1
|
Zhang T, Zhu Z, Zhang Z, Wang X, Liu X, Yang W, Cao X, Jiang Y, Wang J, Zeng Y, Shi C, Huang H, Wang C, Wang N, Yang G. The role of 5-hydroxytryptamine on expulsion of Trichinella spiralis during the intestinal stage. Vet Parasitol 2025; 334:110396. [PMID: 39837238 DOI: 10.1016/j.vetpar.2025.110396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/31/2024] [Accepted: 01/12/2025] [Indexed: 01/23/2025]
Abstract
During the intestinal stage of Trichinella spiralis (T. spiralis) infection, it can stimulate host's intestinal peristalsis to expulse worms. 5-hydroxytryptamine (5-HT) is a neurotransmitter which can regulate the contraction of intestinal smooth muscle. IL-33 specifically binds to ST2 receptor to promote the secretion of 5-HT by intestinal enterochromaffin cells. However, it remains unclear whether the host is able to modulate the secretion of 5-HT to expulse worms through the IL-33-ST2 signaling pathway during the intestinal stage of T. spiralis infection. Therefore, ST2 inhibitor iST2 was used in a T. spiralis infected mouse model and MODE-K cells to analyze the role of IL-33-ST2 signaling pathway in the secretion of 5-HT during the intestinal phase of T. spiralis infection. The results indicated that the expression of ST2, IL-33, and TPH1(tryptophan hydroxylase 1, the rate-limiting enzyme in the biosynthesis of 5-HT) in the small intestine were increased during the intestinal phase of T. spiralis infection. Meanwhile the levels of secretory 5-HT and IL-33 in the small intestine were significantly increased. After iST2 treatment, the level of 5-HT was significantly decreased, resulting in diminished worms expulsion capability. The decrease of 5-HT was observed in MODE-K cells treated with excretory-secretory products of T. spiralis post iST2 treatment. The above results demonstrated that IL-33-ST2 signaling pathway might play a crucial role in promoting the secretion of 5-HT which enhancing the ability of the intestine to expulse worms during the intestinal stage of T. spiralis.
Collapse
Affiliation(s)
- Tongxuan Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Zhiyu Zhu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Zhiyuan Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Xueting Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Xuanrui Liu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yanlong Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
2
|
Aguiar A, Menezes de Brito ASS, Santos AGAD, Watanabe PDS, Cuman RKN, Trevizan AR, de Lima LL, Bersani-Amado CA, Rinaldi JDC, Sant Ana DDMG, Nogueira-Melo GDA. Mastocytosis and intraepithelial lymphocytosis in the ileum and colon characterize chronic Toxoplasma gondii infection in mice. Tissue Cell 2024; 91:102533. [PMID: 39213782 DOI: 10.1016/j.tice.2024.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Toxoplasma gondii is the causative agent of toxoplasmosis, a common zoonotic disease affecting vertebrates with high global incidence. For the parasite to disseminate throughout the body, it crosses the intestinal barrier, triggering inflammatory reactions. This study aimed to assess the tissue response in the ileum and colon of mice following chronic infection with T. gondii. Fourteen mice were divided into two groups: the infected group received 1000 T. gondii oocysts via gavage, and after 60 days, the mice were euthanized. The ileum and colon were collected and processed for histological analysis, inflammatory marker measurement and myenteric neuron analysis. Chronic infection resulted in a significant increase in intraepithelial lymphocytes and mast cells, as well as morphometric changes such as increased total intestinal wall thickness of the ileum, crypt depth, collagen fiber area, and a decrease in myeloperoxidase activity, without altering nitric oxide levels. While the number of myenteric neurons remained unchanged, there was an increase in vasoactive intestinal peptide expression. These results suggest persistence intestinal inflammatory stimuli in chronic T. gondii infection.
Collapse
Affiliation(s)
- Aline Aguiar
- Graduate Program in Biosciences and Pathophysiology, State University of Maringá, Maringá, Paraná, Brazil
| | | | | | - Paulo da Silva Watanabe
- Graduate Program in Biosciences and Pathophysiology, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Aline Rosa Trevizan
- Graduate Program in Biosciences and Pathophysiology, State University of Maringá, Maringá, Paraná, Brazil
| | - Lainy Leiny de Lima
- Graduate Program in Biosciences and Pathophysiology, State University of Maringá, Maringá, Paraná, Brazil
| | | | | | | | | |
Collapse
|
3
|
Nascimento RR, Aquino CC, Sousa JK, Gadelha KL, Cajado AG, Schiebel CS, Dooley SA, Sousa PA, Rocha JA, Medeiros JR, Magalhães PC, Maria-Ferreira D, Gois MB, C P Lima-Junior R, V T Wong D, Lima AM, Engevik AC, Nicolau LD, Vale ML. SARS-CoV-2 Spike protein triggers gut impairment since mucosal barrier to innermost layers: From basic science to clinical relevance. Mucosal Immunol 2024; 17:565-583. [PMID: 38555027 DOI: 10.1016/j.mucimm.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Studies have reported the occurrence of gastrointestinal (GI) symptoms, primarily diarrhea, in COVID-19. However, the pathobiology regarding COVID-19 in the GI tract remains limited. This work aimed to evaluate SARS-CoV-2 Spike protein interaction with gut lumen in different experimental approaches. Here, we present a novel experimental model with the inoculation of viral protein in the murine jejunal lumen, in vitro approach with human enterocytes, and molecular docking analysis. Spike protein led to increased intestinal fluid accompanied by Cl- secretion, followed by intestinal edema, leukocyte infiltration, reduced glutathione levels, and increased cytokine levels [interleukin (IL)-6, tumor necrosis factor-α, IL-1β, IL-10], indicating inflammation. Additionally, the viral epitope caused disruption in the mucosal histoarchitecture with impairment in Paneth and goblet cells, including decreased lysozyme and mucin, respectively. Upregulation of toll-like receptor 2 and toll-like receptor 4 gene expression suggested potential activation of local innate immunity. Moreover, this experimental model exhibited reduced contractile responses in jejunal smooth muscle. In barrier function, there was a decrease in transepithelial electrical resistance and alterations in the expression of tight junction proteins in the murine jejunal epithelium. Additionally, paracellular intestinal permeability increased in human enterocytes. Finally, in silico data revealed that the Spike protein interacts with cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride conductance (CaCC), inferring its role in the secretory effect. Taken together, all the events observed point to gut impairment, affecting the mucosal barrier to the innermost layers, establishing a successful experimental model for studying COVID-19 in the GI context.
Collapse
Affiliation(s)
- Renata R Nascimento
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Cristhyane C Aquino
- Institute of Biomedicine for Brazilian Semi-Arid and Clinical Research Unit, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - José K Sousa
- Institute of Biomedicine for Brazilian Semi-Arid and Clinical Research Unit, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil; Division of Infectious Diseases & International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kalinne L Gadelha
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Aurilene G Cajado
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Carolina S Schiebel
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba, Brazil
| | - Sarah A Dooley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Paulo A Sousa
- Biotechnology and Biodiversity Center Research, Lab of Inflammation and Translational Gastroenterology (LIGAT), Parnaíba Delta Federal University, Parnaíba, Brazil
| | - Jefferson A Rocha
- Biotechnology and Biodiversity Center Research, Lab of Inflammation and Translational Gastroenterology (LIGAT), Parnaíba Delta Federal University, Parnaíba, Brazil
| | - Jand R Medeiros
- Biotechnology and Biodiversity Center Research, Lab of Inflammation and Translational Gastroenterology (LIGAT), Parnaíba Delta Federal University, Parnaíba, Brazil
| | - Pedro C Magalhães
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Daniele Maria-Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba, Brazil
| | - Marcelo B Gois
- Faculty of Health Sciences, Federal University of Rondonópolis, Rondonópolis, Brazil
| | - Roberto C P Lima-Junior
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Deysi V T Wong
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Aldo M Lima
- Institute of Biomedicine for Brazilian Semi-Arid and Clinical Research Unit, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil; Division of Infectious Diseases & International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Amy C Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lucas D Nicolau
- Institute of Biomedicine for Brazilian Semi-Arid and Clinical Research Unit, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil; Biotechnology and Biodiversity Center Research, Lab of Inflammation and Translational Gastroenterology (LIGAT), Parnaíba Delta Federal University, Parnaíba, Brazil; Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Brazil.
| | - Mariana L Vale
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
4
|
Miranda Júnior NRD, Santos AGAD, Pereira AV, Mariano IA, Guilherme ALF, Santana PDL, Beletini LDF, Evangelista FF, Nogueira-Melo GDA, Sant'Ana DDMG. Rosuvastatin enhances alterations caused by Toxoplasma gondii in the duodenum of mice. Tissue Cell 2023; 84:102194. [PMID: 37597359 DOI: 10.1016/j.tice.2023.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023]
Abstract
Infection by Toxoplasma gondii may compromise the intestinal histoarchitecture through the tissue reaction triggered by the parasite. Thus, this study evaluated whether treatment with rosuvastatin modifies duodenal changes caused by the chronic infection induced by cysts of T. gondii. For this, female Swiss mice were distributed into infected and treated group (ITG), infected group (IG), group treated with 40 mg/kg rosuvastatin (TG) and control group (CG). After 72 days of infection, the animals were euthanized, the duodenum was collected and processed for histopathological analysis. We observed an increase in immune cell infiltration in the IG, TG and ITG groups, with injury to the Brunner glands. The infection led to a reduction in collagen fibers and mast cells. Infected and treated animals showed an increase in collagen fibers, acidic mucin-producing goblet cells, intraepithelial lymphocytes and mast cells, in addition to the reduction of muscle, neutral mucin-producing and Paneth cells. While treatment with rosuvastatin alone led to increased muscle layer, proportion of neutral mucin-producing goblet cells, Paneth cells, and reduction of collagen fibers. These findings indicate that the infection and treatment caused changes in the homeostasis of the intestinal wall and treatment with rosuvastatin potentiated most parameters indicative of inflammation.
Collapse
Affiliation(s)
- Nelson Raimundo de Miranda Júnior
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Amanda Gubert Alves Dos Santos
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Andréia Vieira Pereira
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Isabela Alessandra Mariano
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Ana Lucia Falavigna Guilherme
- Health Sciences Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Priscilla de Laet Santana
- Health Sciences Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Lucimara de Fátima Beletini
- Health Sciences Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Fernanda Ferreira Evangelista
- Health Sciences Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Gessilda de Alcantara Nogueira-Melo
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Debora de Mello Gonçales Sant'Ana
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil.
| |
Collapse
|