1
|
Yin Y, Wang R, Li Y, Qin W, Pan L, Yan C, Hu Y, Wang G, Ai L, Mei Q, Li L. Protection against DSS-induced colitis in mice through FcεRIα deficiency: the role of altered Lactobacillus. NPJ Biofilms Microbiomes 2024; 10:84. [PMID: 39266529 PMCID: PMC11393424 DOI: 10.1038/s41522-024-00563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
The role of mast cells (MCs) in ulcerative colitis (UC) development is controversial. FcεRI, the IgE high-affinity receptor, is known to activate MCs. However, its role in UC remains unclear. In our study, Anti-FcεRI showed highly diagnostic value for UC. FcεRIα knockout in mice ameliorated DSS-induced colitis in a gut microbiota-dependent manner. Increased Lactobacillus abundance in FcεRIα deficient mice showed strongly correlation with the remission of colitis. RNA sequencing indicated activation of the NLRP6 inflammasome pathway in FcεRIα knockout mice. Additionally, Lactobacillus plantarum supplementation protected against inflammatory injury and goblet cell loss, with activation of the NLRP6 inflammasome during colitis. Notably, this effect was absent when the strain is unable to produce lactic acid. In summary, colitis was mitigated in FcεRIα deficient mice, which may be attributed to the increased abundance of Lactobacillus. These findings contribute to a better understanding of the relationship between allergic reactions, microbiota, and colitis.
Collapse
Affiliation(s)
- Yue Yin
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruilong Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanning Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenfei Qin
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Letian Pan
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chenyuan Yan
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yusen Hu
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Guangqiang Wang
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China.
| | - Qixiang Mei
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China.
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Li Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Ryu HM, Islam SMS, Riaz B, Sayeed HM, Choi B, Sohn S. Immunomodulatory Effects of a Probiotic Mixture: Alleviating Colitis in a Mouse Model through Modulation of Cell Activation Markers and the Gut Microbiota. Int J Mol Sci 2024; 25:8571. [PMID: 39201260 PMCID: PMC11354276 DOI: 10.3390/ijms25168571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Ulcerative colitis (UC) is a persistent inflammatory intestinal disease that consistently affects the colon and rectum. Its exact cause remains unknown. UC causes a considerable challenge in healthcare, prompting research for novel therapeutic strategies. Although probiotics have gained popularity as possible candidates for managing UC, studies are still ongoing to identify the best probiotics or probiotic mixtures for clinical applications. This study aimed to determine the efficacy of a multi-strain probiotic mixture in mitigating intestinal inflammation in a colitis mouse model induced by dextran sulfate sodium. Specifically, a multi-strain probiotic mixture consisting of Tetragenococcus halophilus and Eubacterium rectale was used to study its impact on colitis symptoms. Anti-inflammatory effects were evaluated using ELISA and flow cytometry. The configuration of gut microbial communities was determined using 16S rRNA metagenomic analysis. According to this study, colitis mice treated with the probiotic mixture experienced reduced weight loss and significantly less colonic shortening compared to untreated mice. Additionally, the treated mice exhibited increased levels of forkhead box P3 (Foxp3) and interleukin 10, along with decreased expression of dendritic cell activation markers, such as CD40+, CD80+, and CD83+, in peripheral blood leukocytes and intraepithelial lymphocytes. Furthermore, there was a significant decrease in the frequencies of CD8+N.K1.1+ cells and CD11b+Ly6G+ cells. In terms of the gut microbiota, probiotic-mixture treatment of colitis mice significantly increased the abundance of the phyla Actinobacteria and Verrucomicrobia (p < 0.05). These results provide valuable insights into the therapeutic promise of multi-strain probiotics, shedding light on their potential to alleviate colitis symptoms. This research contributes to the ongoing exploration of effective probiotic interventions for managing inflammatory bowel disease.
Collapse
Affiliation(s)
- Hye-Myung Ryu
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - S. M. Shamsul Islam
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (S.M.S.I.); (B.R.); (H.M.S.)
| | - Bushra Riaz
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (S.M.S.I.); (B.R.); (H.M.S.)
| | - Hasan M. Sayeed
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (S.M.S.I.); (B.R.); (H.M.S.)
| | - Bunsoon Choi
- Institute of Medical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Seonghyang Sohn
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (S.M.S.I.); (B.R.); (H.M.S.)
| |
Collapse
|
3
|
Lao J, Yan S, Yong Y, Li Y, Wen Z, Zhang X, Ju X, Li Y. Lacticaseibacillus casei IB1 Alleviates DSS-Induced Inflammatory Bowel Disease by Regulating the Microbiota and Restoring the Intestinal Epithelial Barrier. Microorganisms 2024; 12:1379. [PMID: 39065147 PMCID: PMC11278699 DOI: 10.3390/microorganisms12071379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) is becoming an increasingly serious health problem in humans and animals. Probiotics can inhibit the development of IBD. Due to the specificity of the strains, the function and mechanism of action of different strains are still unclear. Here, a DSS-induced colitis mouse model was utilized to investigate the ability and mechanism by which Lacticaseibacillus casei IB1 alleviates colitis. Treatment with L. casei IB1 improved DSS-induced colitis in mice, as indicated by increased body weight, colon length, and goblet cell numbers and decreased disease activity index (DAI), proinflammatory factor (TNF-α, IL-1β, and IL-6) levels, and histopathological scores after intake of IB1. IB1 supplementation also improved the expression of tight junction proteins and inhibited the activation of the MAPK and NF-κB signaling pathways to alleviate intestinal inflammation. In addition, IB1 rebalanced the intestinal microbial composition of colitis mice by increasing the abundance of Faecalibaculum and Alistipes and decreasing the abundance of Bacteroides and Escherichia_Shigella. In summary, L. casei IB1 showed great potential for relieving colitis by regulating the microbiota and restoring the epithelial barrier. It can be used as a potential probiotic for the prevention and treatment of UC in the future.
Collapse
Affiliation(s)
- Jianlong Lao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Shuping Yan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Yanhong Yong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Yin Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Zhaohai Wen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Xiaoyong Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Xianghong Ju
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Youquan Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| |
Collapse
|
4
|
Wang Z, Wu Y, Li X, Ji X, Liu W. The gut microbiota facilitate their host tolerance to extreme temperatures. BMC Microbiol 2024; 24:131. [PMID: 38643098 PMCID: PMC11031955 DOI: 10.1186/s12866-024-03277-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/25/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Exposure to extreme cold or heat temperature is one leading cause of weather-associated mortality and morbidity in animals. Emerging studies demonstrate that the microbiota residing in guts act as an integral factor required to modulate host tolerance to cold or heat exposure, but common and unique patterns of animal-temperature associations between cold and heat have not been simultaneously examined. Therefore, we attempted to investigate the roles of gut microbiota in modulating tolerance to cold or heat exposure in mice. RESULTS The results showed that both cold and heat acutely change the body temperature of mice, but mice efficiently maintain their body temperature at conditions of chronic extreme temperatures. Mice adapt to extreme temperatures by adjusting body weight gain, food intake and energy harvest. Fascinatingly, 16 S rRNA sequencing shows that extreme temperatures result in a differential shift in the gut microbiota. Moreover, transplantation of the extreme-temperature microbiota is sufficient to enhance host tolerance to cold and heat, respectively. Metagenomic sequencing shows that the microbiota assists their hosts in resisting extreme temperatures through regulating the host insulin pathway. CONCLUSIONS Our findings highlight that the microbiota is a key factor orchestrating the overall energy homeostasis under extreme temperatures, providing an insight into the interaction and coevolution of hosts and gut microbiota.
Collapse
Affiliation(s)
- Ziguang Wang
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China
- First Clinical Medical College, Mudanjiang Medical College, Mudanjiang, China
| | - Yujie Wu
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China
| | - Xinxin Li
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xiaowen Ji
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China.
| | - Wei Liu
- School of Plant Protection, Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
5
|
Wu J, Lv Y, Hao P, Zhang Z, Zheng Y, Chen E, Fan Y. Immunological profile of lactylation-related genes in Crohn's disease: a comprehensive analysis based on bulk and single-cell RNA sequencing data. J Transl Med 2024; 22:300. [PMID: 38521905 PMCID: PMC10960451 DOI: 10.1186/s12967-024-05092-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Crohn's disease (CD) is a disease characterized by intestinal immune dysfunction, often accompanied by metabolic abnormalities. Disturbances in lactate metabolism have been found in the intestine of patients with CD, but studies on the role of lactate and related Lactylation in the pathogenesis of CD are still unknown. METHODS We identified the core genes associated with Lactylation by downloading and merging three CD-related datasets (GSE16879, GSE75214, and GSE112366) from the GEO database, and analyzed the functions associated with the hub genes and the correlation between their expression levels and immune infiltration through comprehensive analysis. We explored the Lactylation levels of different immune cells using single-cell data and further analyzed the differences in Lactylation levels between inflammatory and non-inflammatory sites. RESULTS We identified six Lactylation-related hub genes that are highly associated with CD. Further analysis revealed that these six hub genes were highly correlated with the level of immune cell infiltration. To further clarify the effect of Lactylation on immune cells, we analyzed single-cell sequencing data of immune cells from inflammatory and non-inflammatory sites in CD patients and found that there were significant differences in the levels of Lactylation between different types of immune cells, and that the levels of Lactylation were significantly higher in immune cells from inflammatory sites. CONCLUSIONS These results suggest that Lactylation-related genes and their functions are closely associated with changes in inflammatory cells in CD patients.
Collapse
Affiliation(s)
- Jingtong Wu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Yinyin Lv
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Pei Hao
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Ziyi Zhang
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Yongtian Zheng
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Ermei Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China.
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China.
| | - Yanyun Fan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China.
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China.
| |
Collapse
|
6
|
Worledge CS, Kostelecky RE, Zhou L, Bhagavatula G, Colgan SP, Lee JS. Allopurinol Disrupts Purine Metabolism to Increase Damage in Experimental Colitis. Cells 2024; 13:373. [PMID: 38474337 PMCID: PMC10930830 DOI: 10.3390/cells13050373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammatory bowel disease (IBD) is marked by a state of chronic energy deficiency that limits gut tissue wound healing. This energy shortfall is partially due to microbiota dysbiosis, resulting in the loss of microbiota-derived metabolites, which the epithelium relies on for energy procurement. The role of microbiota-sourced purines, such as hypoxanthine, as substrates salvaged by the colonic epithelium for nucleotide biogenesis and energy balance, has recently been appreciated for homeostasis and wound healing. Allopurinol, a synthetic hypoxanthine isomer commonly prescribed to treat excess uric acid in the blood, inhibits the degradation of hypoxanthine by xanthine oxidase, but also inhibits purine salvage. Although the use of allopurinol is common, studies regarding how allopurinol influences the gastrointestinal tract during colitis are largely nonexistent. In this work, a series of in vitro and in vivo experiments were performed to dissect the relationship between allopurinol, allopurinol metabolites, and colonic epithelial metabolism and function in health and during disease. Of particular significance, the in vivo investigation identified that a therapeutically relevant allopurinol dose shifts adenylate and creatine metabolism, leading to AMPK dysregulation and disrupted proliferation to attenuate wound healing and increased tissue damage in murine experimental colitis. Collectively, these findings underscore the importance of purine salvage on cellular metabolism and gut health in the context of IBD and provide insight regarding the use of allopurinol in patients with IBD.
Collapse
Affiliation(s)
- Corey S. Worledge
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.S.W.); (R.E.K.); (L.Z.); (G.B.); (S.P.C.)
| | - Rachael E. Kostelecky
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.S.W.); (R.E.K.); (L.Z.); (G.B.); (S.P.C.)
| | - Liheng Zhou
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.S.W.); (R.E.K.); (L.Z.); (G.B.); (S.P.C.)
| | - Geetha Bhagavatula
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.S.W.); (R.E.K.); (L.Z.); (G.B.); (S.P.C.)
| | - Sean P. Colgan
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.S.W.); (R.E.K.); (L.Z.); (G.B.); (S.P.C.)
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
| | - J. Scott Lee
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.S.W.); (R.E.K.); (L.Z.); (G.B.); (S.P.C.)
| |
Collapse
|
7
|
Nohesara S, Abdolmaleky HM, Thiagalingam S. Potential for New Therapeutic Approaches by Targeting Lactate and pH Mediated Epigenetic Dysregulation in Major Mental Diseases. Biomedicines 2024; 12:457. [PMID: 38398057 PMCID: PMC10887322 DOI: 10.3390/biomedicines12020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Multiple lines of evidence have shown that lactate-mediated pH alterations in the brains of patients with neuropsychiatric diseases such as schizophrenia (SCZ), Alzheimer's disease (AD) and autism may be attributed to mitochondrial dysfunction and changes in energy metabolism. While neuronal activity is associated with reduction in brain pH, astrocytes are responsible for rebalancing the pH to maintain the equilibrium. As lactate level is the main determinant of brain pH, neuronal activities are impacted by pH changes due to the binding of protons (H+) to various types of proteins, altering their structure and function in the neuronal and non-neuronal cells of the brain. Lactate and pH could affect diverse types of epigenetic modifications, including histone lactylation, which is linked to histone acetylation and DNA methylation. In this review, we discuss the importance of pH homeostasis in normal brain function, the role of lactate as an essential epigenetic regulatory molecule and its contributions to brain pH abnormalities in neuropsychiatric diseases, and shed light on lactate-based and pH-modulating therapies in neuropsychiatric diseases by targeting epigenetic modifications. In conclusion, we attempt to highlight the potentials and challenges of translating lactate-pH-modulating therapies to clinics for the treatment of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
8
|
Zhang S, Ding C, Liu X, Zhao Y, Li S, Ding Q, Zhao T, Ma S, Li W, Liu W. New resource food-arabinogalactan improves DSS-induced acute colitis through intestinal flora and NLRP3 signaling pathway. Int J Biol Macromol 2024; 258:129118. [PMID: 38163502 DOI: 10.1016/j.ijbiomac.2023.129118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Colitis can significantly impact daily life. This study utilized DSS to induce acute colitis in mice and examined the regulatory effect of arabinogalactan (AG). The findings demonstrated that AG intake effectively alleviated the phenotype of DSS-induced colitis in mice and protected against small intestine damage. Furthermore, AG suppressed the secretion of pro-inflammatory factors TNF-α and IL-1β, while promoting the secretion of anti-inflammatory factor IL-10. It also inhibited the secretion of LPS in serum and MPO in colon tissue. Additionally, AG regulated the NF-κB/MAPK/PPARγ signaling pathway and inhibited the NLRP3 inflammasome signaling pathway, thereby ameliorating DSS-induced colitis inflammation in mice. AG also influenced the metabolism of short-chain fatty acids, particularly butyrate, in the intestinal tract of mice. Moreover, AG modulated and enhanced the composition of intestinal flora in mice with colitis, increasing the diversity of dominant flora and promoting the growth of beneficial bacteria. These results highlight the protective effects of arabinogalactan against colitis and its potential applications in the food industry.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Xinglong Liu
- College of traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Yingchun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shanshan Li
- Institute of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ting Zhao
- College of traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Shuang Ma
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China.
| |
Collapse
|
9
|
Zhang S, Zhang C, Yan H, Yang L, Shi N, Liu C, Chen Y. Sacral Nerve Stimulation Alleviates Intestinal Inflammation Through Regulating the Autophagy of Macrophages and Activating the Inflammasome Mediated by a Cholinergic Antiinflammatory Pathway in Colitis Rats. Neuromodulation 2024; 27:302-311. [PMID: 36740464 DOI: 10.1016/j.neurom.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/16/2022] [Accepted: 01/07/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is characterized by chronic progressive intestinal inflammation. Sacral nerve stimulation (SNS) ameliorates colon inflammation caused by IBD. The aim of this study was to investigate the antiinflammatory benefits of SNS in colitis rats and explore the roles of the cholinergic antiinflammatory pathway, macrophage autophagy, and nucleotide oligomerization domain-like receptor thermal protein domain associated protein 3 (NLRP3) inflammatory bodies. MATERIALS AND METHODS Rats were divided into four groups: healthy control, dextran sulfate sodium (DSS), DSS + sham-SNS, and DSS + SNS groups. An electrode was surgically placed in the right sacral nerve (S3) for stimulation. The disease activity index (DAI) score was recorded each day, and the degree of inflammatory injury was evaluated using hematoxylin and eosin staining. The alpha7 nicotinic acetylcholine receptor (α7nAChR) and autophagy- and NLRP3-related factors were assessed using immunofluorescence staining and Western blotting. RESULTS The DSS group showed a higher DAI score, colon shortening, upregulated proinflammatory action, and colon damage, and the DSS + SNS group showed significantly improved symptoms. The number of α7nAChR+ cells and the expression level of autophagy decreased in the DSS group but increased in the DSS + SNS group. Conversely, the DSS group showed increased activation of NLRP3 inflammatory bodies, whereas the DSS + SNS group showed decreased activation of NLRP3 inflammatory bodies. CONCLUSION In this study, SNS ameliorated colon inflammation by enhancing macrophage autophagy and inhibiting the activation of NLRP3 inflammatory bodies, which may be related to the opening of the cholinergic antiinflammatory pathway.
Collapse
Affiliation(s)
- Shuhui Zhang
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Can Zhang
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Hui Yan
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lijuan Yang
- Cancer Research Laboratory, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Ning Shi
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chengxia Liu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yan Chen
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
10
|
Li N, Wang H, Zhao H, Wang M, Cai J, Hao Y, Yu J, Jiang Y, Lü X, Liu B. Cooperative interactions between Veillonella ratti and Lactobacillus acidophilus ameliorate DSS-induced ulcerative colitis in mice. Food Funct 2023; 14:10475-10492. [PMID: 37934670 DOI: 10.1039/d3fo03898j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Veillonella and Lactobacillus species are key regulators of a healthy gut environment through metabolic cross-feeding, influencing lactic acid and short-chain fatty acid (SCFA) levels, which are crucial for gut health. This study aims to investigate how Veillonella ratti (V. ratti) and Lactobacillus acidophilus (LA) interact with each other and alleviate dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in a mouse model. We assess their metabolic interactions regarding carbon sources through co-culturing in a modified medium. In the in vitro experiments, V. ratti and LA were inoculated in mono-cultures and co-culture, and viable cell counts, OD600, pH, lactic acid, glucose and SCFAs were measured. For the in vivo experiment, 60 C57BL/6 mice were randomly divided into five groups and administered V. ratti and LA alone or in combination via oral gavage (1 × 109 CFU mL-1 per day per mouse) for 14 days. On the seventh day, 2.5% DSS was added to the drinking water to induce colitis. The effects of these probiotics on UC were evaluated by assessing intestinal barrier integrity and intestinal inflammation in the gut microenvironment. In vitro results demonstrated that co-culturing V. ratti with LA significantly increased viable cell numbers, lactic acid production, and SCFA production, while reducing pH and glucose levels in the medium. In vivo findings revealed that intervention with V. ratti, particularly in combination with LA, alleviated symptoms, including weight loss, colon shortening, and tissue damage. These probiotics mitigated intestinal inflammation by down-regulating pro-inflammatory molecules, such as IL-6, IL-1β, IL-γ, iNOS, and IFN-γ, as well as oxidative stress markers, including MDA and MPO. Concurrently, they upregulated the activity of anti-inflammatory enzymes, namely, SOD and GSH, and promoted the production of SCFAs. The combined intervention of V. ratti and LA significantly increased acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, and total SCFAs in cecal contents. Furthermore, the intervention of V. ratti and LA increased the abundance of beneficial bacteria, such as Akkermansia, while reducing the abundance of harmful bacteria, such as Escherichia-Shigella and Desulfovibrio, thereby mitigating excessive inflammation. These findings highlight the enhanced therapeutic effects resulting from the interactions between V. ratti and LA, demonstrating the potential of this combined probiotic approach.
Collapse
Affiliation(s)
- Na Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Hejing Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Huizhu Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Mengyang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jin Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yi Hao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jia Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yun Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Bianfang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
11
|
Ma M, Quan M, Zhang J, Zhang A, Gao P, Shang Q, Yu G. In Vitro Fermentation of Polysaccharide from Edible Alga Enteromorpha clathrata by the Gut Microbiota of Patients with Ulcerative Colitis. Nutrients 2023; 15:4122. [PMID: 37836407 PMCID: PMC10574352 DOI: 10.3390/nu15194122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Dietary intake of the sulfated polysaccharide from edible alga E. clathrata (ECP) has recently been illustrated to attenuate ulcerative colitis (UC) by targeting gut dysbiosis in mice. However, ECP is not easily absorbed in the gut and, as a potential candidate for next-generation prebiotics development, how it is fermented by human gut microbiota has not been characterized. Here, using in vitro anaerobic fermentation and 16S high-throughput sequencing, we illustrate for the first time the detailed fermentation characteristics of ECP by the gut microbiota of nine UC patients. Our results indicated that, compared to that of glucose, fermentation of ECP by human gut microbiota produced a higher amount of anti-inflammatory acetate and a lower amount of pro-inflammatory lactate. Additionally, ECP fermentation helped to shape a more balanced microbiota composition with increased species richness and diversity. Moreover, ECP significantly stimulated the growth of anti-colitis bacteria in the human gut, including Bacteroides thetaiotaomicron, Bacteroides ovatus, Blautia spp., Bacteroides uniformis, and Parabacteroides spp. Altogether, our study provides the first evidence for the prebiotic effect of ECP on human gut microbiota and sheds new light on the development of ECP as a novel prebiotic candidate for the prevention and potential treatment of UC.
Collapse
Affiliation(s)
- Mingfeng Ma
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (M.M.); (M.Q.); (J.Z.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Min Quan
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (M.M.); (M.Q.); (J.Z.)
| | - Jiaxue Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (M.M.); (M.Q.); (J.Z.)
| | - Aijun Zhang
- Qilu Hospital of Shandong University (Qingdao), Qingdao 266035, China; (A.Z.); (P.G.)
| | - Puyue Gao
- Qilu Hospital of Shandong University (Qingdao), Qingdao 266035, China; (A.Z.); (P.G.)
| | - Qingsen Shang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (M.M.); (M.Q.); (J.Z.)
- Qingdao Marine Biomedical Research Institute, Qingdao 266071, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (M.M.); (M.Q.); (J.Z.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
12
|
Lin Q, Hao WJ, Zhou RM, Huang CL, Wang XY, Liu YS, Li XZ. Pretreatment with Bifidobacterium longum BAA2573 ameliorates dextran sulfate sodium (DSS)-induced colitis by modulating gut microbiota. Front Microbiol 2023; 14:1211259. [PMID: 37346749 PMCID: PMC10280014 DOI: 10.3389/fmicb.2023.1211259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Objectives Inflammatory bowel disease (IBD) is a chronic lifelong inflammatory disease. Probiotics such as Bifidobacterium longum are considered to be beneficial to the recovery of intestinal inflammation by interaction with gut microbiota. Our goals were to define the effect of the exclusive use of BAA2573 on dextran sulfate sodium (DSS)-induced colitis, including improvement of symptoms, alleviation of histopathological damage, and modulation of gut microbiota. Methods In the present study, we pretreated C57BL/6J mice with Bifidobacterium longum BAA2573, one of the main components in an over-the-counter (OTC) probiotic mixture BIFOTO capsule, before modeling with DSS. 16S rDNA sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based non-targeted metabolomic profiling were performed with the collected feces. Results We found that pretreatment of Bifidobacterium longum BAA2573 given by gavage significantly improved symptoms and histopathological damage in DSS-induced colitis mice. After the BAA2573 intervention, 57 genera and 39 metabolites were significantly altered. Pathway enrichment analysis demonstrated that starch and sucrose metabolism, vitamin B6 metabolism, and sphingolipid metabolism may contribute to ameliorating colitis. Moreover, we revealed that the gut microbiome and metabolites were interrelated in the BAA2573 intervention group, while Alistipes was the core genus. Conclusion Our study demonstrates the impact of BAA2573 on the gut microbiota and reveals a possible novel adjuvant therapy for IBD patients.
Collapse
Affiliation(s)
- Qiong Lin
- Nephrology and Immunology Department, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Digestive, Affiliated Children's Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Wu-Juan Hao
- Department of Digestive, Affiliated Children's Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Ren-Min Zhou
- Department of Digestive, Affiliated Children's Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | | | - Xu-Yang Wang
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan-Shan Liu
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Zhong Li
- Nephrology and Immunology Department, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
13
|
Wang M, Fan Z, Chen D, Yu B, He J, Yu J, Mao X, Huang Z, Luo Y, Luo J, Yan H, Zheng P. Dietary lactate supplementation can alleviate DSS-induced colitis in piglets. Biomed Pharmacother 2023; 158:114148. [PMID: 36580723 DOI: 10.1016/j.biopha.2022.114148] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Colitis is a common and complex intestinal inflammatory disease in which lactate, a metabolite of anaerobic glycolysis, plays a crucial role. Our study aimed to investigate the alleviated effect of lactate in colitis, and to provide a nutritional measure to alleviate colitis injury. The variations in colonic lactate in piglets with DSS-induced colitis were investigated in Experiment 1 (Exp.1). Thirty weaned pigs were allotted into three groups and sampled at different stages of DSS-induced colitis (days 0, 5, and 7). The colonic level of lactate and interleukin 10 (IL-10) was significantly decreased on day 5 when compared to day 0. Colonic lactate, IL-10, and G protein receptor 81 (GPR81) levels were significantly increased on day 7 when compared to day 5. Sixty weaned piglets were assigned to control (basal diet), DSS (basal diet with DSS gavage), or lactate (2% lactate supplementation diet with DSS gavage) groups to investigate the effects of lactate on DSS-induced colitis in Experiment 2 (Exp.2). Lactate reduced the disease activity index (DAI), DSS-induced impairment of colonic structure in response to the critical inflammatory cytokines interleukin 1β (IL-1β) and interleukin 18 (IL-18) when compared with the DSS group. Furthermore, GPR-81 levels, colonic M2 macrophages, and IL-10 levels, the colonic antioxidant capacity, colonic butyrate levels were increased, and eventually improved growth performance post-colitis. The results of this study show that lactate was decreased at the peak of colitis, accumulated in subsidized colitis. Furthermore, dietary lactate supplementation helped to alleviate DSS-induced colitis injury.
Collapse
Affiliation(s)
- Mingyu Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, and Key laboratory of Animal Disease-resistant Nutrition, Chengdu 611130 Sichuan Province, People's Republic of China
| | - Zequn Fan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, and Key laboratory of Animal Disease-resistant Nutrition, Chengdu 611130 Sichuan Province, People's Republic of China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, and Key laboratory of Animal Disease-resistant Nutrition, Chengdu 611130 Sichuan Province, People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, and Key laboratory of Animal Disease-resistant Nutrition, Chengdu 611130 Sichuan Province, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, and Key laboratory of Animal Disease-resistant Nutrition, Chengdu 611130 Sichuan Province, People's Republic of China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, and Key laboratory of Animal Disease-resistant Nutrition, Chengdu 611130 Sichuan Province, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, and Key laboratory of Animal Disease-resistant Nutrition, Chengdu 611130 Sichuan Province, People's Republic of China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, and Key laboratory of Animal Disease-resistant Nutrition, Chengdu 611130 Sichuan Province, People's Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, and Key laboratory of Animal Disease-resistant Nutrition, Chengdu 611130 Sichuan Province, People's Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, and Key laboratory of Animal Disease-resistant Nutrition, Chengdu 611130 Sichuan Province, People's Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, and Key laboratory of Animal Disease-resistant Nutrition, Chengdu 611130 Sichuan Province, People's Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, and Key laboratory of Animal Disease-resistant Nutrition, Chengdu 611130 Sichuan Province, People's Republic of China.
| |
Collapse
|
14
|
Cartwright IM, Colgan SP. The hypoxic tissue microenvironment as a driver of mucosal inflammatory resolution. Front Immunol 2023; 14:1124774. [PMID: 36742292 PMCID: PMC9890178 DOI: 10.3389/fimmu.2023.1124774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
On the backdrop of all acute inflammatory processes lies the activation of the resolution response. Recent years have witnessed an emerging interest in defining molecular factors that influence the resolution of inflammation. A keystone feature of the mucosal inflammatory microenvironment is hypoxia. The gastrointestinal tract, particularly the colon, exists in a state of physiological hypoxia and during active inflammation, this hypoxic state is enhanced as a result of infiltrating leukocyte oxygen consumption and the activation of oxygen consuming enzymes. Most evidence suggests that mucosal hypoxia promotes the active resolution of inflammation through a variety of mechanisms, including extracellular acidification, purine biosynthesis/salvage, the generation of specialized pro-resolving lipid mediators (ie. resolvins) and altered chemokine/cytokine expression. It is now appreciated that infiltrating innate immune cells (neutrophils, eosinophils, macrophages) have an important role in molding the tissue microenvironment to program an active resolution response. Structural or functional dysregulation of this inflammatory microenvironment can result in the loss of tissue homeostasis and ultimately progression toward chronicity. In this review, we will discuss how inflammatory hypoxia drives mucosal inflammatory resolution and its impact on other microenvironmental factors that influence resolution.
Collapse
Affiliation(s)
- Ian M. Cartwright
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, United States
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Sean P. Colgan
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, United States
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| |
Collapse
|
15
|
Cryptosporidium infection induced the dropping of SCFAS and dysbiosis in intestinal microbiome of Tibetan pigs. Microb Pathog 2023; 174:105922. [PMID: 36462579 DOI: 10.1016/j.micpath.2022.105922] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
The infection of Cryptosporidium in pigs causes digestive system ailments, diarrhea and weight loss serving as an economic burden, especially in newborn animals. The bacterial fermentation products of short-chain fatty acids have important roles in immune function, microbiota regulation, osmotic balance and metabolism. However, till now little knowledge is available about the effect of Cryptosporidium infection on microbiota and SCFAs in plateau pigs. Hence, we performed this study to explore the response of microbiota and SCFAs in the natural infection of Cryptosporidium in Tibetan pigs. Cryptosporidium positive (infected, G) and negative samples (healthy, J) in our previous study were used for high throughputsequencing and Gas Chromatography-Mass Spectrometer analysis. Over 81 000 and 74 000 filtered sequences were detected in healthy and infected Tibetan pigs, respectively. Lower sample richness and evenness were observed in Cryptosporidium infection, as alpha diversity analysis found that chao1 (p < 0.05), faith_pd (p < 0.05), and observed_features in group G were significantly lower than pigs in group J. A total of 4 and 27 significant different phyla and genera were found between group G and J. The changed genera were Psychrobacter, Desemzia, Succiniclasticum, Treponema, Campylobacter, Atopobium, Olsenella, Pediococcus, Peptococcus, Sharpea, Desulfovibrio, Acinetobacter, Rhodococcus, Anaerostipes, Turicibacter, Lactobacillus, RFN20, Phascolarctobacterium, Roseburia, Megasphaera, Streptococcus, Blautia, Lachnospira, rc4_4, Gemmiger, Dorea, Oribacterium and Prevotella, which affected the microbiota functions with 360 abundance changed enzymes, and pathways in L1, L2 and L3 levels of KEGG. The concentration of acetic acid (p < 0.01), butyric acid (p < 0.05) and caproic acid (p < 0.01) were lower in group G. In conclusion, the present study herein uncovered that the host responses to Cryptosporidium infection in Tibetan pigs with 27 of significantly changed genera decreased SCFAs in pigs, which may provide insights in further developing novel therapy against this protozoan.
Collapse
|
16
|
Meng Y, Sun J, Zhang G, Yu T, Piao H. Bacteria associated with glioma: a next wave in cancer treatment. Front Cell Infect Microbiol 2023; 13:1164654. [PMID: 37201117 PMCID: PMC10185885 DOI: 10.3389/fcimb.2023.1164654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/21/2023] [Indexed: 05/20/2023] Open
Abstract
Malignant gliomas occur more often in adults and may affect any part of the central nervous system (CNS). Although their results could be better, surgical excision, postoperative radiation and chemotherapy, and electric field therapy are today's mainstays of glioma care. However, bacteria can also exert anti-tumor effects via mechanisms such as immune regulation and bacterial toxins to promote apoptosis, inhibit angiogenesis, and rely on their natural characteristics to target the tumor microenvironment of hypoxia, low pH, high permeability, and immunosuppression. Tumor-targeted bacteria expressing anticancer medications will go to the cancer site, colonize the tumor, and then produce the therapeutic chemicals that kill the cancer cells. Targeting bacteria in cancer treatment has promising prospects. Rapid advances have been made in the study of bacterial treatment of tumors, including using bacterial outer membrane vesicles to load chemotherapy drugs or combine with nanomaterials to fight tumors, as well as the emergence of bacteria combined with chemotherapy, radiotherapy, and photothermal/photodynamic therapy. In this study, we look back at the previous years of research on bacteria-mediated glioma treatment and move forward to where we think it is headed.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Shenyang, China
- *Correspondence: Yiming Meng, ; Tao Yu, ; Haozhe Piao,
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Shenyang, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Shenyang, China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Shenyang, China
- *Correspondence: Yiming Meng, ; Tao Yu, ; Haozhe Piao,
| | - Haozhe Piao
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Shenyang, China
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Shenyang, China
- *Correspondence: Yiming Meng, ; Tao Yu, ; Haozhe Piao,
| |
Collapse
|
17
|
Huang J, Xu P, Shao M, Wei B, Zhang C, Zhang J. Humic acids alleviate dextran sulfate sodium-induced colitis by positively modulating gut microbiota. Front Microbiol 2023; 14:1147110. [PMID: 37125181 PMCID: PMC10132312 DOI: 10.3389/fmicb.2023.1147110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
Humic acids (HAs) are natural polymers with diverse functional groups that have been documented and utilized in traditional Chinese medicine. Dextran sulfate sodium (DSS)-induced colitis has been used as a model to study inflammatory bowel disease. In this research, we investigate the effect of HAs on ameliorating DSS-induced colitis in mice. Our aim here was to investigate if HAs could be a remedy against colitis and the mechanisms involved. The results show that HAs facilitated a regain of body weight and restoration of intestinal morphology after DSS-induced colitis. HAs treatment alters the community of gut microbiota with more Lactobacillus and Bifidobacterium. Changes in bacterial community result in lower amounts of lipopolysaccharides in mouse sera, as well as lower levels of inflammatory cytokines through the Toll-like receptor 4 (TLR4)-NF-κB pathway. HAs also promoted the expression of tight junction proteins, which protect the intestinal barrier from DSS damage. Cell experiments show that HAs display an inhibitory effect on DSS growth as well. These results suggest that HAs can alleviate colitis by regulating intestinal microbiota, reducing inflammation, maintaining mucosal barriers, and inhibiting pathogen growth. Thus, HAs offer great potential for the prevention and treatment of colitis.
Collapse
Affiliation(s)
- Jiazhang Huang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Pengfei Xu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Mingzhi Shao
- Ultrasound Department of Zhucheng People's Hospital, Weifang, China
| | - Bin Wei
- Shandong Asia-Pacific Haihua Biotechnology Co., Ltd., Jinan, China
| | - Cong Zhang
- Shandong Asia-Pacific Haihua Biotechnology Co., Ltd., Jinan, China
| | - Jie Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
18
|
Li Z, Ding L, Zhu W, Hang S. Effects of the increased protein level in small intestine on the colonic microbiota, inflammation and barrier function in growing pigs. BMC Microbiol 2022; 22:172. [PMID: 35794527 PMCID: PMC9258065 DOI: 10.1186/s12866-022-02498-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/16/2022] [Indexed: 12/03/2022] Open
Abstract
Background An increased level of the dietary protein alters the colonic microbial community and metabolic profile of pigs, but it remains unclear whether this leads to colonic inflammation and impairs barrier function in growing pigs. Results Sixteen pigs (35.2 ± 0.3 kg) were infused with sterile saline (control) or soy protein hydrolysate (SPH) (70 g/day) through a duodenal fistula twice daily during a 15-day experimental period. The SPH treatment did not affect their average daily feed intake and daily weight gain (P > 0.05), but reduced colon index and length (P < 0.05). Illumina MiSeq sequencing revealed that species richness was increased following SPH intervention (P < 0.05). Furthermore, SPH reduced the abundance of butyrate- and propionate-producing bacteria—such as Lachnospiraceae NK4A136 group, Lachnospiraceae_uncultured, Coprococcus 3, Lachnospiraceae UCG-002, and Anaerovibrio—and increased the abundance of potentially pathogenic bacteria and protein-fermenting bacteria, such as Escherichia-Shigella, Dialister, Veillonella, Prevotella, Candidatus Saccharimonas, Erysipelotrichaceae UCG-006, Prevotellaceae_uncultured, and Prevotellaceae UCG-003 (P < 0.05). In addition, a lower content of total short-chain fatty acids, propionate, and butyrate and a higher concentration of cadaverine, putrescine, total biogenic amines, ammonia, and isovalerate were observed following SPH infusion (P < 0.05). Further analysis revealed that SPH increased the concentration of tumour necrosis factor-α, interleukin (IL)-1β, IL-6, and IL-8 in the colonic mucosa (P < 0.05). Interestingly, SPH intervention increased the expression of occludin, zonula occludens (ZO)-1, and claudin-1 in colonic mucosa (P < 0.05). Correlation analysis showed that different genera were significantly related to the production of metabolites and the concentrations of pro-inflammatory cytokines. Conclusion An increased soy protein level in the small intestine altered the colonic microbial composition and metabolic profile, which resulted in the secretion of colonic proinflammatory cytokines and the increased expression of tight junction proteins. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02498-x.
Collapse
|
19
|
Citrus unshiu Peel Attenuates Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice due to Modulation of the PI3K/Akt Signaling Pathway and MAPK and NF-κB. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4041402. [PMID: 35620406 PMCID: PMC9129974 DOI: 10.1155/2022/4041402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/24/2022] [Indexed: 11/25/2022]
Abstract
Aim Citrus unshiu peel has been used to treat various diseases in traditional East Asian medicine including Korea, and many studies have been reported regarding inflammatory diseases including ulcerative colitis (UC). However, the underlying mechanism by which Citrus unshiu peel modulates inflammation in UC remains unclear. Therefore, this study aimed to evaluate the therapeutic effect and underlying mechanism of Citrus unshiu peel water extract (CUP) for UC. Methods The experiment for UC was conducted with 8-week-old male Balb/c mice. After 1 week of adaptation, acute colitis was induced in all groups except the normal group by 5% DSS dissolved in drinking water for 1 week. Balb/c mice were divided into 5 groups (n = 8/group): control group (Control), distilled water-treated group (DSS), 100 mg/kg sulfasalazine-treated group (SASP), 100 mg/kg CUP-treated group (CUPL), and 200 mg/kg CUP-treated group (CUPH). The efficacy of CUP on UC was evaluated by biochemical analyses such as ROS and MPO in serum and MDA in tissues, and expression of proteins related to inflammation and apoptosis was evaluated through Western blot. Results As a result of confirming the macroscopic changes and H&E staining in colon tissues to confirm the preventive and therapeutic effects of CU, decrease in colon length and inflammatory lesions were inhibited in the CUP-treated group compared to the DSS group. In addition, as a result of serum ROS and tissue MDA analysis and oxidative stress-related protein analysis, it was significantly decreased in the CUP-administered group compared to the control group. In addition, treatment with CUP not only inactivated MAPK, p-IκBα, and NF-κBp65 by blocking the PI3K/Akt pathway but also significantly reduced the expression of inflammatory cytokines. Conclusion These results show that CUP not only suppresses oxidative stress in UC but also regulates inflammation-related proteins and apoptotic proteins by regulating the PI3K/Akt signaling pathway, suggesting that it has the potential as a material for developing new natural therapeutic agents for UC.
Collapse
|
20
|
Typing of the Gut Microbiota Community in Japanese Subjects. Microorganisms 2022; 10:microorganisms10030664. [PMID: 35336239 PMCID: PMC8954045 DOI: 10.3390/microorganisms10030664] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota are involved in both host health and disease and can be stratified based on bacteriological composition. However, gut microbiota clustering data are limited for Asians. In this study, fecal microbiota of 1803 Japanese subjects, including 283 healthy individuals, were analyzed by 16S rRNA sequencing and clustered using two models. The association of various diseases with each community type was also assessed. Five and fifteen communities were identified using partitioning around medoids (PAM) and the Dirichlet multinominal mixtures model, respectively. Bacteria exhibiting characteristically high abundance among the PAM-identified types were of the family Ruminococcaceae (Type A) and genera Bacteroides, Blautia, and Faecalibacterium (Type B); Bacteroides, Fusobacterium, and Proteus (Type C); and Bifidobacterium (Type D), and Prevotella (Type E). The most noteworthy community found in the Japanese subjects was the Bifidobacterium-rich community. The odds ratio based on type E, which had the largest population of healthy subjects, revealed that other types (especially types A, C, and D) were highly associated with various diseases, including inflammatory bowel disease, functional gastrointestinal disorder, and lifestyle-related diseases. Gut microbiota community typing reproducibly identified organisms that may represent enterotypes peculiar to Japanese individuals and that are partly different from those of indivuals from Western countries.
Collapse
|