1
|
Yilmaz Y. Postbiotics as Antiinflammatory and Immune-Modulating Bioactive Compounds in Metabolic Dysfunction-Associated Steatotic Liver Disease. Mol Nutr Food Res 2024; 68:e2400754. [PMID: 39499063 DOI: 10.1002/mnfr.202400754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/12/2024] [Indexed: 11/07/2024]
Abstract
Postbiotics, defined as products or metabolic byproducts secreted by live bacteria or released after bacterial lysis, are emerging as promising therapeutic agents for metabolic dysfunction-associated steatotic liver disease (MASLD). This review explores the antiinflammatory and immunomodulatory properties of various postbiotics, including exopolysaccharides, lipoteichoic acid, short-chain fatty acids, hydrogen sulfide, polyamines, tryptophan derivatives, and polyphenol metabolites. These compounds have demonstrated potential in mitigating steatotic liver infiltration, reducing inflammation, and slowing fibrosis progression in preclinical studies. Notably, postbiotics exert their beneficial effects by modulating gut microbiota composition, enhancing intestinal barrier function, optimizing lipid metabolism, reducing hepatic inflammation and steatosis, and exhibiting hepatoprotective properties. However, translating these findings into clinical practice requires well-designed trials to validate efficacy and safety, standardize production and characterization, and explore personalized approaches and synergistic effects with other therapeutic modalities. Despite challenges, the unique biological properties of postbiotics, such as enhanced safety compared to probiotics, make them attractive candidates for developing novel nutritional interventions targeting the multifactorial pathogenesis of MASLD. Further research is needed to establish their clinical utility and potential to improve liver and systemic outcomes in this increasingly prevalent condition.
Collapse
Affiliation(s)
- Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
- The Global NASH Council, Washington, DC, 53020, USA
| |
Collapse
|
2
|
Stonebraker JR, Pace RG, Gallins PJ, Dang H, Aksit M, Faino AV, Gordon WW, MacParland S, Bamshad MJ, Gibson RL, Cutting GR, Durie PR, Wright FA, Zhou YH, Blackman SM, O’Neal WK, Ling SC, Knowles MR. Genetic variation in severe cystic fibrosis liver disease is associated with novel mechanisms for disease pathogenesis. Hepatology 2024; 80:1012-1025. [PMID: 38536042 PMCID: PMC11427593 DOI: 10.1097/hep.0000000000000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/11/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND AND AIMS It is not known why severe cystic fibrosis (CF) liver disease (CFLD) with portal hypertension occurs in only ~7% of people with CF. We aimed to identify genetic modifiers for severe CFLD to improve understanding of disease mechanisms. APPROACH AND RESULTS Whole-genome sequencing was available in 4082 people with CF with pancreatic insufficiency (n = 516 with severe CFLD; n = 3566 without CFLD). We tested ~15.9 million single nucleotide polymorphisms (SNPs) for association with severe CFLD versus no-CFLD, using pre-modulator clinical phenotypes including (1) genetic variant ( SERPINA1 ; Z allele) previously associated with severe CFLD; (2) candidate SNPs (n = 205) associated with non-CF liver diseases; (3) genome-wide association study of common/rare SNPs; (4) transcriptome-wide association; and (5) gene-level and pathway analyses. The Z allele was significantly associated with severe CFLD ( p = 1.1 × 10 -4 ). No significant candidate SNPs were identified. A genome-wide association study identified genome-wide significant SNPs in 2 loci and 2 suggestive loci. These 4 loci contained genes [significant, PKD1 ( p = 8.05 × 10 -10 ) and FNBP1 ( p = 4.74 × 10 -9 ); suggestive, DUSP6 ( p = 1.51 × 10 -7 ) and ANKUB1 ( p = 4.69 × 10 -7 )] relevant to severe CFLD pathophysiology. The transcriptome-wide association identified 3 genes [ CXCR1 ( p = 1.01 × 10 -6 ) , AAMP ( p = 1.07 × 10 -6 ), and TRBV24 ( p = 1.23 × 10 -5 )] involved in hepatic inflammation and innate immunity. Gene-ranked analyses identified pathways enriched in genes linked to multiple liver pathologies. CONCLUSION These results identify loci/genes associated with severe CFLD that point to disease mechanisms involving hepatic fibrosis, inflammation, innate immune function, vascular pathology, intracellular signaling, actin cytoskeleton and tight junction integrity and mechanisms of hepatic steatosis and insulin resistance. These discoveries will facilitate mechanistic studies and the development of therapeutics for severe CFLD.
Collapse
Affiliation(s)
- Jaclyn R. Stonebraker
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Rhonda G. Pace
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Paul J. Gallins
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Hong Dang
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - M.A. Aksit
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | - Anna V. Faino
- Children’s Core for Biostatistics, Epidemiology and Analytics in Research, Seattle Children’s Research Institute, Seattle, Washington, 98101, USA
| | - William W. Gordon
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington, 98195, USA
| | - Sonya MacParland
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael J. Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington, 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, USA
| | - Ronald L. Gibson
- Center for Respiratory Biology & Therapeutics, Seattle Children’s Research Institute, Seattle, Washington, 98105, USA
| | - Garry R. Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | | | - Fred A. Wright
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, USA
- Department of Statistics, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Yi-Hui Zhou
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Scott M. Blackman
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
- Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | - Wanda K. O’Neal
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Simon C. Ling
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Michael R. Knowles
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| |
Collapse
|
3
|
Alshehade SA. Resmetirom's approval: Highlighting the need for comprehensive approaches in NASH therapeutics. Clin Res Hepatol Gastroenterol 2024; 48:102377. [PMID: 38772519 DOI: 10.1016/j.clinre.2024.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/12/2024] [Accepted: 05/19/2024] [Indexed: 05/23/2024]
Abstract
The recent FDA approval of Rezdiffra (resmetirom), an oral partial agonist of the thyroid hormone receptor-beta (THR-beta), for the treatment of noncirrhotic non-alcoholic steatohepatitis (NASH) with moderate to advanced fibrosis, has challenged conventional approaches to NASH drug development. Despite extensive efforts targeting typical pathways involved in NASH progression, such as lipogenesis, oxidative stress, and inflammation, these approaches have yet to yield any approved therapies. The success of resmetirom highlights the potential advantages of targeting THR-beta, which exerts pleiotropic effects on multiple pathways involved in NASH pathogenesis, including lipid metabolism, glucose homeostasis, and inflammation. In the phase 3 MAESTRONASH trial, resmetirom significantly improved NASH resolution, fibrosis, and LDL cholesterol levels compared to placebo, with a favorable safety profile. The tissue-specific action of resmetirom may also contribute to its efficacy and safety. The approval of resmetirom has opened new avenues for NASH drug development, emphasizing the importance of exploring novel mechanisms of action, developing targeted therapies, and embracing a more comprehensive approach to treatment. As the global burden of NASH continues to grow, the lessons learned from the success of resmetirom should inform future drug development strategies, offering hope to the millions of patients affected by this disease worldwide.
Collapse
Affiliation(s)
- Salah Abdalrazak Alshehade
- Department of Pharmacology, Faculty of Pharmacy & Bio-Medical Sciences, MAHSA University, Selangor 42610, Malaysia.
| |
Collapse
|
4
|
Fu S, Xu M, Li J, Yu M, Wang S, Han L, Li R, Deng F, Peng H, Liu D, Tan Y. HDAC6 inhibitor ACY-1215 protects from nonalcoholic fatty liver disease via inhibiting CD14/TLR4/MyD88/MAPK/NFκB signal pathway. Heliyon 2024; 10:e33740. [PMID: 39055804 PMCID: PMC11269855 DOI: 10.1016/j.heliyon.2024.e33740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Background & aims Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by hepatic steatosis, for which there is currently no effective treatment. ACY-1215 is a selective inhibitor of histone deacetylation 6, which has shown therapeutic potential in many tumors, as well as acute liver injury. However, no research about ACY-1215 on NAFLD has been published. Therefore, our study aims to explore the role and mechanism of ACY-1215 in the experimental model of NAFLD, to propose a new treatment strategy for NAFLD. Methods We established cell and animal models of NAFLD and verified the effect of ACY-1215 on NAFLD. The mechanism of ACY-1215 on NAFLD was preliminarily explored through TMT relative quantitative proteomics, and then we verify the mechanism discovered in the experimental model of NAFLD. Results ACY-1215 can reduce lipid aggregation, IL-1β, and TNF α mRNA levels in liver cells in vitro. ACY-1215 can reduce the weight gain and steatosis in the liver of the NAFLD mouse model, alleviate the deterioration of liver function, and reduce IL-1βs and TNF α mRNA levels in hepatocytes. TMT relative quantitative proteomics found that ACY-1215 decreased the expression of CD14 in hepatocytes. It was found that ACY-1215 can inhibit the activation level of CD14/TLR4/MyD88/MAPK/NFκB pathway in the NAFLD experimental model. Conclusions ACY-1215 has a protective effect on the cellular model of NAFLD induced by fatty acids and lipopolysaccharide, as well as the C57BL/6J mouse model induced by a high-fat diet. ACY-1215 may play a protective role by inhibiting CD14/TLR4/MyD88/MAPK/NFκB signal pathway.
Collapse
Affiliation(s)
- Shifeng Fu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
- Research Center of Digestive Diseases, Central South University, Changsha, 410011, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, 410011, Hunan Province, China
| | - Mengmeng Xu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
- Research Center of Digestive Diseases, Central South University, Changsha, 410011, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, 410011, Hunan Province, China
| | - Jianglei Li
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
- Research Center of Digestive Diseases, Central South University, Changsha, 410011, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, 410011, Hunan Province, China
| | - Meihong Yu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
- Research Center of Digestive Diseases, Central South University, Changsha, 410011, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, 410011, Hunan Province, China
| | - Siyi Wang
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
- Research Center of Digestive Diseases, Central South University, Changsha, 410011, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, 410011, Hunan Province, China
| | - Liu Han
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
- Research Center of Digestive Diseases, Central South University, Changsha, 410011, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, 410011, Hunan Province, China
| | - Rong Li
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
- Research Center of Digestive Diseases, Central South University, Changsha, 410011, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, 410011, Hunan Province, China
| | - Feihong Deng
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
- Research Center of Digestive Diseases, Central South University, Changsha, 410011, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, 410011, Hunan Province, China
| | - Hailing Peng
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
- Research Center of Digestive Diseases, Central South University, Changsha, 410011, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, 410011, Hunan Province, China
- Longshan County People's Hospital, Longshan, 416899, Hunan Province, China
| | - Deliang Liu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
- Research Center of Digestive Diseases, Central South University, Changsha, 410011, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, 410011, Hunan Province, China
| | - Yuyong Tan
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
- Research Center of Digestive Diseases, Central South University, Changsha, 410011, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, 410011, Hunan Province, China
| |
Collapse
|
5
|
Feng Y, Ren Y, Zhang X, Yang S, Jiao Q, Li Q, Jiang W. Metabolites of traditional Chinese medicine targeting PI3K/AKT signaling pathway for hypoglycemic effect in type 2 diabetes. Front Pharmacol 2024; 15:1373711. [PMID: 38799166 PMCID: PMC11116707 DOI: 10.3389/fphar.2024.1373711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Type 2 diabetes mellitus is a chronic metabolic disease characterized by insulin resistance, with high morbidity and mortality worldwide. Due to the tightly intertwined connection between the insulin resistance pathway and the PI3K/AKT signaling pathway, regulating the PI3K/AKT pathway and its associated targets is essential for hypoglycemia and the prevention of type 2 diabetes mellitus. In recent years, metabolites isolated from traditional Chinese medicine has received more attention and acceptance for its superior bioactivity, high safety, and fewer side effects. Meanwhile, numerous in vivo and in vitro studies have revealed that the metabolites present in traditional Chinese medicine possess better bioactivities in regulating the balance of glucose metabolism, ameliorating insulin resistance, and preventing type 2 diabetes mellitus via the PI3K/AKT signaling pathway. In this article, we reviewed the literature related to the metabolites of traditional Chinese medicine improving IR and possessing therapeutic potential for type 2 diabetes mellitus by targeting the PI3K/AKT signaling pathway, focusing on the hypoglycemic mechanism of the metabolites of traditional Chinese medicine in type 2 diabetes mellitus and elaborating on the significant role of the PI3K/AKT signaling pathway in type 2 diabetes mellitus. In order to provide reference for clinical prevention and treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenwen Jiang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
6
|
Zaky YA, Rashad MW, Zaater MA, El Kerdawy AM. Discovery of dual rho-associated protein kinase 1 (ROCK1)/apoptosis signal-regulating kinase 1 (ASK1) inhibitors as a novel approach for non-alcoholic steatohepatitis (NASH) treatment. BMC Chem 2024; 18:2. [PMID: 38172941 PMCID: PMC10765837 DOI: 10.1186/s13065-023-01081-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024] Open
Abstract
In the current study we suggest a novel approach to curb non-alcoholic steatohepatitis (NASH) progression, and we suggest privileged scaffolds for the design of novel compounds for this aim. NASH is an advanced form of non-alcoholic fatty liver disease that can further progress into fibrosis, cirrhosis, and hepatocellular carcinoma. It is a widely emerging disease affecting 25% of the global population and has no current approved treatments. Protein kinases are key regulators of cellular pathways, of which, Rho-associated protein kinase 1 (ROCK1) and apoptosis signal-regulating kinase 1 (ASK1) play an important role in the progression of NASH and they stand out as promising targets for NASH therapy. Interestingly, their kinase domains are found to be similar in sequence and topology; therefore, dual inhibition of ROCK1 and ASK1 is expected to be amenable and could achieve a more favourable outcome. To reach this goal, a training set of ROCK1 and ASK1 protein structures co-crystalized with type 1 (ATP-competitive) inhibitors was constructed to manually generate receptor-based pharmacophore models representing ROCK1 and ASK1 inhibitors' common pharmacophoric features. The models produced were assessed using a test set of both ROCK1 and ASK1 actives and decoys, and their performance was evaluated using different assessment metrics. The best pharmacophore model obtained, showing a Mathew's correlation coefficient (MCC) of 0.71, was then used to screen the ZINC purchasable database retrieving 6178 hits that were filtered accordingly using several medicinal chemistry and pharmacokinetics filters returning 407 promising compounds. To confirm that these compounds are capable of binding to the target kinases, they were subjected to molecular docking simulations at both protein structures. The results were then assessed individually and filtered, setting the spotlight on various privileged scaffolds that could be exploited as the nucleus for designing novel ROCK1/ASK1 dual inhibitors.
Collapse
Affiliation(s)
- Yara A Zaky
- Department of Chemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, Cairo, Egypt.
| | - Mai W Rashad
- Department of Chemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
| | - Marwa A Zaater
- Master Postgraduate Program, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed M El Kerdawy
- Department of Chemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- School of Pharmacy, College of Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, Lincolnshire, UK
| |
Collapse
|
7
|
Liu R, Qian MP, Cui YY. Protein kinases: The key contributors in pathogenesis and treatment of nonalcoholic fatty liver disease-derived hepatocellular carcinoma. Metabolism 2023; 147:155665. [PMID: 37517794 DOI: 10.1016/j.metabol.2023.155665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Protein kinases (PKs), one of the largest protein families, can be further divided into different groups based on their substrate or structure and function. PKs are important signaling messengers in numerous life activities, including cell metabolism, proliferation, division, differentiation, senescence, death, and disease. Among PK-related diseases, nonalcoholic fatty liver disease (NAFLD) has been recognized as a major contributor to hepatocellular carcinoma (HCC) and liver transplantation. Unfortunately, NAFLD-derived HCC (NAFLD-HCC) has poor prognosis because it is typically accompanied by older age, multiple metabolic syndromes, obstacles in early-stage diagnosis, and limited licensed drugs for treatment. Accumulating evidence suggests that PKs are implicated in the pathogenic process of NAFLD-HCC, via aberrant metabolism, hypoxia, autophagy, hypoxia, gut microbiota dysbiosis, and/or immune cell rearrangement. The present review aims to summarize the latest research advances and emphasize the feasibility and effectiveness of therapeutic strategies that regulate the expression and activities of PKs. This might yield clinically significant effects and lead to the design of novel PK-targeting therapies. Furthermore, we discuss emerging PK-based strategies for the treatment of other malignant diseases similar to NAFLD-HCC.
Collapse
Affiliation(s)
- Rong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ming-Ping Qian
- Department of General Surgery, Suzhou First People's Hospital, Anhui 234099, China; Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ying-Yu Cui
- Department of Cell Biology, Tongji University School of Medicine, Shanghai 200331, China; Institute of Medical Genetics, Tongji University School of Medicine, Shanghai 200331, China; Key Laboratory of Arrhythmias of the Ministry of Education of China (Tongji University), Tongji University School of Medicine, Shanghai 200331, China.
| |
Collapse
|
8
|
Zaghlool SS, Abdelaal N, El-Shoura EAM, Mahmoud NI, Ahmed YM. Restoring glomerular filtration rate by sulforaphane modulates ERK1/2/JNK/p38MAPK, IRF3/iNOS, Nrf2/HO-1 signaling pathways against folic acid-induced acute renal injury in rats. Int Immunopharmacol 2023; 123:110777. [PMID: 37567014 DOI: 10.1016/j.intimp.2023.110777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Folic acid (FA)-induced acute renal injury (AKI) is a commonly and highly reproducible model used to study AKI. The current study aims to evaluate the possible protective effects of sulforaphane (SFN) against FA-induced renal damage and explore the underlying molecular mechanism. METHODS The animals were divided into four groups (6 rats/group) as follows: normal group (received vehicle, p.o.), FA group (received 250 mg/kg, i.p.), SFN low dose group (received 15 mg/kg, p.o. plus FA 250 mg/kg, i.p.), SFN high dose group (30 mg/kg, p.o. plus FA 250 mg/kg, i.p.). At the end of the experiment, serum samples and kidney tissues were obtained to perform biochemical, molecular, and histopathological investigations. RESULTS The present study showed that FA-caused AKI was confirmed by a significant elevation of kidney function biomarkers serum levels accompanied by an observation of histopathologic changes. Interestingly, SFN-administration significantly improved kidney function, reduced oxidative stress markers; MDA, NADPH oxidase, MPO, iNOS with up-regulation of GSH, GCLM, GPX4, SOD, NQO1, HO-1 and Nrf2 levels. SFN also downregulated proinflammatory markers. The results also demonstrated the anti-apoptotic effect of SFN through its ability to increase the antiapoptotic Bcl-2 protein and to decrease caspase-3. Moreover, SFN significantly decreased the relative expression of JNK, ERK-1/2, IRF3, and p38MAPK as compared to the FA-nephrotoxic group. CONCLUSION The present study revealed that SFN possess an antioxidant, anti-inflammatory and antiapoptotic activity by modulating caspase-3, Bcl-2, ERK1/2, JNK, GCLM, NQO1, GPX4, Nrf2, HO-1 and P38 signaling pathways in a dose dependent manner which provides a potential therapeutic strategy for preventing FA-induced AKI.
Collapse
Affiliation(s)
- Sameh S Zaghlool
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo, 11571, Egypt.
| | - Nashwa Abdelaal
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA.
| | - Ehab A M El-Shoura
- Clinical Pharmacy Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt.
| | - Nesreen I Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.
| | - Yasmin M Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.
| |
Collapse
|
9
|
Kakehashi A, Suzuki S, Wanibuchi H. Recent Insights into the Biomarkers, Molecular Targets and Mechanisms of Non-Alcoholic Steatohepatitis-Driven Hepatocarcinogenesis. Cancers (Basel) 2023; 15:4566. [PMID: 37760534 PMCID: PMC10527326 DOI: 10.3390/cancers15184566] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (NASH) are chronic hepatic conditions leading to hepatocellular carcinoma (HCC) development. According to the recent "multiple-parallel-hits hypothesis", NASH could be caused by abnormal metabolism, accumulation of lipids, mitochondrial dysfunction, and oxidative and endoplasmic reticulum stresses and is found in obese and non-obese patients. Recent translational research studies have discovered new proteins and signaling pathways that are involved not only in the development of NAFLD but also in its progression to NASH, cirrhosis, and HCC. Nevertheless, the mechanisms of HCC developing from precancerous lesions have not yet been fully elucidated. Now, it is of particular importance to start research focusing on the discovery of novel molecular pathways that mediate alterations in glucose and lipid metabolism, which leads to the development of liver steatosis. The role of mTOR signaling in NASH progression to HCC has recently attracted attention. The goals of this review are (1) to highlight recent research on novel genetic and protein contributions to NAFLD/NASH; (2) to investigate how recent scientific findings might outline the process that causes NASH-associated HCC; and (3) to explore the reliable biomarkers/targets of NAFLD/NASH-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Anna Kakehashi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; (S.S.); (H.W.)
| | | | | |
Collapse
|
10
|
De Masi A, Li X, Lee D, Jeon J, Wang Q, Baek S, Park O, Mottis A, Strotjohann K, Rapin A, Jung HY, Auwerx J. Cyclo(His-Pro): A further step in the management of steatohepatitis. JHEP Rep 2023; 5:100815. [PMID: 37600955 PMCID: PMC10432811 DOI: 10.1016/j.jhepr.2023.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 08/22/2023] Open
Abstract
Background & Aims Non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) have become the world's most common liver diseases, placing a growing strain on healthcare systems worldwide. Nonetheless, no effective pharmacological treatment has been approved. The naturally occurring compound cyclo histidine-proline (His-Pro) (CHP) is an interesting candidate for NAFLD management, given its safety profile and anti-inflammatory effects. Methods Two different mouse models of liver disease were used to evaluate protective effects of CHP on disease progression towards fibrosis: a model of dietary NAFLD/NASH, achieved by thermoneutral housing (TN) in combination with feeding a western diet (WD), and liver fibrosis caused by repeated injections with carbon tetrachloride (CCl4). Results Treatment with CHP limited overall lipid accumulation, lowered systemic inflammation, and prevented hyperglycaemia. Histopathology and liver transcriptomics highlighted reduced steatosis and demonstrated remarkable protection from the development of inflammation and fibrosis, features which herald the progression of NAFLD. We identified the extracellular signal-regulated kinase (ERK) pathway as an early mediator of the cellular response to CHP. Conclusions CHP was active in both the preventive and therapeutic setting, reducing liver steatosis, fibrosis, and inflammation and improving several markers of liver disease. Impact and implications Considering the incidence and the lack of approved treatments, it is urgent to identify new strategies that prevent and manage NAFLD. CHP was effective in attenuating NAFLD progression in two animal models of the disease. Overall, our work points to CHP as a novel and effective strategy for the management of NAFLD, fuelling optimism for potential clinical studies.
Collapse
Affiliation(s)
- Alessia De Masi
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dohyun Lee
- R&D Center, NovMetaPharma Co., Ltd., Pohang, South Korea
| | - Jongsu Jeon
- R&D Center, NovMetaPharma Co., Ltd., Pohang, South Korea
| | - Qi Wang
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Seoyeong Baek
- R&D Center, NovMetaPharma Co., Ltd., Pohang, South Korea
| | - Onyu Park
- R&D Center, NovMetaPharma Co., Ltd., Pohang, South Korea
| | - Adrienne Mottis
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Keno Strotjohann
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexis Rapin
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hoe-Yune Jung
- R&D Center, NovMetaPharma Co., Ltd., Pohang, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Li S, Hao L, Hu X. Natural products target glycolysis in liver disease. Front Pharmacol 2023; 14:1242955. [PMID: 37663261 PMCID: PMC10469892 DOI: 10.3389/fphar.2023.1242955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Mitochondrial dysfunction plays an important role in the occurrence and development of different liver diseases. Oxidative phosphorylation (OXPHOS) dysfunction and production of reactive oxygen species are closely related to mitochondrial dysfunction, forcing glycolysis to become the main source of energy metabolism of liver cells. Moreover, glycolysis is also enhanced to varying degrees in different liver diseases, especially in liver cancer. Therefore, targeting the glycolytic signaling pathway provides a new strategy for the treatment of non-alcoholic fatty liver disease (NAFLD) and liver fibrosis associated with liver cancer. Natural products regulate many steps of glycolysis, and targeting glycolysis with natural products is a promising cancer treatment. In this review, we have mainly illustrated the relationship between glycolysis and liver disease, natural products can work by targeting key enzymes in glycolysis and their associated proteins, so understanding how natural products regulate glycolysis can help clarify the therapeutic mechanisms these drugs use to inhibit liver disease.
Collapse
Affiliation(s)
- Shenghao Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Chen Y, Wang W, Morgan MP, Robson T, Annett S. Obesity, non-alcoholic fatty liver disease and hepatocellular carcinoma: current status and therapeutic targets. Front Endocrinol (Lausanne) 2023; 14:1148934. [PMID: 37361533 PMCID: PMC10286797 DOI: 10.3389/fendo.2023.1148934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Obesity is a global epidemic and overwhelming evidence indicates that it is a risk factor for numerous cancers, including hepatocellular carcinoma (HCC), the third leading cause of cancer-related deaths worldwide. Obesity-associated hepatic tumorigenesis develops from nonalcoholic fatty liver disease (NAFLD), progressing to nonalcoholic steatohepatitis (NASH), cirrhosis and ultimately to HCC. The rising incidence of obesity is resulting in an increased prevalence of NAFLD and NASH, and subsequently HCC. Obesity represents an increasingly important underlying etiology of HCC, in particular as the other leading causes of HCC such as hepatitis infection, are declining due to effective treatments and vaccines. In this review, we provide a comprehensive overview of the molecular mechanisms and cellular signaling pathways involved in the pathogenesis of obesity-associated HCC. We summarize the preclinical experimental animal models available to study the features of NAFLD/NASH/HCC, and the non-invasive methods to diagnose NAFLD, NASH and early-stage HCC. Finally, since HCC is an aggressive tumor with a 5-year survival of less than 20%, we will also discuss novel therapeutic targets for obesity-associated HCC and ongoing clinical trials.
Collapse
Affiliation(s)
- Yinshuang Chen
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Maria P. Morgan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Stephanie Annett
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
13
|
Orthosiphon aristatus (Blume) Miq Alleviates Non-Alcoholic Fatty Liver Disease via Antioxidant Activities in C57BL/6 Obese Mice and Palmitic-Oleic Acid-Induced Steatosis in HepG2 Cells. Pharmaceuticals (Basel) 2023; 16:ph16010109. [PMID: 36678606 PMCID: PMC9866040 DOI: 10.3390/ph16010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of liver disease. Orthosiphon aristatus (Blume) Miq, a traditional plant in South Asia, has previously been shown to attenuate obesity and hyperglycaemic conditions. Eight weeks of feeding C57BL/6 mice with the standardized O. aristatus extract (400 mg/kg) inhibited the progression of NAFLD. Liver enzymes including alanine aminotransferase and aspartate transaminase were significantly reduced in treated mice by 74.2% ± 7.69 and 52.8% ± 7.83, respectively. Furthermore, the treated mice showed a reduction in serum levels of glucose (50% ± 5.71), insulin (70.2% ± 12.09), total cholesterol (27.5% ± 15.93), triglycerides (63.2% ± 16.5), low-density lipoprotein (62.5% ± 4.93) and atherogenic risk index relative to the negative control. Histologically, O. aristatus reversed hepatic fat accumulation and reduced NAFLD severity. Notably, our results showed the antioxidant activity of O. aristatus via increased superoxide dismutase activity and a reduction of hepatic malondialdehyde levels. In addition, the levels of serum pro-inflammatory mediators (IL-6 and TNFα) decreased, indicating anti-inflammatory activity. The aqueous, hydroethanolic and ethanolic fractions of O. aristatus extract significantly reduced intracellular fat accumulation in HepG2 cells that were treated with palmitic-oleic acid. Together, these findings suggest that antioxidant activities are the primary mechanism of action of O. aristatus underlying the anti-NAFLD effects.
Collapse
|
14
|
D'Alessandro VF, Takeshita A, Yasuma T, Toda M, D'Alessandro-Gabazza CN, Okano Y, Tharavecharak S, Inoue C, Nishihama K, Fujimoto H, Kobayashi T, Yano Y, Gabazza EC. Transforming Growth Factorβ1 Overexpression Is Associated with Insulin Resistance and Rapidly Progressive Kidney Fibrosis under Diabetic Conditions. Int J Mol Sci 2022; 23:ijms232214265. [PMID: 36430743 PMCID: PMC9693927 DOI: 10.3390/ijms232214265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Diabetes mellitus is a global health problem. Diabetic nephropathy is a common complication of diabetes mellitus and the leading cause of end-stage renal disease. The clinical course, response to therapy, and prognosis of nephropathy are worse in diabetic than in non-diabetic patients. The role of transforming growth factorβ1 in kidney fibrosis is undebatable. This study assessed whether the overexpression of transforming growth factorβ1 is associated with insulin resistance and the rapid progression of transforming growth factorβ1-mediated nephropathy under diabetic conditions. Diabetes mellitus was induced with streptozotocin in wild-type mice and transgenic mice with the kidney-specific overexpression of human transforming growth factorβ1. Mice treated with saline were the controls. Glucose tolerance and kidney fibrosis were evaluated. The blood glucose levels, the values of the homeostasis model assessment for insulin resistance, and the area of kidney fibrosis were significantly increased, and the renal function was significantly impaired in the diabetic transforming growth factorβ1 transgenic mice compared to the non-diabetic transgenic mice, diabetic wild-type mice, and non-diabetic mice. Transforming growth factorβ1 impaired the regulatory effect of insulin on glucose in the hepatocyte and skeletal muscle cell lines. This study shows that transforming growth factorβ1 overexpression is associated with insulin resistance and rapidly progressive kidney fibrosis under diabetic conditions in mice.
Collapse
Affiliation(s)
- Valeria Fridman D'Alessandro
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Atsuro Takeshita
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Taro Yasuma
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Masaaki Toda
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Corina N D'Alessandro-Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Yuko Okano
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Suphachai Tharavecharak
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Chisa Inoue
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Kota Nishihama
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical care Medicine, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical care Medicine, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Yutaka Yano
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Esteban C Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| |
Collapse
|
15
|
Alshehade SA, Al Zarzour RH, Murugaiyah V, Lim SYM, El-Refae HG, Alshawsh MA. Mechanism of action of Orthosiphon stamineus against non-alcoholic fatty liver disease: Insights from systems pharmacology and molecular docking approaches. Saudi Pharm J 2022; 30:1572-1588. [PMID: 36465851 PMCID: PMC9715956 DOI: 10.1016/j.jsps.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/03/2022] [Indexed: 11/29/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common complications of a metabolic syndrome caused by excessive accumulation of fat in the liver. Orthosiphon stamineus also known as Orthosiphon aristatus is a medicinal plant with possible potential beneficial effects on various metabolic disorders. This study aims to investigate the in vitro inhibitory effects of O. stamineus on hepatic fat accumulation and to further use the computational systems pharmacology approach to identify the pharmacokinetic properties of the bioactive compounds of O. stamineus and to predict their molecular mechanisms against NAFLD. METHODS The effects of an ethanolic extract of O. stamineus leaves on cytotoxicity, fat accumulation and antioxidant activity were assessed using HepG2 cells. The bioactive compounds of O. stamineus were identified using LC/MS and two bioinformatics databases, namely the Traditional Chinese Medicine Integrated Database (TCMID) and the Bioinformatics Analysis Tool for the Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM). Pathway enrichment analysis was performed on the predicted targets of the bioactive compounds to provide a systematic overview of the molecular mechanism of action, while molecular docking was used to validate the predicted targets. RESULTS A total of 27 bioactive compounds corresponding to 50 potential NAFLD-related targets were identified. O. stamineus exerts its anti-NAFLD effects by modulating a variety of cellular processes, including oxidative stress, mitochondrial β-oxidation, inflammatory signalling pathways, insulin signalling, and fatty acid homeostasis pathways. O. stamineus is significantly targeting many oxidative stress regulators, including JNK, mammalian target of rapamycin (mTOR), NFKB1, PPAR, and AKT1. Molecular docking analysis confirmed the expected high affinity for the potential targets, while the in vitro assay indicates the ability of O. stamineus to inhibit hepatic fat accumulation. CONCLUSION Using the computational systems pharmacology approach, the potentially beneficial effect of O. stamineus in NAFLD was indicated through the combination of multiple compounds, multiple targets, and multicellular components.
Collapse
Affiliation(s)
- Salah Abdulrazak Alshehade
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Raghdaa Hamdan Al Zarzour
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
- Department of Pharmacology, Faculty of Pharmacy, Arab International University (AIU), Damascus, Syria
| | - Vikneswaran Murugaiyah
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Sharoen Yu Ming Lim
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Semenyih 43500, Malaysia
| | | | | |
Collapse
|