were detected by immunohistochemistry, quantitative polymerase chain reaction (qPCR), western blot, or immunofluorescence assay. The binding ability was confirmed by chromatin immunoprecipitation-qPCR, electromobility shift assay, dual-luciferase reporter, or RNA immunoprecipitation (RIP) assay. The methylation level of STAT1 was analyzed by MeRIP-qPCR assay. STAT1 stability was investigated by actinomycin D assay. RESULTS The STAT1 and ADAMTS12 expressions were significantly increased in the human and rat samples of cartilage injury, as well as in IL-1β-treated rat chondrocytes. STAT1 is bound to the promoter region of ADAMTS12 to activate its transcription. METTL3/ Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) mediated N6-methyladenosine modification of STAT1 promoted STAT1 mRNA stability, resulting in increased expression. ADAMTS12 expression was reduced and the IL-1β-induced inflammatory chondrocyte injury was attenuated by silencing METTL3. Additionally, knocking down METTL3 in ACL-T-produced OA rats reduced ADAMTS12 expression in their cartilage tissues, thereby alleviating cartilage damage. CONCLUSION METTL3/IGF2BP2 axis increases STAT1 stability and expression to promote OA progression by up-regulating ADAMTS12 expression.
Collapse
Affiliation(s)
- Shu Yang
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Xuanping Zhou
- Department of Orthopedics, The First-affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, 410005, People's Republic of China
| | - Zhen Jia
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Mali Zhang
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Minghao Yuan
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Yizhao Zhou
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Jing Wang
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China.
| | - Duo Xia
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China.
| |
Collapse
|
28
|
Zheng C, Chen J, Wu Y, Wang X, Lin Y, Shu L, Liu W, Wang P. Elucidating the role of ubiquitination and deubiquitination in osteoarthritis progression. Front Immunol 2023; 14:1217466. [PMID: 37359559 PMCID: PMC10288844 DOI: 10.3389/fimmu.2023.1217466] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Osteoarthritis is non-inflammatory degenerative joint arthritis, which exacerbates disability in elder persons. The molecular mechanisms of osteoarthritis are elusive. Ubiquitination, one type of post-translational modifications, has been demonstrated to accelerate or ameliorate the development and progression of osteoarthritis via targeting specific proteins for ubiquitination and determining protein stability and localization. Ubiquitination process can be reversed by a class of deubiquitinases via deubiquitination. In this review, we summarize the current knowledge regarding the multifaceted role of E3 ubiquitin ligases in the pathogenesis of osteoarthritis. We also describe the molecular insight of deubiquitinases into osteoarthritis processes. Moreover, we highlight the multiple compounds that target E3 ubiquitin ligases or deubiquitinases to influence osteoarthritis progression. We discuss the challenge and future perspectives via modulation of E3 ubiquitin ligases and deubiquitinases expression for enhancement of the therapeutic efficacy in osteoarthritis patients. We conclude that modulating ubiquitination and deubiquitination could alleviate the osteoarthritis pathogenesis to achieve the better treatment outcomes in osteoarthritis patients.
Collapse
Affiliation(s)
- Chenxiao Zheng
- Department of Orthopaedics and Traumatology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Jiayi Chen
- Department of Orthopaedics and Traumatology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Yurui Wu
- Department of Orthopaedics and Traumatology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Xiaochao Wang
- Department of Orthopaedics, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yongan Lin
- South China University of Technology, Guangzhou, Guangdong, China
| | - Lilu Shu
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang, China
| | - Wenjun Liu
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang, China
| | - Peter Wang
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Wang W, Duan J, Ma W, Xia B, Liu F, Kong Y, Li B, Zhao H, Wang L, Li K, Li Y, Lu X, Feng Z, Sang Y, Li G, Xue H, Qiu J, Liu H. Trimanganese Tetroxide Nanozyme protects Cartilage against Degeneration by Reducing Oxidative Stress in Osteoarthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205859. [PMID: 37088785 PMCID: PMC10265103 DOI: 10.1002/advs.202205859] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/12/2023] [Indexed: 05/03/2023]
Abstract
Osteoarthritis, a chronic degenerative cartilage disease, is the leading cause of movement disorders among humans. Although the specific pathogenesis and associated mechanisms remain unclear, oxidative stress-induced metabolic imbalance in chondrocytes plays a crucial role in the occurrence and development of osteoarthritis. In this study, a trimanganese tetroxide (Mn3 O4 ) nanozyme with superoxide dismutase (SOD)-like and catalase (CAT)-like activities is designed to reduce oxidative stress-induced damage and its therapeutic effect is investigated. In vitro, Mn3 O4 nanozymes are confirmed to reprogram both the imbalance of metabolism in chondrocytes and the uncontrolled inflammatory response stimulated by hydrogen peroxide. In vivo, a cross-linked chondroitin sulfate (CS) hydrogel is designed as a substrate for Mn3 O4 nanozymes to treat osteoarthritis in mouse models. As a result, even in the early stage of OA (4 weeks), the therapeutic effect of the Mn3 O4 @CS hydrogel is observed in both cartilage metabolism and inflammation. Moreover, the Mn3 O4 @CS hydrogel maintained its therapeutic effects for at least 7 days, thus revealing a broad scope for future clinical applications. In conclusion, these results suggest that the Mn3 O4 @CS hydrogel is a potentially effective therapeutic treatment for osteoarthritis, and a novel therapeutic strategy for osteoarthritis based on nanozymes is proposed.
Collapse
Affiliation(s)
- Wenhan Wang
- Department of NeurosurgeryQilu HospitalCheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinan250012P. R. China
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
- Shandong Key Laboratory of Brain Function RemodelingJinan250012P. R. China
| | - Jiazhi Duan
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
- Institute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Wenjun Ma
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Bowei Xia
- Department of OrthopedicsQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Feng Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Ying Kong
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Boyan Li
- Department of NeurosurgeryQilu HospitalCheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinan250012P. R. China
- Shandong Key Laboratory of Brain Function RemodelingJinan250012P. R. China
| | - Hang Zhao
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Liang Wang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Keyi Li
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Yiwei Li
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Xiheng Lu
- Institute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Zhichao Feng
- Institute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Gang Li
- Department of NeurosurgeryQilu HospitalCheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinan250012P. R. China
- Shandong Key Laboratory of Brain Function RemodelingJinan250012P. R. China
| | - Hao Xue
- Department of NeurosurgeryQilu HospitalCheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinan250012P. R. China
- Shandong Key Laboratory of Brain Function RemodelingJinan250012P. R. China
| | - Jichuan Qiu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
- Institute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| |
Collapse
|
30
|
Yu Y, Lu S, Li Y, Xu J. Overview of distinct N6-Methyladenosine profiles of messenger RNA in osteoarthritis. Front Genet 2023; 14:1168365. [PMID: 37229206 PMCID: PMC10203613 DOI: 10.3389/fgene.2023.1168365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Although N6-methyladenosine (m6A) modification is closely associated with the pathogenesis of osteoarthritis (OA), the mRNA profile of m6A modification in OA remains unknown. Therefore, our study aimed to identify common m6A features and novel m6A-related therapeutic targets in OA. In the present study, we identified 3962 differentially methylated genes (DMGs) and 2048 differentially expressed genes (DEGs) using methylated RNA immunoprecipitation next-generation sequencing (MeRIP-seq) and RNA-sequencing. A co-expression analysis of DMGs and DEGs showed that the expression of 805 genes was significantly affected by m6A methylation. Specifically, we obtained 28 hypermethylated and upregulated genes, 657 hypermethylated and downregulated genes, 102 hypomethylated and upregulated genes, and 18 hypomethylated and downregulated genes. The differential gene expression analysis based on GSE114007 revealed 2770 DEGs. The Weighted Gene Co-expression Network Analysis (WGCNA) based on GSE114007 identified 134 OA-related genes. By taking the intersection of these results, ten novel aberrantly expressed, m6A-modified and OA-related key genes were identified, including SKP2, SULF1, TNC, ZFP36, CEBPB, BHLHE41, SOX9, VEGFA, MKNK2 and TUBB4B. The present study may provide valuable insight into identifying m6A-related pharmacological targets in OA.
Collapse
|
31
|
Liu Z, Liu H, Li D, Ma L, Lu T, Sun H, Zhang Y, Yang H. Comprehensive analysis of m6A RNA methylation modification patterns and the immune microenvironment in osteoarthritis. Front Immunol 2023; 14:1128459. [PMID: 37006311 PMCID: PMC10062708 DOI: 10.3389/fimmu.2023.1128459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
BackgroundOsteoarthritis (OA) is the most common joint degenerative disease, and so far, there is no effective therapy to prevent or delay its development. Considerable attention is now being given to the impact of m6A RNA methylation modification on the disease immune regulation. However, much remains unknown about the function of m6A modification in OA.MethodsA total of 63 OA and 59 healthy samples were applied to comprehensively examine the m6A regulators mediated RNA methylation modification pattern in OA, and evaluate the impacts of distinct patterns on the characteristics of OA immune microenvironment, including immune infiltration cells, immune responses and human leukocyte antigen (HLAs) genes expression. In addition, we screened out the m6A phenotype-related genes and further explored their potential biological functions. At last, we verified the expression of key m6A regulators and their associations with immune cells, in vitro.ResultsMost of m6A regulators was differentially expressed in OA samples compared to the normal tissues. Based on six hub-m6A regulators identified as abnormally expressed in OA samples, we developed a classifier to distinguish OA patients from healthy individuals. We noted that immune characteristics of OA were correlated with m6A regulators. For instance, YTHDF2 had a strongest significantly positive correlation with regulatory T cells (Tregs) and IGFBP2 was strongest negatively associated with dendritic cells (DCs), which were confirmed by the immunohistochemistry (IHC) staining. Two distinct m6A modification patterns were determined: pattern B had higher infiltrating immunocytes and more active immune responses than pattern A, and two patterns differed in the expression of HLA genes. We also identified 1,592 m6A phenotype-related genes that could mediate the OA synovitis and cartilage degradation by the PI3K-Akt signaling pathway. Quantitative real-time polymerase chain reaction (qRT-PCR) results indicated that IGFBP2 was significantly overexpressed, while YTHDF2 mRNA expression was decreased in OA samples, which was consistent with our findings.ConclusionOur research proves the essential impact of m6A RNA methylation modification on the OA immune microenvironment, and helps to explain the regulatory mechanism behind it, which may open up a new direction for more precise immunotherapy of osteoarthritis.
Collapse
Affiliation(s)
- Zhixin Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Heng Liu
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Deqiang Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Liang Ma
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tongxin Lu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hao Sun
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuankai Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- *Correspondence: Yuankai Zhang, ; Hui Yang,
| | - Hui Yang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- *Correspondence: Yuankai Zhang, ; Hui Yang,
| |
Collapse
|
32
|
Yang X, Lin Y, Chen T, Hu W, Li P, Qiu X, Yang B, Liang A, Gao W. YTHDF1 Enhances Chondrogenic Differentiation by Activating the Wnt/β-Catenin Signaling Pathway. Stem Cells Dev 2023; 32:115-130. [PMID: 36647682 DOI: 10.1089/scd.2022.0216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cartilage is derived from the chondrogenic differentiation of stem cells, for which the regulatory mechanism has not been fully elucidated. N6-methyladenosine (m6A) messenger RNA (mRNA) methylation is the most common posttranscriptional modification in eukaryotic mRNAs and is mediated by m6A regulators. However, whether m6A regulators play roles in chondrogenic differentiation is unknown. Herein, we aim to determine the role of a main m6A reader protein, YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), in chondrogenic differentiation regulation. Western blotting (WB) assays found that the expression of YTHDF1 increased during chondrogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). The results of quantitative polymerase chain reaction, WB, immunohistochemistry, and Alcian blue staining revealed that overexpression of YTHDF1 increased cartilage matrix synthesis and the expression of chondrogenic markers when hBMSCs, ATDC5 cells, or C3H10T1/2 cells were induced to undergo chondrogenesis. Conversely, chondrogenesis was clearly inhibited when YTHDF1 was knocked down in hBMSCs, ATDC5 cells, or C3H10T1/2 cells. Further RNA sequencing and molecular biology experiments found that YTHDF1 activated the Wnt/β-catenin signaling pathway during chondrogenic differentiation. Finally, the effects of overexpression and knockdown of YTHDF1 on chondrogenic differentiation were reversed by inhibiting or activating β-catenin activity. Therefore, we demonstrated that YTDHF1 promoted chondrogenic differentiation through activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiaoming Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Youxi Lin
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Taiqiu Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Wenjun Hu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Pengfei Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Xuemei Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Bo Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Anjing Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Wenjie Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
33
|
Li F, Zhang Y, Peng Z, Wang Y, Zeng Z, Tang Z. Diagnostic, clustering, and immune cell infiltration analysis of m6A regulators in patients with sepsis. Sci Rep 2023; 13:2532. [PMID: 36781867 PMCID: PMC9925440 DOI: 10.1038/s41598-022-27039-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/23/2022] [Indexed: 02/15/2023] Open
Abstract
RNA N6-methladenosine (m6A) regulators are required for a variety of biological processes, including immune responses, and increasing evidence indicates that their dysregulation is closely associated with many diseases. However, the potential roles of m6A regulators in sepsis remain unknown. We comprehensively analyzed the transcriptional variations in and interactions of 26 m6A regulators in sepsis based on the Gene Expression Omnibus (GEO) database. A random forest (RF) model and nomogram were established to predict the occurrence and risk of sepsis in patients. Then, two different m6A subtypes were defined by consensus clustering analysis, and we explored the correlation between the subtypes and immune cells. We found that 17 of the 26 m6A regulators were significantly differentially expressed between patients with and without sepsis, and strong correlations among these 17 m6A regulators were revealed. Compared with the support vector machine (SVM) model, the RF model had better predictive ability, and therefore was used to construct a reliable nomogram containing 10 candidate m6A regulators to predict the risk of sepsis in patients. In addition, a consensus clustering algorithm was used to identify two different subtypes of m6A, which helped us distinguish different levels of immune cell infiltration and inflammation in patients with sepsis. Comprehensive analysis of m6A regulators in sepsis revealed their potential roles in sepsis occurrence, immune cell infiltration and inflammation in patients with sepsis. This study may contribute to the development of follow-up treatment strategies for sepsis.
Collapse
Affiliation(s)
- Fenghui Li
- Intensive Care Unit, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China
| | - Yuan Zhang
- Intensive Care Unit, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China
| | - Zhiyun Peng
- Intensive Care Unit, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China
| | - Yingjing Wang
- Intensive Care Unit, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China
| | - Zhaoshang Zeng
- Intensive Care Unit, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China
| | - Zhongxiang Tang
- Intensive Care Unit, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China.
| |
Collapse
|
34
|
Gu Y, Wang Z, Wang R, Yang Y, Tong P, Lv S, Xiao L, Wang Z. N6-methyladenine regulator-mediated RNA methylation modification patterns in immune microenvironment regulation of osteoarthritis. Front Genet 2023; 14:1113515. [PMID: 36777725 PMCID: PMC9908960 DOI: 10.3389/fgene.2023.1113515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Background: Osteoarthritis is a common chronic degenerative disease, and recently, an increasing number of studies have shown that immunity plays an important role in the progression of osteoarthritis, which is exacerbated by local inflammation. The role of N6-methyladenine (m6A) modification in immunity is being explored. However, the role of m6A modification in regulating the immune microenvironment of osteoarthritis remains unknown. In this study, we sought to discuss the association between the N6-methyladenine (m6A) modification and the immune microenvironment of osteoarthritis. Methods: First, the data and gene expression profiles of 139 samples, including 33 healthy samples and 106 osteoarthritis samples, were obtained from the Genetics osteoARthritis and Progression (GARP) study. Then the differences in m6A regulators between healthy individuals and osteoarthritis patients were analyzed. The correlation between m6A regulators and immune characteristics was also investigated by single-sample gene set enrichment analysis (ssGSEA). Principal component analysis (PCA), Gene Set Variation Analysis (GSVA) enrichment analysis, weighted gene coexpression network analysis (WGCNA), and Associated R packages were used to identify the m6A phenotype and its biological functions. Results: A total of 23 m6A regulators were involved in this study. We found a close correlation between most m6A regulators in all samples as well as in osteoarthritis samples. VIRMA and LRPPRC were the most highly correlated m6A regulators and showed a positive correlation, whereas VIRMA and RBM15B were the most negatively correlated. M6A regulators are associated with osteoarthritis immune characteristics. For example, MDSC cell abundance was strongly correlated with RBM15B and HNRNPC. Meanwhile, RBM15B and HNRNPC were important effectors of natural killer cell immune responses. IGFBP3 is an important regulator of cytolytic activity immune function. We performed an unsupervised consensus cluster analysis of the osteoarthritis samples based on the expression of 23 m6A regulators. Three different m6A subtypes of osteoarthritis were identified, including 27 samples in subtype C1, 21 samples in subtype C2, and 58 samples in subtype C3. Different m6A subtypes have unique biological pathways and play different roles in the immune microenvironment of osteoarthritis. Conclusion: The m6A modification plays a crucial role in the diversity and complexity of the immune microenvironment in osteoarthritis.
Collapse
Affiliation(s)
- Yong Gu
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China,Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Zhengming Wang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Rui Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Yunshang Yang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China,Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Peijian Tong
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Shuaijie Lv
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China,*Correspondence: Zhirong Wang, ; Long Xiao, ; Shuaijie Lv,
| | - Long Xiao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China,Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China,*Correspondence: Zhirong Wang, ; Long Xiao, ; Shuaijie Lv,
| | - Zhirong Wang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China,Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China,*Correspondence: Zhirong Wang, ; Long Xiao, ; Shuaijie Lv,
| |
Collapse
|
35
|
METTL3 Regulates Osteoclast Biological Behaviors via iNOS/NO-Mediated Mitochondrial Dysfunction in Inflammatory Conditions. Int J Mol Sci 2023; 24:ijms24021403. [PMID: 36674918 PMCID: PMC9862541 DOI: 10.3390/ijms24021403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023] Open
Abstract
Excessive differentiation of osteoclasts contributes to the disruption of bone homeostasis in inflammatory bone diseases. Methyltransferase-like 3 (METTL3), the core methyltransferase that installs an N6-methyladenosine (m6A) modification on RNA, has been reported to participate in bone pathophysiology. However, whether METTL3-mediated m6A affects osteoclast differentiation in inflammatory conditions remains unelucidated. In this study, we observed that the total m6A content and METTL3 expression decreased during LPS-induced osteoclastogenesis. After knocking down METTL3, we found reduced levels of the number of osteoclasts, osteoclast-related gene expression and bone resorption area. A METTL3 deficiency increased osteoclast apoptosis and pro-apoptotic protein expression. RNA sequencing analysis showed that differentially expressed genes in METTL3-deficient cells were mainly associated with the mitochondrial function. The expression of the mitochondrial function-related genes, ATP production and mitochondrial membrane potential decreased after METTL3 knockdown. Moreover, the most obviously upregulated gene in RNA-Seq was Nos2, which encoded the iNOS protein to induce nitric oxide (NO) synthesis. METTL3 knockdown increased the levels of Nos2 mRNA, iNOS protein and NO content. NOS inhibitor L-NAME rescued the inhibited mitochondrial function and osteoclast formation while suppressing osteoclast apoptosis in METTL3-silenced cells. Mechanistically, a METTL3 deficiency promoted the stability and expression of Nos2 mRNA, and similar results were observed after m6A-binding protein YTHDF1 knockdown. Further in vivo evidence revealed that METTL3 knockdown attenuated the inflammatory osteolysis of the murine calvaria and suppressed osteoclast formation. In conclusion, these data suggested that METTL3 knockdown exacerbated iNOS/NO-mediated mitochondrial dysfunction by promoting a Nos2 mRNA stability in a YTHDF1-dependent manner and further inhibited osteoclast differentiation and increased osteoclast apoptosis in inflammatory conditions.
Collapse
|
36
|
The Role of N 6-Methyladenosine in Inflammatory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9744771. [PMID: 36578520 PMCID: PMC9792239 DOI: 10.1155/2022/9744771] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
N6-Methyladenosine (m6A) is the most abundant epigenetic RNA modification in eukaryotes, regulating RNA metabolism (export, stability, translation, and decay) in cells through changes in the activity of writers, erasers, and readers and ultimately affecting human life or disease processes. Inflammation is a response to infection and injury in various diseases and has therefore attracted significant attention. Currently, extensive evidence indicates that m6A plays an essential role in inflammation. In this review, we focus on the mechanisms of m6A in inflammatory autoimmune diseases, metabolic disorder, cardio-cerebrovascular diseases, cancer, and pathogen-induced inflammation, as well as its possible role as targets for clinical diagnosis and treatment.
Collapse
|
37
|
Ouyang Y, Tu Y, Chen S, Min H, Wen Z, Zheng G, Wan T, Fan H, Yang W, Sun G. Characterization of immune microenvironment infiltration and m 6A regulator-mediated RNA methylation modification patterns in osteoarthritis. Front Immunol 2022; 13:1018701. [PMID: 36505479 PMCID: PMC9728527 DOI: 10.3389/fimmu.2022.1018701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Background Few studies have been reported the potential role of N6-methyladenosine (m6A) modification in osteoarthritis (OA). We investigated the patterns of m6A modification in the immune microenvironment of OA. Methods We evaluated the m6A modification patterns based on 22 m6A regulators in 139 OA samples and systematically associated these modification patterns with immune cell infiltration characteristics. The function of m6A phenotype-related differentially expressed genes (DEGs) was investigated using gene enrichment analysis. An m6A score model was constructed using principal component analysis (PCA), and an OA prediction model was established based on the key m6A regulators. We used real-time PCR analysis to detect the changes of gene expression in the cell model of OA. Results Healthy and OA samples showed significant differences in the expression of m6A regulators. Nine key m6A regulators, two m6A modification patterns, m6A-related genes and two gene clusters were identified. Some m6A regulators had a strong correlation with each other. Gene clusters and m6A clusters have high similarity, and cluster A corresponds to a high m6A score. Immunocytes infiltration differed significantly between the two clusters, with the m6A cluster B and gene cluster B having more types of infiltrating immunocytes than cluster A. The predictive model can also predict the progression of OA through m6A regulators expression. The results of real-time PCR analysis showed that the gene expression in the cell model of OA is similar to that of the m6A cluster B. Conclusions Our study reveals for the first time the potential regulatory mechanism of m6A modification in the immune microenvironment of OA. This study also sheds new light on the pathogenesis of OA.
Collapse
Affiliation(s)
| | - Yuanqing Tu
- Nanchang University, Nanchang, Jiangxi, China
| | | | - Huan Min
- Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Zhexu Wen
- The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Guihao Zheng
- Shangrao People’s Hospital, Shangrao, Jiangxi, China
| | - Ting Wan
- Nanchang University, Nanchang, Jiangxi, China
| | - Hao Fan
- Nanchang University, Nanchang, Jiangxi, China
| | | | - Guicai Sun
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
38
|
Liu H, Zheng YL, Wang XQ. The emerging roles of N 6-methyladenosine in osteoarthritis. Front Mol Neurosci 2022; 15:1040699. [PMID: 36466802 PMCID: PMC9710225 DOI: 10.3389/fnmol.2022.1040699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 08/30/2023] Open
Abstract
Finding new biomarkers and molecular targets to guide OA treatment remains a significant challenge. One of the most frequent forms of RNA methylation, N6-methyladenosine (m6A), can affect gene expression and RNA transcription, processing, translation, and metabolism. Osteoarthritis (OA) can cause disability and pain degenerative disease, reduce the quality of life of the elderly, and increase the social and economic burden. Changes in m6A levels are crucial in OA progress. In this review, the discussion will concentrate on the role that m6A plays in OA occurrence and progression. The m6A involved in the OA process mainly includes METTL3 and FTO. Current studies on m6A and OA primarily focus on four signaling pathways, namely, NF-κB, LNCRNAs, ATG7, and Bcl2. m6A participates in these signaling pathways and affects cellular inflammation, apoptosis, senescence, and autophagy, thus controlling the OA process. The modification of m6A affects so many signaling pathways. For the treatment of OA, it may represent a viable new therapeutic target.
Collapse
Affiliation(s)
- Hui Liu
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
39
|
He Y, Wang W, Luo P, Wang Y, He Z, Dong W, Jia M, Yu X, Yang B, Wang J. Mettl3 regulates hypertrophic differentiation of chondrocytes through modulating Dmp1 mRNA via Ythdf1-mediated m 6A modification. Bone 2022; 164:116522. [PMID: 35981698 DOI: 10.1016/j.bone.2022.116522] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 11/02/2022]
Abstract
As the main cells in endochondral osteogenesis, chondrocytes have limited self-repair ability due to weak proliferation activity, low density, and dedifferentiation tendency. Here, a thorough inquiry about the effect and underlying mechanisms of methyltransferase like-3 (Mettl3) on chondrocytes was made. Functionally, it was indicated that Mettl3 promoted the proliferation and hypertrophic differentiation of chondrocytes. Mechanically, Dmp1 (dentin matrix protein 1) was proved to be the downstream direct target of Mettl3 for m6A modification to regulate the differentiation of chondrocytes through bioinformatics analysis and correlated experiments. The Reader protein Ythdf1 mediated Dmp1 mRNA catalyzed by Mettl3. In vivo, the formation of subcutaneous ectopic cartilage-like tissue further supported the in vitro results. In conclusion, the gene regulation of Mettl3/m6A/Ythdf1/Dmp1 axis in hypertrophic differentiation of chondrocytes for the development of endochondral osteogenesis may supply a promising treatment strategy for the repair and regeneration of bone defects.
Collapse
Affiliation(s)
- Ying He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Wang
- Department of Hepatobiliary Surgery in East Hospital, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ping Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Yan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Zhenru He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Meie Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xijie Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Beining Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
40
|
Wang W, He Y, Wu L, Zhai L, Chen L, Yao L, Yu K, Tang Z. N 6 -methyladenosine RNA demethylase FTO regulates extracellular matrix-related genes and promotes pancreatic cancer cell migration and invasion. Cancer Med 2022; 12:3731-3743. [PMID: 35879877 PMCID: PMC9939218 DOI: 10.1002/cam4.5054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/06/2022] [Accepted: 07/03/2022] [Indexed: 11/05/2022] Open
Abstract
Pancreatic cancer (PC) is a deadly disease, and its post-transcriptional gene regulation mechanism remains unclear. The abundant extracellular matrix (ECM) in PC plays an important role in tumor progression. This study is the first to focus on the role of N6 -methyladenosine (m6 A) RNA methylation, an emerging post-transcriptional regulatory mechanism, in the regulation of the ECM in PC. Here, we found that ADAMTS2, COL12A1, and THBS2 were associated with the prognosis of PC by comprehensive analysis of differentially expressed genes from two independent GEO expression profile datasets and m6 A-related genes in RMVar database (PAAD). GO and KEGG enrichment analysis found that these m6 A-related targets are chiefly functionally concentrated in the ECM region and participate in ECM signal transduction. Correlation analysis revealed that these genes can be regulated by the demethylase FTO. Cell biology function assays showed that knockdown of FTO-inhibited PC cell abilities to migrate and invade in vitro. qRT-PCR and MeRIP experiments showed that after knockdown of FTO, the mRNA levels of ADAMTS2, COL12A1, and THBS2 and their m6 A modification levels were significantly reduced. These results indicate that m6 A RNA demethylation is associated with the regulation of ECM in PC. In conclusion, m6 A RNA demethylase FTO regulates ECM-related genes and promotes PC cell abilities to migrate and invade, our work provides a new perspective on the molecular mechanism of PC progression.
Collapse
Affiliation(s)
- Wei Wang
- Department of Hepatobiliary Surgery in East HospitalRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ying He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lun Wu
- Department of Hepatobiliary Surgery, Dongfeng HospitalHubei University of MedicineShiyanChina
| | - Lu‐Lu Zhai
- Department of Pancreatic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Long‐Jiang Chen
- Department of Pancreatic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Li‐Chao Yao
- Department of Pancreatic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Kai‐Huan Yu
- Department of Hepatobiliary Surgery in East HospitalRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhi‐Gang Tang
- Department of Pancreatic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
41
|
Zhou H, Shen X, Yan C, Xiong W, Ma Z, Tan Z, Wang J, Li Y, Liu J, Duan A, Liu F. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate osteoarthritis of the knee in mice model by interacting with METTL3 to reduce m6A of NLRP3 in macrophage. Stem Cell Res Ther 2022; 13:322. [PMID: 35842714 PMCID: PMC9288728 DOI: 10.1186/s13287-022-03005-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/04/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent degenerative joint disease that not only significantly impairs the quality of life of middle-aged and elderly individuals but also imposes a significant financial burden on patients and society. Due to their significant biological properties, extracellular vesicles (EVs) have steadily received great attention in OA treatment. This study aimed to investigate the influence of EVs on chondrocyte proliferation, migration, and apoptosis and their protective efficacy against OA in mice. METHODS The protective impact of EVs derived from human umbilical cord mesenchymal stem cells (hucMSCs-EVs) on OA in mice was investigated by establishing a mouse OA model by surgically destabilizing the medial meniscus (DMM). Human chondrocytes were isolated from the cartilage of patients undergoing total knee arthroplasty (TKA) and cultured with THP-1 cells to mimic the in vivo inflammatory environment. Levels of inflammatory factors were then determined in different groups, and the impacts of EVs on chondrocyte proliferation, migration, apoptosis, and cartilage extracellular matrix (ECM) metabolism were explored. N6-methyladenosine (m6A) level of mRNA and methyltransferase-like 3 (METTL3) protein expression in the cells was also measured in addition to microRNA analysis to elucidate the molecular mechanism of exosomal therapy. RESULTS The results indicated that hucMSCs-EVs slowed OA progression, decreased osteophyte production, increased COL2A1 and Aggrecan expression, and inhibited ADAMTS5 and MMP13 overexpression in the knee joint of mice via decreasing pro-inflammatory factor secretion. The in vitro cell line analysis revealed that EVs enhanced chondrocyte proliferation and migration while inhibiting apoptosis. METTL3 is responsible for these protective effects. Further investigations revealed that EVs decreased the m6A level of NLRP3 mRNA following miR-1208 targeted binding to METTL3, resulting in decreased inflammatory factor release and preventing OA progression. CONCLUSION This study concluded that hucMSCs-EVs inhibited the secretion of pro-inflammatory factors and the degradation of cartilage ECM after lowering the m6A level of NLRP3 mRNA with miR-1208 targeting combined with METTL3, thereby alleviating OA progression in mice and providing a novel therapy for clinical OA treatment.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xun Shen
- Department of Orthopedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Chen Yan
- Department of Orthopedics, the First People's Hospital of Lianyungang, Nanjing Medical University, Lianyungang,, 222002, Jiangsu, China
| | - Wu Xiong
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zemeng Ma
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, 211100, China
| | - Zhenggang Tan
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jinwen Wang
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yao Li
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jiuxiang Liu
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Ao Duan
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Feng Liu
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
42
|
Zhang F, Liu H, Duan M, Wang G, Zhang Z, Wang Y, Qian Y, Yang Z, Jiang X. Crosstalk among m6A RNA methylation, hypoxia and metabolic reprogramming in TME: from immunosuppressive microenvironment to clinical application. J Hematol Oncol 2022; 15:84. [PMID: 35794625 PMCID: PMC9258089 DOI: 10.1186/s13045-022-01304-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment (TME), which is regulated by intrinsic oncogenic mechanisms and epigenetic modifications, has become a research hotspot in recent years. Characteristic features of TME include hypoxia, metabolic dysregulation, and immunosuppression. One of the most common RNA modifications, N6-methyladenosine (m6A) methylation, is widely involved in the regulation of physiological and pathological processes, including tumor development. Compelling evidence indicates that m6A methylation regulates transcription and protein expression through shearing, export, translation, and processing, thereby participating in the dynamic evolution of TME. Specifically, m6A methylation-mediated adaptation to hypoxia, metabolic dysregulation, and phenotypic shift of immune cells synergistically promote the formation of an immunosuppressive TME that supports tumor proliferation and metastasis. In this review, we have focused on the involvement of m6A methylation in the dynamic evolution of tumor-adaptive TME and described the detailed mechanisms linking m6A methylation to change in tumor cell biological functions. In view of the collective data, we advocate treating TME as a complete ecosystem in which components crosstalk with each other to synergistically achieve tumor adaptive changes. Finally, we describe the potential utility of m6A methylation-targeted therapies and tumor immunotherapy in clinical applications and the challenges faced, with the aim of advancing m6A methylation research.
Collapse
|
43
|
Zhai G, Xiao L, Jiang C, Yue S, Zhang M, zheng J, Liu Z, Dong Y. Regulatory Role of N6-Methyladenosine (m6A) Modification in Osteoarthritis. Front Cell Dev Biol 2022; 10:946219. [PMID: 35846376 PMCID: PMC9282717 DOI: 10.3389/fcell.2022.946219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease, usually occurring in middle-aged and elderly people. However, current treatment for OA in its early stages is ineffective, and drug therapy is often ineffective in slowing the progression of the disease. In fact, a deeper understanding of the underlying molecular mechanisms of OA could help us to better develop effective therapeutic measures. N6-methyladenosine (m6A) is a methylation that occurs at the adenosine N6-position, which is the most common internal modification on eukaryotic mRNAs. The role and mechanisms of m6A in mammalian gene regulation have been extensively studied. The “Writer”, “eraser”, and “reader” proteins are key proteins involved in the dynamic regulation of m6A modifications. Recent studies on post-transcriptional regulation alone have shown that m6a modification has an important role in the development of OA. This paper summarizes the specific regulatory processes of M6A in disease and reviews the role of m6A in OA, describing its pathophysiological role and molecular mechanisms, as well as its future research trends and potential clinical applications in OA.
Collapse
Affiliation(s)
- Ganggang Zhai
- Department of Orthopedics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan University People’s Hospital, Zhengzhou, China
| | - Likang Xiao
- Department of Orthopedics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan University People’s Hospital, Zhengzhou, China
| | - Chenyang Jiang
- Department of Orthopedics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan University People’s Hospital, Zhengzhou, China
| | - Songkai Yue
- Department of Orthopedics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan University People’s Hospital, Zhengzhou, China
| | - Meng Zhang
- Department of Orthopedics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan University People’s Hospital, Zhengzhou, China
| | - Jia zheng
- Department of Orthopedics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan University People’s Hospital, Zhengzhou, China
| | - Zeming Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yonghui Dong, ; Zeming Liu,
| | - Yonghui Dong
- Department of Orthopedics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan University People’s Hospital, Zhengzhou, China
- Microbiome Laboratory, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yonghui Dong, ; Zeming Liu,
| |
Collapse
|
44
|
Han J, Kong H, Wang X, Zhang XA. Novel insights into the interaction between N6-methyladenosine methylation and noncoding RNAs in musculoskeletal disorders. Cell Prolif 2022; 55:e13294. [PMID: 35735243 PMCID: PMC9528765 DOI: 10.1111/cpr.13294] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Musculoskeletal disorder (MSD) are a class of inflammatory and degener-ative diseases, but the precise molecular mechanisms are still poorly understood. Noncoding RNA (ncRNA) N6-methyladenosine (m6A) modification plays an essential role in the pathophysiological process of MSD. This review summarized the interaction be-tween m6A RNA methylation and ncRNAs in the molecular regulatory mechanism of MSD. It provides a new perspective for the pathophysiological mechanism and ncRNA m6A targeted therapy of MSD. METHODS A comprehensive search of databases was conducted with musculoskeletal disorders, noncoding RNA, N6-methyladenosine, intervertebral disc degeneration, oste-oporosis, osteosarcoma, osteoarthritis, skeletal muscle, bone, and cartilage as the key-words. Then, summarized all the relevant articles. RESULTS Intervertebral disc degeneration (IDD), osteoporosis (OP), osteosarcoma (OS), and osteoarthritis (OA) are common MSDs that affect muscle, bone, cartilage, and joint, leading to limited movement, pain, and disability. However, the precise pathogenesis remains unclear, and no effective treatment and drug is available at present. Numerous studies confirmed that the mutual regulation between m6A and ncRNAs (i.e., microRNAs, long ncRNAs, and circular RNAs) was found in MSD, m6A modification can regulate ncRNAs, and ncRNAs can also target m6A regulators. ncRNA m6A modification plays an essential role in the pathophysiological process of MSDs by regulating the homeostasis of skeletal muscle, bone, and cartilage. CONCLUSION m6A interacts with ncRNAs to regulate multiple biological processes and plays important roles in IDD, OP, OS, and OA. These studies provide new insights into the pathophysiological mechanism of MSD and targeting m6A-modified ncRNAs may be a promising therapy approach.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Kinesiology, Shenyang Sport University, Shenyang, China.,Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Hui Kong
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xueqiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| |
Collapse
|
45
|
Fu C, Qiu Z, Huang Y, Mei Y, Lin Q, Zeng J, Zhong W, Ma D. Protective role of Achyranthes bidentata polysaccharides against chondrocyte extracellular matrix degeneration through lncRNA GAS5 in osteoarthritis. Exp Ther Med 2022; 24:532. [PMID: 35837034 PMCID: PMC9257974 DOI: 10.3892/etm.2022.11459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022] Open
Abstract
Achyranthes bidentata polysaccharides (ABPS) is an active ingredient of the flowering plant Achyranthes bidentata that has been previously reported to be effective for the treatment of osteoarthritis (OA). However, the underlying molecular mechanism remain to be fully clarified. Emerging studies have shown that the long non-coding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) is involved in the pathogenesis of OA. Therefore, the present study aimed to investigate the potential mechanism of ABPS by focusing on its effects on the regulation of chondrocyte extracellular matrix (ECM) homeostasis, with particular emphasis on lncRNA GAS5. In the present study, the modified Hulth method was used to construct OA rats, which were gavaged with 400 mg/kg ABPS for 8 weeks. Histopathological changes in cartilage and subchondral bone were evaluated by hematoxylin-eosin staining and Safranin O-fast green staining. In in vitro experiments, IL-1β-treated chondrocytes were infected with Lenti-lncRNA GAS5. Fluorescence in situ hybridization assay was performed to measure the expression of the lncRNA GAS5 in chondrocytes. Moreover, the relative expression level of lncRNA GAS5 in cartilage tissue and chondrocytes was detected using reverse transcription-quantitative PCR. Western blot analysis was used to detect protein expression levels of MMP-9, MMP-13, TIMP-1, TIMP-3 and type II collagen in cartilage tissue and chondrocytes. The results indicated that ABPS delayed the degradation of the ECM by chondrocytes in addition to reducing lncRNA GAS5 expression both in vivo and in vitro. Furthermore, silencing of lncRNA GAS5 expression in IL-1β-treated chondrocytes downregulated the protein expression of MMP-9 and MMP-13 whilst upregulating the expression of tissue inhibitor matrix metalloproteinase (TIMP)-1, TIMP-3 and type II collagen. To conclude, the present study provides evidence that ABPS can inhibit the expression of lncRNA GAS5 in chondrocytes to regulate the homeostasis of ECM, which in turn may delay the occurrence of cartilage degeneration during OA.
Collapse
Affiliation(s)
- Changlong Fu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Zhiwei Qiu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yanfeng Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yangyang Mei
- Faculty of Nursing, Fujian Health College, Fuzhou, Fujian 350122, P.R. China
| | - Qing Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jianwei Zeng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Weihong Zhong
- Orthopedics Department, Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350003, P.R. China
| | - Dezun Ma
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
46
|
Chen Y, Wu Y, Zhu L, Chen C, Xu S, Tang D, Jiao Y, Yu W. METTL3-Mediated N6-Methyladenosine Modification of Trim59 mRNA Protects Against Sepsis-Induced Acute Respiratory Distress Syndrome. Front Immunol 2022; 13:897487. [PMID: 35693774 PMCID: PMC9174697 DOI: 10.3389/fimmu.2022.897487] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022] Open
Abstract
N6-methyladenosine (m6A) RNA modification is a fundamental determinant of mRNA metabolism in eukaryotic cells and is involved in numerous physiological and pathological processes. However, the specific role of m6A modification in sepsis-induced acute respiratory distress syndrome(ARDS) remains unknown. Here, we show that the levels of m6A RNA were significantly decreased in septic lungs and that METTL3 was the main regulator involved in the absence of m6A RNA modification. Pulmonary endothelial barrier damage is a critical process in the pathogenesis of acute lung injury during sepsis. METTL3 regulated endothelial barrier dysfunction and inflammatory responses in sepsis-induced ARDS in vivo and in vitro. Furthermore, we identified tripartite motif-containing (Trim)59 as a key m6A effector and Trim59 deficiency exacerbated lung injury. Mechanistically, METTL3 inhibited endothelial injury in sepsis-induced ARDS through Trim59-associated NF-κB inactivation. Our findings revealed novel insights into epitranscriptional mechanisms in sepsis-induced ARDS via m6A modifications, which has important application value in the diagnosis, prognosis, and molecular-targeted therapy of sepsis-associated lung injury.
Collapse
Affiliation(s)
- Yi Chen
- Department of Anesthesiology, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yuling Wu
- Department of Anesthesiology, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Linjie Zhu
- Department of Anesthesiology, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Caiyang Chen
- Department of Anesthesiology, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Saihong Xu
- Department of Anesthesiology, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
47
|
Rabolli CP, Accornero F. m6A RNA methylation: A dynamic regulator of cardiac muscle and extracellular matrix. CURRENT OPINION IN PHYSIOLOGY 2022. [PMID: 37304645 PMCID: PMC10249538 DOI: 10.1016/j.cophys.2022.100561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Post-transcriptional modifications encompass a large group of RNA alterations that control gene expression. Methylation of the N6-Adenosine (m6A) of mRNA is a prevalent modification which alters the life cycle of transcripts. The roles that m6A play in regulating cardiac homeostasis and injury response are an active area of investigation, but it is clear that this chemical modification is a critical controller of fibroblast to myofibroblast transition, cardiomyocyte hypertrophy and division, and the structure and function of the extracellular matrix. Here we discuss the latest findings of m6A in cardiac muscle and matrix.
Collapse
|
48
|
Yang C, Dong Z, Ling Z, Chen Y. The crucial mechanism and therapeutic implication of RNA methylation in bone pathophysiology. Ageing Res Rev 2022; 79:101641. [PMID: 35569786 DOI: 10.1016/j.arr.2022.101641] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Methylation is the most common posttranscriptional modification in cellular RNAs, which has been reported to modulate the alteration of RNA structure for initiating relevant functions such as nuclear translocation and RNA degradation. Recent studies found that RNA methylation especially N6-methyladenosine (m6A) regulates the dynamic balance of bone matrix and forms a complicated network in bone metabolism. The modulation disorder of RNA methylation contributes to several pathological bone diseases including osteoporosis (OP), osteoarthritis (OA), rheumatoid arthritis (RA), and so on. In the review, we will discuss advanced technologies for detecting RNA methylation, summarize RNA methylation-related biological impacts on regulating bone homeostasis and pathological bone diseases. In addition, we focus on the promising roles of RNA methylation in early diagnosis and therapeutic implications for bone-related diseases. Then, we aim to establish a theoretical basis for further investigation in this meaningful field.
Collapse
|
49
|
Kong H, Wang XQ, Zhang XA. Exercise for Osteoarthritis: A Literature Review of Pathology and Mechanism. Front Aging Neurosci 2022; 14:854026. [PMID: 35592699 PMCID: PMC9110817 DOI: 10.3389/fnagi.2022.854026] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) has a very high incidence worldwide and has become a very common joint disease in the elderly. Currently, the treatment methods for OA include surgery, drug therapy, and exercise therapy. In recent years, the treatment of certain diseases by exercise has received increasing research and attention. Proper exercise can improve the physiological function of various organs of the body. At present, the treatment of OA is usually symptomatic. Limited methods are available for the treatment of OA according to its pathogenesis, and effective intervention has not been developed to slow down the progress of OA from the molecular level. Only by clarifying the mechanism of exercise treatment of OA and the influence of different exercise intensities on OA patients can we choose the appropriate exercise prescription to prevent and treat OA. This review mainly expounds the mechanism that exercise alleviates the pathological changes of OA by affecting the degradation of the ECM, apoptosis, inflammatory response, autophagy, and changes of ncRNA, and summarizes the effects of different exercise types on OA patients. Finally, it is found that different exercise types, exercise intensity, exercise time and exercise frequency have different effects on OA patients. At the same time, suitable exercise prescriptions are recommended for OA patients.
Collapse
Affiliation(s)
- Hui Kong
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopedic Hospital, Shanghai, China
- *Correspondence: Xin-An Zhang,
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- Xue-Qiang Wang,
| |
Collapse
|
50
|
Ren J, Li Y, Wuermanbieke S, Hu S, Huang G. N 6-methyladenosine (m 6A) methyltransferase METTL3-mediated LINC00680 accelerates osteoarthritis through m 6A/SIRT1 manner. Cell Death Dis 2022; 8:240. [PMID: 35501316 PMCID: PMC9061755 DOI: 10.1038/s41420-022-00890-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/20/2021] [Accepted: 01/25/2022] [Indexed: 01/01/2023]
Abstract
Increasing evidence suggest the biological roles of N6-methyladenosine (m6A) and long noncoding RNAs (lncRNAs) in the bone disease, especially osteoarthritis (OA). However, the interaction of m6A and lncRNA in osteoarthritis is still unclear. Here, we found that a m6A-related lncRNA LINC00680 upregulated in the OA tissue and IL-1β-induced isolated primary chondrocytes. Functionally, in IL-1β-induced chondrocytes, silencing of LINC00680 recovered the proliferation and repressed the extracellular matrix (ECM) degradation. Mechanistically, m6A methyltransferase METTL3 combined tithe the m6A site of LINC00680 to up-regulate its expression. Moreover, LINC00680 interacted with SIRT1 mRNA through binding at m6A site on SIRT1 mRNA 3'-UTR, thereby enhancing the stability of SIRT1 mRNA. Overall, these findings exhibited a role of LINC00680/m6A/SIRT1 mRNA complex in chondrocytes. Taken together, the present study intends to uncover the mechanism by which METTL3-mediated LINC00680 accelerates OA progression, which may provide novel insight for OA.
Collapse
Affiliation(s)
- Jiangdong Ren
- Department of Joint Surgery, Center for Orthopaedics Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopaedics Guangdong Province), Tianhe District, Guangzhou, Guangdong Province, China.,Orthopaedics Hospital of Guangdong Province, Tianhe District, Guangzhou, Guangdong Province, China
| | - Yicheng Li
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | | | - Shu Hu
- Department of Joint Surgery, Center for Orthopaedics Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopaedics Guangdong Province), Tianhe District, Guangzhou, Guangdong Province, China.,Orthopaedics Hospital of Guangdong Province, Tianhe District, Guangzhou, Guangdong Province, China
| | - Guangxin Huang
- Department of Joint Surgery, Center for Orthopaedics Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopaedics Guangdong Province), Tianhe District, Guangzhou, Guangdong Province, China. .,Orthopaedics Hospital of Guangdong Province, Tianhe District, Guangzhou, Guangdong Province, China.
| |
Collapse
|