1
|
Hamdy NM, Zaki MB, Rizk NI, Abdelmaksoud NM, Abd-Elmawla MA, Ismail RA, Abulsoud AI. Unraveling the ncRNA landscape that governs colorectal cancer: A roadmap to personalized therapeutics. Life Sci 2024; 354:122946. [PMID: 39122108 DOI: 10.1016/j.lfs.2024.122946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Colorectal cancer (CRC) being one of the most common malignancies, has a significant death rate, especially when detected at an advanced stage. In most cases, the fundamental aetiology of CRC remains unclear despite the identification of several environmental and intrinsic risk factors. Numerous investigations, particularly in the last ten years, have indicated the involvement of epigenetic variables in this type of cancer. The development, progression, and metastasis of CRC are influenced by long non-coding RNAs (lncRNAs), which are significant players in the epigenetic pathways. LncRNAs are implicated in diverse pathological processes in CRC, such as liver metastasis, epithelial to mesenchymal transition (EMT), inflammation, and chemo-/radioresistance. It has recently been determined that CRC cells and tissues exhibit dysregulation of tens of oncogenic and tumor suppressor lncRNAs. Serum samples from CRC patients exhibit dysregulated expressions of several of these transcripts, offering a non-invasive method of detecting this kind of cancer. In this review, we outlined the typical paradigms of the deregulated lncRNA which exert significant role in the underlying molecular mechanisms of CRC initiation and progression. We comprehensively discuss the role of lncRNAs as innovative targets for CRC prognosis and treatment.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbasia Cairo, 11566, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr Al Ainy, Cairo, 11562, Egypt
| | - Rehab A Ismail
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
2
|
Li SY, Zhang N, Zhang H, Wang N, Du YY, Li HN, Huang CS, Li XR. Deciphering the TCF19/miR-199a-5p/SP1/LOXL2 pathway: Implications for breast cancer metastasis and epithelial-mesenchymal transition. Cancer Lett 2024; 597:216995. [PMID: 38851313 DOI: 10.1016/j.canlet.2024.216995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024]
Abstract
Globally, breast cancer (BC) is the predominant malignancy with a significant death rate due to metastasis. The epithelial-mesenchymal transition (EMT) is a fundamental initiator for metastatic progression. Through advanced computational strategies, TCF19 was identified as a critical EMT-associated gene with diagnostic and prognostic significance in BC, based on a novel EMT score. Molecular details and the pro-EMT impact of the TCF19/miR-199a-5p/SP1/LOXL2 axis were explored in BC cell lines through in vitro validations, and the oncogenic and metastatic potential of TCF19 and LOXL2 were investigated using subcutaneous and tail-vein models. Additionally, BC-specific enrichment of TCF19 and LOXL2 was measured using a distribution landscape driven by diverse genomic analysis techniques. Molecular pathways revealed that TCF19-induced LOXL2 amplification facilitated migratory, invasive, and EMT activities of BC cells in vitro, and promoted the growth and metastatic establishment of xenografts in vivo. TCF19 decreases the expression of miR-199a-5p and alters the nuclear dynamics of SP1, modulating SP1's affinity for the LOXL2 promoter, leading to increased LOXL2 expression and more malignant characteristics in BC cells. These findings unveil a novel EMT-inducing pathway, the TCF19/miR-199a-5P/SP1/LOXL2 axis, highlighting the pivotal role of TCF19 and suggesting potential for novel therapeutic approaches for more focused BC interventions.
Collapse
Affiliation(s)
- Shu-Yu Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Ning Wang
- Huzhou Central Hospital, Affiliated Hospital of Zhejiang University, Huzhou, PR China
| | - Ya-Ying Du
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Han-Ning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Chen-Shen Huang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, PR China.
| | - Xing-Rui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
3
|
Zheng B, Geng Y, Li Y, Huang H, Liu A. Specificity protein 1/3 regulate T-cell acute lymphoblastic leukemia cell proliferation and apoptosis through β-catenin by acting as targets of miR-495-3p. Ann Hematol 2024; 103:2945-2960. [PMID: 38829410 DOI: 10.1007/s00277-024-05764-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a hematologic heterogeneous disease. This study explored the mechanism of specificity protein 1/3 (Sp1/3) in T-ALL cells through β-catenin by acting as targets of miR-495-3p. Expression levels of miR-495-3p, Sp1, Sp3, and β-catenin in the serum from T-ALL children patients, healthy controls, and the T-ALL cell lines were measured. The cell proliferation ability and apoptosis rate were detected. Levels of proliferation-related proteins proliferating cell nuclear antigen (PCNA)/cyclinD1 and apoptosis-related proteins B-cell lymphoma-2 associated X protein (Bax)/B-cell lymphoma-2 (Bcl-2) were determined. The binding of Sp1/3 and β-catenin promoter and the targeted relationship between miR-495-3p with Sp1/3 were analyzed. Sp1/3 were upregulated in CD4+ T-cells in T-ALL and were linked with leukocyte count and risk classification. Sp1/3 interference prevented proliferation and promoted apoptosis in T-ALL cells. Sp1/3 transcription factors activated β-catenin expression. Sp1/3 enhanced T-ALL cell proliferation by facilitating β-catenin expression. miR-495-3p targeted and repressed Sp1/3 expressions. miR-495-3p overexpression inhibited T-ALL cell proliferation and promoted apoptosis. Conjointly, Sp1/3, as targets of miR-495-3p limit apoptosis and promote proliferation in T-ALL cells by promoting β-catenin expression.
Collapse
Affiliation(s)
- Boyang Zheng
- Hematology clinic, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China
| | - Yueqi Geng
- Hematology clinic, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China
| | - Yan Li
- Department of Hematology, Hainan Cancer Hospital, Haikou, China
| | - Huixiong Huang
- Hematology clinic, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China
| | - Aichun Liu
- Hematology clinic, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
4
|
Huang K, Huang D, Li Q, Zhong J, Zhou Y, Zhong Z, Tang S, Zhang W, Chen Z, Lu S. Upregulation of LncRNA UCA1 promotes cardiomyocyte proliferation by inhibiting the miR-128/SUZ12/P27 pathway. Heliyon 2024; 10:e34181. [PMID: 39100475 PMCID: PMC11296037 DOI: 10.1016/j.heliyon.2024.e34181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Enhancing cardiomyocyte proliferation is essential to reverse or slow down the heart failure progression in many cardiovascular diseases such as myocardial infarction (MI). Long non-coding RNAs (lncRNAs) have been reported to regulate cardiomyocyte proliferation. In particular, lncRNA urothelial carcinoma-associated 1 (lncUCA1) played multiple roles in regulating cell cycle progression and cardiovascular diseases, making lncUCA1 a potential target for promoting cardiomyocyte proliferation. However, the role of lncUCA1 in cardiomyocyte proliferation remains unknown. This study aimed at exploring the function and underlying molecular mechanism of lncUCA1 in cardiomyocyte proliferation. Quantitative RT-PCR showed that lncUCA1 expression decreased in postnatal hearts. Gain-and-loss-of-function experiments showed that lncUCA1 positively regulated cardiomyocyte proliferation in vitro and in vivo. The bioinformatics program identified miR-128 as a potential target of lncUCA1, and loss of miR-128 was reported to promote cardiomyocyte proliferation by inhibiting the SUZ12/P27 pathway. Luciferase reporter assay, qRT-PCR, western blotting, and immunostaining experiments further revealed that lncUCA1 acted as a ceRNA of miR-128 to upregulate its target SUZ12 and downregulate P27, thereby increasing cyclin B1, cyclin E, CDK1 and CDK2 expression to promote cardiomyocyte proliferation. In conclusion, upregulation of lncRNA UCA1 promoted cardiomyocyte proliferation by inhibiting the miR-128/SUZ12/P27 pathway. Our results indicated that lncUCA1 might be a new therapeutic target for stimulating cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Kang Huang
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan, China
| | - Denggao Huang
- Central Laboratory, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan, China
| | - Qiang Li
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan, China
| | - Jianghua Zhong
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan, China
| | - Yilei Zhou
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan, China
| | - Zanrui Zhong
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan, China
| | - Shilin Tang
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan, China
| | - Wei Zhang
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan, China
| | - Zibin Chen
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan, China
| | - Shijuan Lu
- Department of Cardiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan, China
| |
Collapse
|
5
|
Lin Y, Zhao W, Lv Z, Xie H, Li Y, Zhang Z. The functions and mechanisms of long non-coding RNA in colorectal cancer. Front Oncol 2024; 14:1419972. [PMID: 39026978 PMCID: PMC11254705 DOI: 10.3389/fonc.2024.1419972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
CRC poses a significant challenge in the global health domain, with a high number of deaths attributed to this disease annually. If CRC is detected only in its advanced stages, the difficulty of treatment increases significantly. Therefore, biomarkers for the early detection of CRC play a crucial role in improving patient outcomes and increasing survival rates. The development of a reliable biomarker for early detection of CRC is particularly important for timely diagnosis and treatment. However, current methods for CRC detection, such as endoscopic examination, blood, and stool tests, have certain limitations and often only detect cases in the late stages. To overcome these constraints, researchers have turned their attention to molecular biomarkers, which are considered a promising approach to improving CRC detection. Non-invasive methods using biomarkers such as mRNA, circulating cell-free DNA, microRNA, LncRNA, and proteins can provide more reliable diagnostic information. These biomarkers can be found in blood, tissue, stool, and volatile organic compounds. Identifying molecular biomarkers with high sensitivity and specificity for the early and safe, economic, and easily measurable detection of CRC remains a significant challenge for researchers.
Collapse
Affiliation(s)
- Yuning Lin
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Wenzhen Zhao
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Zhenyi Lv
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Hongyan Xie
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Ying Li
- Ultrasonography Department, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhongying Zhang
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| |
Collapse
|
6
|
Chang L, Ding J, Pu J, Zhu J, Zhou X, Luo Q, Li J, Qian M, Lin S, Li J, Wang K. A novel lncRNA LOC101928222 promotes colorectal cancer angiogenesis by stabilizing HMGCS2 mRNA and increasing cholesterol synthesis. J Exp Clin Cancer Res 2024; 43:185. [PMID: 38965575 PMCID: PMC11223299 DOI: 10.1186/s13046-024-03095-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/07/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Metastasis is the leading cause of mortality in patients with colorectal cancer (CRC) and angiogenesis is a crucial factor in tumor invasion and metastasis. Long noncoding RNAs (lncRNAs) play regulatory functions in various biological processes in tumor cells, however, the roles of lncRNAs in CRC-associated angiogenesis remain to be elucidated in CRC, as do the underlying mechanisms. METHODS We used bioinformatics to screen differentially expressed lncRNAs from TCGA database. LOC101928222 expression was assessed by qRT-PCR. The impact of LOC101928222 in CRC tumor development was assessed both in vitro and in vivo. The regulatory mechanisms of LOC101928222 in CRC were investigated by cellular fractionation, RNA-sequencing, mass spectrometric, RNA pull-down, RNA immunoprecipitation, RNA stability, and gene-specific m6A assays. RESULTS LOC101928222 expression was upregulated in CRC and was correlated with a worse outcome. Moreover, LOC101928222 was shown to promote migration, invasion, and angiogenesis in CRC. Mechanistically, LOC101928222 synergized with IGF2BP1 to stabilize HMGCS2 mRNA through an m6A-dependent pathway, leading to increased cholesterol synthesis and, ultimately, the promotion of CRC development. CONCLUSIONS In summary, these findings demonstrate a novel, LOC101928222-based mechanism involved in the regulation of cholesterol synthesis and the metastatic potential of CRC. The LOC101928222-HMGCS2-cholesterol synthesis pathway may be an effective target for diagnosing and managing CRC metastasis.
Collapse
Affiliation(s)
- Lisha Chang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Ding
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Pu
- Department of Oncology, Lianshui County People's Hospital, Affiliated Hospital of Kangda college, Nanjing Medical University, Huaian, Jiangsu, China
| | - Jing Zhu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiang Zhou
- Head and neck surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qian Luo
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Li
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengsen Qian
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuhui Lin
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Li
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Keming Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Khalafizadeh A, Hashemizadegan SD, Shokri F, Bakhshinejad B, Jabbari K, Motavaf M, Babashah S. Competitive endogenous RNA networks: Decoding the role of long non-coding RNAs and circular RNAs in colorectal cancer chemoresistance. J Cell Mol Med 2024; 28:e18197. [PMID: 38506091 PMCID: PMC10951891 DOI: 10.1111/jcmm.18197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/17/2023] [Accepted: 02/04/2024] [Indexed: 03/21/2024] Open
Abstract
Colorectal cancer (CRC) is recognized as one of the most common gastrointestinal malignancies across the globe. Despite significant progress in designing novel treatments for CRC, there is a pressing need for more effective therapeutic approaches. Unfortunately, many patients undergoing chemotherapy develop drug resistance, posing a significant challenge for cancer treatment. Non-coding RNAs (ncRNAs) have been found to play crucial roles in CRC development and its response to chemotherapy. However, there are still gaps in our understanding of interactions among various ncRNAs, such as long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs). These ncRNAs can act as either oncogenes or tumour suppressors, affecting numerous biological functions in different cancers including CRC. A class of ncRNA molecules known as competitive endogenous RNAs (ceRNAs) has emerged as a key player in various cellular processes. These molecules form networks through lncRNA/miRNA/mRNA and circRNA/miRNA/mRNA interactions. In CRC, dysregulation of ceRNA networks has been observed across various cellular processes, including proliferation, apoptosis and angiogenesis. These dysregulations are believed to play a significant role in the progression of CRC and, in certain instances, may contribute to the development of chemoresistance. Enriching our knowledge of these dysregulations holds promise for advancing the field of diagnostic and therapeutic modalities for CRC. In this review, we discuss lncRNA- and circRNA-associated ceRNA networks implicated in the emergence and advancement of drug resistance in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Ali Khalafizadeh
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | | | - Fatemeh Shokri
- Research and Development Center of BiotechnologyTarbiat Modares UniversityTehranIran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Keyvan Jabbari
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Mahsa Motavaf
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
- Research and Development Center of BiotechnologyTarbiat Modares UniversityTehranIran
| |
Collapse
|
8
|
Li Z, Zheng C, Liu H, Lv J, Wang Y, Zhang K, Kong S, Chen F, Kong Y, Yang X, Cheng Y, Yang Z, Zhang C, Tian Y. A novel oxidative stress-related gene signature as an indicator of prognosis and immunotherapy responses in HNSCC. Aging (Albany NY) 2023; 15:14957-14984. [PMID: 38157249 PMCID: PMC10781479 DOI: 10.18632/aging.205323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE To identify molecular subtypes of oxidative stress-related genes in head and neck squamous cell carcinoma (HNSCC) and to construct a scoring model of oxidative stress-related genes. METHODS R language based scRNA-seq and bulk RNA-seq analyses were used to identify molecular isoforms of oxidative stress-related genes in HNSCC. An oxidative stress-related gene scoring (OSRS) model was constructed, which were verified through online data and immunohistochemical staining of clinical samples. RESULTS Using TCGA-HNSCC datasets, nine predictive genes for overall patient survival, rarely reported in previous similar studies, were screened. AREG and CES1 were identified as prognostic risk factors. CSTA, FDCSP, JCHAIN, IFFO2, PGLYRP4, SPOCK2 and SPINK6 were identified as prognostic factors. Collectively, all genes formed a prognostic risk signature model for oxidative stress in HNSCC, which were validated in GSE41613, GSE103322 and PRJEB23709 datasets. Immunohistochemical staining of SPINK6 in nasopharyngeal cancer samples validated the gene panel. Subsequent analysis indicated that subgroups of the oxidative stress prognostic signature played important roles during cellular communication, the immune microenvironment, the differential activation of transcription factors, oxidative stress and immunotherapeutic responses. CONCLUSIONS The risk model might predict HNSCC prognosis and immunotherapeutic responses.
Collapse
Affiliation(s)
- Zhuoqi Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250299, P.R. China
- Radiotherapy Department, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong 250299, P.R. China
| | - Chunning Zheng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Hongtao Liu
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Clinical Pathology, Shandong Lung Cancer Institute, Shandong Institute of Nephrology, Jinan, Shandong 250014, P.R. China
| | - Jiling Lv
- Department of Respiratory and Critical Care Medicine, Shandong Second Provincial General Hospital, Jinan, Shandong 250299, P.R. China
| | - Yuanyuan Wang
- Department of Oncology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250299, P.R. China
| | - Kai Zhang
- Generalsurgery Department, Wenshang County People’s Hospital, Wenshang, Shandong 272500, P.R. China
| | - Shuai Kong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Feng Chen
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Yongmei Kong
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250299, P.R. China
- Radiotherapy Department, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong 250299, P.R. China
| | - Xiaowei Yang
- Department of Hepatobiliary Intervention, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Yuxia Cheng
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Clinical Pathology, Shandong Lung Cancer Institute, Shandong Institute of Nephrology, Jinan, Shandong 250014, P.R. China
| | - Zhensong Yang
- Department of Gastrointestinal Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Chi Zhang
- Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yuan Tian
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250299, P.R. China
- Radiotherapy Department, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong 250299, P.R. China
| |
Collapse
|
9
|
Maharati A, Tolue Ghasaban F, Akhlaghipour I, Taghehchian N, Zangouei AS, Moghbeli M. MicroRNA-495: a therapeutic and diagnostic tumor marker. J Mol Histol 2023; 54:559-578. [PMID: 37759132 DOI: 10.1007/s10735-023-10159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Therapeutic and diagnostic progresses have significantly reduced the mortality rate among cancer patients during the last decade. However, there is still a high rate of mortality among cancer patients. One of the important reasons involved in the high mortality rate is the late diagnosis in advanced tumor stages that causes the failure of therapeutic strategies in these patients. Therefore, investigating the molecular mechanisms involved in tumor progression has an important role in introducing the efficient early detection markers. MicroRNAs (miRNAs) as stable factors in body fluids are always considered as non-invasive diagnostic and prognostic markers. In the present review, we investigated the role of miR-495 in tumor progression. It has been reported that miR-495 has mainly a tumor suppressor function through the regulation of transcription factors and tyrosine kinases as well as cellular processes such as multidrug resistance, chromatin remodeling, and signaling pathways. This review can be an effective step towards introducing the miR-495 as a non-invasive diagnostic/prognostic marker as well as a suitable target in tumor therapy.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Mou C, Li Z, Liu N, Ni L, Xu Y. Low level TGF-β1-treated Umbilical mesenchymal stem cells attenuates microgliosis and neuropathic pain in chronic constriction injury by exosomes/lncRNA UCA1/miR-96-5p/FOXO3a. Biochem Biophys Rep 2023; 34:101477. [PMID: 37153860 PMCID: PMC10160346 DOI: 10.1016/j.bbrep.2023.101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Neuropathic pain is a chronic pain state that usually caused by injuries in peripheral or central nerve. Inhibition of spinal microglial response is a promising treatment of neuropathic pain caused by peripheral nerve injury. In recent years, mesenchymal stem cells (MSCs) that characterized with multipotent ability have been widely studied for disease treatment. TGF-β1 is a well-known regulatory cytokine that participate in the response to cell stress and is closely correlated with the function of nerve system as well as MSC differentiation. This work aimed to determine the effects of exosomes that extracted from TGF-β1-induced umbilical mesenchymal stem cells (hUCSMCs) on the neuropathic pain. In this work, we established a rat model of chronic constriction injury (CCI) of the sciatic nerve and LPS-induced microglia cell model. The hUCSMCs cell surface biomarker was identified by flow cytometry. Exosomes that extracted from TGF-β1-treated hUCSMCs were characterized by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) and used for treatment. We observed that TGF-β1 upregulates the level of lncRNA UCA1 (UCA1) in hUCMSC-derived exosomes. Treatment with exosomal lncRNA UCA1 (UCA1) alleviated the neuropathic pain, microgliosis, and production of inflammatory mediator both in vivo and in vitro. UCA1 directly interact with the miR-96-5p, and the miR-96-5p acts as sponge of FOXO3a. Knockdown of UCA1 upregulated the level of miR-96-5p and downregulated the FOXO3a expression, which could be recovered by inhibition of miR-96-5p. In summary, the TGF-β1-stimulated exosomal UCA1 from hUCMSCs alleviates the neuropathic pain and microgliosis. These findings may provide novel evidence for treatment of neuropathic pain caused by chronic constriction injury.
Collapse
Affiliation(s)
- Chunlin Mou
- Technology Department, Everunion Biotechnology Co. LTD, Tianjin, China
| | - Zhengnan Li
- Technology Department, Everunion Biotechnology Co. LTD, Tianjin, China
| | - Nian Liu
- Technology Department, Everunion Biotechnology Co. LTD, Tianjin, China
| | - Ling Ni
- Technology Department, Everunion Biotechnology Co. LTD, Tianjin, China
| | - YongSheng Xu
- Technology Department, Everunion Biotechnology Co. LTD, Tianjin, China
| |
Collapse
|
11
|
Gao H, Tuluhong D, Li X, Zhu Y, Xu C, Wang J, Li H, Wang S, Ding W. CircSNX25 mediated by SP1 promotes the carcinogenesis and development of triple-negative breast cancer. Cell Signal 2023:110776. [PMID: 37331414 DOI: 10.1016/j.cellsig.2023.110776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Circular RNAs (circRNAs), according to a growing body of research, are thought to be important in the initiation and development of a number of cancers. However, more research is needed to fully understand how circRNAs work at the molecular level in triple-negative breast cancer (TNBC). RNA sequencing was conducted on four sets of TNBC samples and their corresponding adjacent noncancerous tissues (ANTs). The circSNX25 expression was assessed using quantitative real-time PCR in TNBC tissues and cells. Several in vitro and in vivo experiments were conducted in order to examine the function of circSNX25 in TNBC carcinogenesis. Through luciferase reporter and chromatin immunoprecipitation (ChIP) assays, we also investigated the potential regulation of circSNX25 biogenesis by specificity protein 1 (SP1). To further validate the relationship between circSNX25 and COPI coat complex subunit beta 1 (COPB1) in TNBC, we conducted circRNA pull-down and RNA immunoprecipitation (RIP) assays using the MS2/MS2-CP system. Online databases were analyzed to examine the clinical implications and prognostic value of COPB1 in TNBC. A higher circSNX25 expression levels were observed in tissues and cells of TNBC. Silencing circSNX25 notably inhibited TNBC cell proliferation, triggered apoptosis, and hindered tumor growth in vivo. Conversely, upregulation of circSNX25 had the opposite effects. Mechanistically, circSNX25 was found to physically interact with COPB1. Importantly, we identified that SP1 may enhance circSNX25 biogenesis. COPB1 levels were markedly higher in TNBC cells. Analysis of online databases revealed that TNBC patients with elevated COPB1 levels had a poorer prognosis. Our findings demonstrate that SP1-mediated circSNX25 promotes TNBC carcinogenesis and development. CircSNX25 may therefore serve as both a diagnostic and therapeutic biomarker for TNBC patients.
Collapse
Affiliation(s)
- Hongyu Gao
- Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu 210002, China
| | - Dilihumaer Tuluhong
- Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu 210002, China
| | - Xinfang Li
- Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu 210002, China
| | - Yueyun Zhu
- Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu 210002, China; General Surgery, Nanjing Maternity and Child Health Care Hospital, Woman's Hospital of Nanjing Medical University, No. 123 Tianfei Xiang, Mochou Road, Nanjing, Jiangsu 210002, China
| | - Cheng Xu
- Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu 210002, China; General Surgery, Nanjing Maternity and Child Health Care Hospital, Woman's Hospital of Nanjing Medical University, No. 123 Tianfei Xiang, Mochou Road, Nanjing, Jiangsu 210002, China
| | - Jingjie Wang
- Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu 210002, China; General Surgery, Nanjing Maternity and Child Health Care Hospital, Woman's Hospital of Nanjing Medical University, No. 123 Tianfei Xiang, Mochou Road, Nanjing, Jiangsu 210002, China
| | - Hanjun Li
- Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu 210002, China; General Surgery, Nanjing Maternity and Child Health Care Hospital, Woman's Hospital of Nanjing Medical University, No. 123 Tianfei Xiang, Mochou Road, Nanjing, Jiangsu 210002, China
| | - Shaohua Wang
- Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu 210002, China; General Surgery, Nanjing Maternity and Child Health Care Hospital, Woman's Hospital of Nanjing Medical University, No. 123 Tianfei Xiang, Mochou Road, Nanjing, Jiangsu 210002, China.
| | - Weiwei Ding
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu 210002, China.
| |
Collapse
|
12
|
A feedforward circuit between KLF5 and lncRNA KPRT4 contributes to basal-like breast cancer. Cancer Lett 2022; 534:215618. [PMID: 35259457 DOI: 10.1016/j.canlet.2022.215618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 12/21/2022]
Abstract
Basal-like breast cancer (BLBC) is the most aggressive subtype of breast cancer with a poor prognosis. Long noncoding RNAs (lncRNAs) play critical roles in human cancers. Krüppel-like Factor 5 (KLF5) is a key oncogenic transcription factor in BLBC. However, the underlying mechanism of mutual regulation between KLF5 and lncRNA remains largely unknown. Here, we demonstrate that lncRNA KPRT4 promotes BLBC cell proliferation in vitro and in vivo. Mechanistically, KLF5 directly binds to the promoter of KPRT4 to promote KPRT4 transcription. Reciprocally, KPRT4 recruits the YB-1 transcription factor to the KLF5 promoter by interacting with YB-1 at its 5' domain and forming an RNA-DNA-DNA triplex structure at its 3' domain, resulting in enhanced transcription of KLF5 and ultimately establishing a feedforward circuit to promote cell proliferation. Moreover, the antisense oligonucleotide (ASO)-based therapy targeting KPRT4 substantially attenuated tumor growth in vivo. Clinically, the expression levels of YB-1, KLF5 and KPRT4 are positively correlated in clinical breast specimens. Together, our data suggest that KPRT4 is a major molecule for BLBC progression and that the feedforward circuit between KLF5 and KPRT4 may represent a potential therapeutic target in BLBC.
Collapse
|
13
|
He RZ, Jiang J, Hu X, Lei M, Li J, Luo W, Duan L, Hu Z, Mo YY, Luo DX, Peng WX. Stabilization of UCA1 by N6-methyladenosine RNA methylation modification promotes colorectal cancer progression. Cancer Cell Int 2021; 21:616. [PMID: 34809621 PMCID: PMC8609784 DOI: 10.1186/s12935-021-02288-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023] Open
Abstract
Background UCA1 is frequently upregulated in a variety of cancers, including CRC, and it can play an oncogenic role by various mechanisms. However, how UCA1 is regulated in cancer is largely unknown. In this study, we aimed to determine whether RNA methylation at N6-methyladenosine (m6A) can impact UCA1 expression in colorectal cancer (CRC). Methods qRT-PCR was performed to detect the level of UCA1 and IGF2BP2 in CRC samples. CRISPR/Cas9 was employed to knockout (KO) UCA1, METTL3 and WTAP in DLD-1 and HCT-116 cells, while rescue experiments were carried out to re-express METTL3 and WTAP in KO cells. Immunoprecipitation using m6A antibody was performed to determine the m6A modification of UCA1. In vivo pulldown assays using S1m tagging combined with site-direct mutagenesis was carried out to confirm the recognition of m6A-modified UCA1 by IGF2BP2. Cell viability was measured by MTT and colony formation assays. The expression of UCA1 and IGF2BP2 in TCGA CRC database was obtained from GEPIA (http://gepia.cancer-pku.cn). Results Our results revealed that IGF2BP2 serves as a reader for m6A modified UCA1 and that adenosine at 1038 of UCA1 is critical to the recognition by IGF2BP2. Importantly, we showed that m6A writers, METTL3 and WTAP positively regulate UCA1 expression. Mechanically, IGF2BP2 increases the stability of m6A-modified UCA1. Clinically, IGF2BP2 is upregulated in CRC tissues compared with normal tissues. Conclusion These results suggest that m6A modification is an important factor contributing to upregulation of UCA1 in CRC tissues. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02288-x.
Collapse
Affiliation(s)
- Rong-Zhang He
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jing Jiang
- Center of Medical Laboratory, The First People's Hospital of Chenzhou, University of South China, Chenzhou, 423000, China
| | - Xinglin Hu
- Department of Dermatology, Affiliated the First People's Hospital of Chenzhou of University of South China, Chenzhou, 423000, China
| | - Ming Lei
- Department of Clinical Laboratory, The First People's Hospital of Changde City, Changde, 415003, China
| | - Jia Li
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, China
| | - Weihao Luo
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, China
| | - Lili Duan
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, China
| | - Zheng Hu
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, China
| | - Yin-Yuan Mo
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Di-Xian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Guangdong, 518000, China.
| | - Wan-Xin Peng
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA. .,National Clinical Research Center for Child Health, National Children's Regional Medical Center, the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Road, Hangzhou, 310052, China.
| |
Collapse
|