1
|
Yun H, Dong F, Wei X, Yan X, Zhang R, Zhang X, Wang Y. Role and value of the tumor microenvironment in the progression and treatment resistance of gastric cancer (Review). Oncol Rep 2025; 53:14. [PMID: 39611496 PMCID: PMC11622107 DOI: 10.3892/or.2024.8847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/08/2024] [Indexed: 11/30/2024] Open
Abstract
Gastric cancer (GC) is characterized by a complex and heterogeneous tumor microenvironment (TME) that significantly influences disease progression and treatment outcomes. The tumor stroma, which is composed of a variety of cell types such as cancer‑associated fibroblasts, immune cells and vascular components, displays significant spatial and temporal diversity. These stromal elements engage in dynamic crosstalk with cancer cells, shaping their proliferative, invasive and metastatic potential. Furthermore, the TME is instrumental in facilitating resistance to traditional chemotherapy, specific treatments and immunotherapy strategies. Understanding the underlying mechanisms by which the GC microenvironment evolves and supports tumor growth and therapeutic resistance is critical for developing effective treatment strategies. The present review explores the latest progress in understanding the intricate interactions between cancer cells and their immediate environment in GC, highlighting the implications for disease pathogenesis and therapeutic interventions.
Collapse
Affiliation(s)
- Heng Yun
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Fangde Dong
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Xiaoqin Wei
- Department of Pain, The Second People's Hospital of Baiyin, Baiyin, Gansu 730900, P.R. China
| | - Xinyong Yan
- Department of Proctology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Ronglong Zhang
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Xiuyu Zhang
- Department of Gastroenterology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Yulin Wang
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| |
Collapse
|
2
|
Yang M, Lin W, Huang J, Mannucci A, Luo H. Novel immunotherapeutic approaches in gastric cancer. PRECISION CLINICAL MEDICINE 2024; 7:pbae020. [PMID: 39397869 PMCID: PMC11467695 DOI: 10.1093/pcmedi/pbae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 10/15/2024] Open
Abstract
Gastric cancer is a malignant tumor that ranks third in cancer-related deaths worldwide. Early-stage gastric cancer can often be effectively managed through surgical resection. However, the majority of cases are diagnosed in advanced stages, where outcomes with conventional radiotherapy and chemotherapy remain unsatisfactory. Immunotherapy offers a novel approach to treating molecularly heterogeneous gastric cancer by modifying the immunosuppressive tumor microenvironment. Immune checkpoint inhibitors and adoptive cell therapy are regarded as promising modalities in cancer immunotherapy. Food and Drug Administration-approved programmed death-receptor inhibitors, such as pembrolizumab, in combination with chemotherapy, have significantly extended overall survival in gastric cancer patients and is recommended as a first-line treatment. Despite challenges in solid tumor applications, adoptive cell therapy has demonstrated efficacy against various targets in gastric cancer treatment. Among these approaches, chimeric antigen receptor-T cell therapy research is the most widely explored and chimeric antigen receptor-T cell therapy targeting claudin18.2 has shown acceptable safety and robust anti-tumor capabilities. However, these advancements primarily remain in preclinical stages and further investigation should be made to promote their clinical application. This review summarizes the latest research on immune checkpoint inhibitors and adoptive cell therapy and their limitations, as well as the role of nanoparticles in enhancing immunotherapy.
Collapse
Affiliation(s)
- Meng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Wuhao Lin
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jiaqian Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Alessandro Mannucci
- Gastroenterology and Gastrointestinal Emndoscopy Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan 20132, Italy
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope; Monrovia, CA 91016, USA
| | - Huiyan Luo
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| |
Collapse
|
3
|
Gafton B, Morarasu S, Dimofte G. Role of immunotherapy in gastric cancer with liver metastasis. World J Clin Oncol 2024; 15:1383-1389. [PMID: 39582613 PMCID: PMC11514424 DOI: 10.5306/wjco.v15.i11.1383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/08/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024] Open
Abstract
Gastric cancer continues to be a significant issue for public health, marked by its widespread occurrence and high mortality rates, even as the incidence of the disease shows a declining trend. The liver is the primary site for metastatic spread, with the peritoneum, lungs, and bones also being common targets. With the advent of biologic treatments and the introduction of immunotherapy for patients with metastatic conditions, the options to treat metastatic gastric cancer have expanded. This diversified therapeutic approach is designed to enhance patient quality of life and prolong survival, showcasing the progress in treatment modalities for individuals with gastric cancer and liver metastases.
Collapse
Affiliation(s)
- Bogdan Gafton
- Department of Oncology, Regional Institute of Oncology, Iasi 700483, Romania
- Department of Oncology, Grigore T. Popa University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Stefan Morarasu
- Second Department of Surgical Oncology, Regional Institute of Oncology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Gabriel Dimofte
- Department of Surgery, University of Medicine and Pharmacy Grigore T. Popa Iaşi, Regional Institute of Oncology Iasi, Iasi 700483, Romania
| |
Collapse
|
4
|
Chen X, Li S, Sun B. Downregulation of short-stature homeobox protein 2 suppresses gastric cancer cell growth and stemness in vitro and in vivo via inactivating wnt/β-catenin signaling. Drug Dev Res 2024; 85:e70006. [PMID: 39415634 DOI: 10.1002/ddr.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024]
Abstract
Gastric cancer (GC) a prevalent form of cancer globally. Previous research suggests that SHOX2 may have a role in promoting cancer progression. However, the role of SHOX2 in GC is not well understood. Based on data from TCGA_GC data set, SHXO2 levels were examined in normal and GC tissues. Patients in the TCGA_GC cohort were divided into high- and low-SHOX2 level groups for analysis of overall survival (OS), functional enrichment, and immune infiltration. Furthermore, experiments were conducted to investigate the impact of SHOX2 on GC cell function through gain- and loss-of-function experiments. Utilizing data from public databases, SHOX2 mRNA levels were found to be elevated in GC tissues compared to normal control, this finding was confirmed by RT-qPCR, western blot analysis, and immune-histochemical analyses. Elevated SHOX2 levels could serve as an independent indicator of poor prognosis in GC patients. Furthermore, SHOX2 levels had a negative correlation with CD8 T cells and CD4 memory activated T cells, and a positive correlation with of M0 macrophages in GC patients. Functional analyses revealed that SHOX2 deficiency notably suppressed GC cell proliferation, migration, and invasion. Additionally, SHOX2 deficiency was shown to suppress stemness in GC cells in vitro and in vivo via inactivating wnt/β-catenin signaling. Collectively, SHOX2 may serve as a prognostic marker for GC patients, and downregulation of SHOX2 could effectively impede GC cell growth and stemness by inactivating the wnt/β-catenin signaling pathway. These findings underscore the potential of SHOX2 as a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Xiangyu Chen
- The Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Li
- The Department of Oncology, The Affiliated of Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Binghua Sun
- The Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Zhang Y, Li J, Li J, Wang J. Dysregulation of systemic immunity and its clinical application in gastric cancer. Front Immunol 2024; 15:1450128. [PMID: 39301031 PMCID: PMC11410619 DOI: 10.3389/fimmu.2024.1450128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
Immunotherapy has profoundly changed the treatment of gastric cancer, but only a minority of patients benefit from immunotherapy. Therefore, numerous studies have been devoted to clarifying the mechanisms underlying resistance to immunotherapy or developing biomarkers for patient stratification. However, previous studies have focused mainly on the tumor microenvironment. Systemic immune perturbations have long been observed in patients with gastric cancer, and the involvement of the peripheral immune system in effective anticancer responses has attracted much attention in recent years. Therefore, understanding the distinct types of systemic immune organization in gastric cancer will aid personalized treatment designed to pair with traditional therapies to alleviate their detrimental effects on systemic immunity or to directly activate the anticancer response of systemic immunity. Herein, this review aims to comprehensively summarize systemic immunity in gastric cancer, including perturbations in systemic immunity induced by cancer and traditional therapies, and the potential clinical applications of systemic immunity in the detection, prediction, prognosis and therapy of gastric cancer.
Collapse
Affiliation(s)
- Yao Zhang
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Junfeng Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Jian Li
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Jisheng Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| |
Collapse
|
6
|
Cheng Z, Cui X, Li S, Liang Y, Yang W, Ouyang J, Wei M, Yan Z, Yu W. Harnessing cytokines to optimize chimeric antigen receptor-T cell therapy for gastric cancer: Current advances and innovative strategies. Biomed Pharmacother 2024; 178:117229. [PMID: 39096620 DOI: 10.1016/j.biopha.2024.117229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
Enormous patients with gastric cancer (GC) are insensitive to chemotherapy and targeted therapy without the chance of radical surgery, so immunotherapy may supply a novel choice for them. Chimeric antigen receptor (CAR)-T cell therapy has the advantages of higher specificity, stronger lethality, and longer-lasting efficacy, and it has the potential for GC in the future. However, its application still faces numerous obstacles in terms of accuracy, efficacy, and safety. Cytokines can mediate the migration, proliferation, and survival of immune cells, regulate the duration and strength of immune responses, and are involved in the occurrence of severe side effects in CAR-T cell therapy. The expression levels of specific cytokines are associated with the genesis, invasion, metastasis, and prognosis of GC. Applications of cytokines and their receptors in CAR-T cell therapy have emerged, and various cytokines and their receptors have contributed to improving CAR-T cell anti-tumor capabilities. Large amounts of central cytokines in this therapy include chemokines, interleukins (ILs), transforming growth factor-β (TGF-β), and colony-stimulating factors (CSFs). Meanwhile, researchers have explored the combination therapy in treating GC, and several approaches applied to other malignancies can also be considered as references. Therefore, our review comprehensively outlines the biological functions and clinical significance of cytokines and summarizes current advances and innovative strategies for harnessing cytokines to optimize CAR-T cell therapy for GC.
Collapse
Affiliation(s)
- Zewei Cheng
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaohan Cui
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Song Li
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yize Liang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenshuo Yang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Ouyang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Meng Wei
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhibo Yan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenbin Yu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
7
|
Wang QW, Zhu JW, Gong LZ. Clinical significance of peripheral blood immune cells in patients with gastric cancer after surgery. World J Gastrointest Surg 2024; 16:2521-2527. [PMID: 39220073 PMCID: PMC11362935 DOI: 10.4240/wjgs.v16.i8.2521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 07/04/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Gastric cancer is one of the most common malignant tumors worldwide, and surgical resection is one of the main ways to treat gastric cancer. However, the immune status of postoperative patients is crucial for prognosis and survival, and immune cells play an important role in this process. Therefore, it is helpful to understand the immune status of postoperative patients by evaluating the levels of peripheral blood immune cells, especially total T cells (CD3+), helper T cells (CD3+CD4+), and suppressor T cells (CD3+CD8+), and its relationship to survival. AIM To analyzed the immune cells in peripheral blood of patients with gastric cancer after surgery, detect the levels of total T cells, helper T cells and suppressor T cells. METHODS A total of 58 patients with gastric cancer who received surgical treatment were included in the retrospective study. Flow cytometry was used to detect the level of peripheral blood immune cells and analyze the correlation between total T cells, helper T cells and inhibitory T cells. To explore the relationship between these immune markers and patient survival. RESULTS The results showed that the levels of total T cells, helper T cells, and suppressor T cells changed in patients after gastric cancer surgery. There was a significant positive correlation between total T cells, helper T cells and suppressor T cells (r = 0.35, P < 0.01; r = 0.56, P < 0.01). However, there was a negative correlation between helper T cells and suppressor T cells (r = -0.63, P < 0.01). Follow-up showed that the survival rate of patients in the high-level total T cell group was significantly higher than that in the low-level group (28.87 ± 24.98 months vs 18.42 ± 16.21 months). The survival curve shows that the curve of patients in the high-level group is shifted to the upper right, and that of the low-level group is shifted downward. There was no significant difference between the levels of helper T cells and suppressor T cells and patient survival time. CONCLUSION By detecting peripheral blood immune cells with flow cytometry, we can initially evaluate the immune status of patients after gastric cancer surgery and initially explore its relationship with patient survival.
Collapse
Affiliation(s)
- Qian-Wen Wang
- Department of Clinical Laboratory, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Huangshi 435000, Hubei Province, China
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi 435000, Hubei Province, China
- Huangshi Tumor Molecular Diagnosis and Treatment Key Laboratory, Huangshi 435000, Hubei Province, China
| | - Jie-Wen Zhu
- Department of Clinical Laboratory, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Huangshi 435000, Hubei Province, China
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi 435000, Hubei Province, China
- Huangshi Tumor Molecular Diagnosis and Treatment Key Laboratory, Huangshi 435000, Hubei Province, China
| | - Ling-Zhen Gong
- Department of Clinical Laboratory, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Huangshi 435000, Hubei Province, China
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi 435000, Hubei Province, China
- Huangshi Tumor Molecular Diagnosis and Treatment Key Laboratory, Huangshi 435000, Hubei Province, China
| |
Collapse
|
8
|
Wang YK, Wang SN, Liao XH, Wang ZQ, Li P, Yun T, Meng DQ. Histogenetic insights and genetic landscape of fibromatosis-like undifferentiated gastric carcinoma: a focused study. World J Surg Oncol 2024; 22:189. [PMID: 39049011 PMCID: PMC11267673 DOI: 10.1186/s12957-024-03479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND The aim of this study was to elucidate the histogenesis and genetic underpinnings of fibromatosis-like undifferentiated gastric carcinoma (FLUGC), a rare pathological entity. METHOD Through a detailed analysis of seven cases, including histopathological evaluation, CTNNB1 gene mutation screening, human epidermal growth factor receptor 2 (HER2) protein level quantification, and HER2 gene amplification assessment to identify the pathological and molecular characteristics of FLUGC. RESULTS Of the seven patients in this study, five were male and two were female (age: 39-73 years). Four patients presented with lesions in the gastric antrum and three had lesions in the lateral curvature of the stomach. Histopathologically, over 90% of the tumor consisted of aggressive fibromatosis-like tissue, including proliferating spindle fibroblasts and myofibroblasts and varying amounts of collagenous fibrous tissues. Undifferentiated cancer cells, accounting for less than 10%, were dispersed among the aggressive fibromatosis-like tissues. These cells were characterized by their small size and were relatively sparse without glandular ducts or nested mass-like structures. Immunophenotyping results showed positive expression of CKpan, CDX2, villin, and p53 in undifferentiated cancer cells; positive expression of vimentin in aggressive fibromatosis-like tissue; positive cytoplasmic expression of β-catenin; and focal cytoplasmic positive expression of smooth muscle actin (SMA). Genetic analysis did not reveal any mutations in the CTNNB1 gene test, nor was there amplification in the HER2 gene fluorescence in situ hybridization (FISH) test. Additionally, the Epstein-Barr encoding region (EBER) of in situ hybridization was negative; and the mismatch repair (MMR) protein was positive. Programmed cell death-1 (PD-1) was < 1-5%; programmed cell death ligand 1 (PD-L1): TPS = 1-4%, CPS = 3-8. CONCLUSION The study highlights the significance of CTNNB1, HER2, EBER, and MMR as pivotal genetic markers in FLUGC, underscoring their relevance for diagnosis and clinical management. The rarity and distinct pathological features of FLUGC emphasize the importance of accurate diagnosis to prevent underdiagnosis or misdiagnosis and to raise awareness within the medical community.
Collapse
Affiliation(s)
- Yang-Kun Wang
- Department of Pathology, The Fourth People's Hospital, 22 Longshan Industrial Zone, Nanwan Street, Longgang District, Shenzhen, 518123, China
| | - Su-Nan Wang
- Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Xing-Hai Liao
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Zhi-Qiang Wang
- Department of Pathology, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, 511300, China
| | - Ping Li
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Tian Yun
- Department of Pathology, The 989th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Luoyang, 471031, Henan, China
| | - De-Qi Meng
- Department of Pathology, The Fourth People's Hospital, 22 Longshan Industrial Zone, Nanwan Street, Longgang District, Shenzhen, 518123, China.
| |
Collapse
|
9
|
Poniewierska-Baran A, Sobolak K, Niedźwiedzka-Rystwej P, Plewa P, Pawlik A. Immunotherapy Based on Immune Checkpoint Molecules and Immune Checkpoint Inhibitors in Gastric Cancer-Narrative Review. Int J Mol Sci 2024; 25:6471. [PMID: 38928174 PMCID: PMC11203505 DOI: 10.3390/ijms25126471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Due to its rapid progression to advanced stages and highly metastatic properties, gastric cancer (GC) is one of the most aggressive malignancies and the fourth leading cause of cancer-related deaths worldwide. The metastatic process includes local invasion, metastasis initiation, migration with colonisation at distant sites, and evasion of the immune response. Tumour growth involves the activation of inhibitory signals associated with the immune response, also known as immune checkpoints, including PD-1/PD-L1 (programmed death 1/programmed death ligand 1), CTLA-4 (cytotoxic T cell antigen 4), TIGIT (T cell immunoreceptor with Ig and ITIM domains), and others. Immune checkpoint molecules (ICPMs) are proteins that modulate the innate and adaptive immune responses. While their expression is prominent on immune cells, mainly antigen-presenting cells (APC) and other types of cells, they are also expressed on tumour cells. The engagement of the receptor by the ligand is crucial for inhibiting or stimulating the immune cell, which is an extremely important aspect of cancer immunotherapy. This narrative review explores immunotherapy, focusing on ICPMs and immune checkpoint inhibitors in GC. We also summarise the current clinical trials that are evaluating ICPMs as a target for GC treatment.
Collapse
Affiliation(s)
- Agata Poniewierska-Baran
- Center of Experimental Immunology and Immunobiology of Infectious and Cancer Diseases, University of Szczecin, 71-417 Szczecin, Poland; (A.P.-B.); (P.N.-R.)
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Karolina Sobolak
- Students Research Club of Immunobiology of Infectious and Cancer Diseases “NEUTROPHIL”, University of Szczecin, 71-417 Szczecin, Poland; (K.S.); (P.P.)
| | - Paulina Niedźwiedzka-Rystwej
- Center of Experimental Immunology and Immunobiology of Infectious and Cancer Diseases, University of Szczecin, 71-417 Szczecin, Poland; (A.P.-B.); (P.N.-R.)
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Paulina Plewa
- Students Research Club of Immunobiology of Infectious and Cancer Diseases “NEUTROPHIL”, University of Szczecin, 71-417 Szczecin, Poland; (K.S.); (P.P.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
10
|
Utkarsh K, Srivastava N, Kumar S, Khan A, Dagar G, Kumar M, Singh M, Haque S. CAR-T cell therapy: a game-changer in cancer treatment and beyond. Clin Transl Oncol 2024; 26:1300-1318. [PMID: 38244129 DOI: 10.1007/s12094-023-03368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024]
Abstract
In recent years, cancer has become one of the primary causes of mortality, approximately 10 million deaths worldwide each year. The most advanced, chimeric antigen receptor (CAR) T cell immunotherapy has turned out as a promising treatment for cancer. CAR-T cell therapy involves the genetic modification of T cells obtained from the patient's blood, and infusion back to the patients. CAR-T cell immunotherapy has led to a significant improvement in the remission rates of hematological cancers. CAR-T cell therapy presently limited to hematological cancers, there are ongoing efforts to develop additional CAR constructs such as bispecific CAR, tandem CAR, inhibitory CAR, combined antigens, CRISPR gene-editing, and nanoparticle delivery. With these advancements, CAR-T cell therapy holds promise concerning potential to improve upon traditional cancer treatments such as chemotherapy and radiation while reducing associated toxicities. This review covers recent advances and advantages of CAR-T cell immunotherapy.
Collapse
Affiliation(s)
- Kumar Utkarsh
- Department of Microbiology and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Namita Srivastava
- Department of Microbiology and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sachin Kumar
- Department of Microbiology and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Azhar Khan
- Faculty of Applied Science and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Gunjan Dagar
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Mukesh Kumar
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Mayank Singh
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Shabirul Haque
- Department of Autoimmune Diseases, Feinstein Institute for Medical Research, Northwell Health, 350, Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
11
|
Xin H, Chen Y, Niu H, Li X, Gai X, Cui G. Integrated Analysis Construct a Tumor-Associated Macrophage Novel Signature with Promising Implications in Predicting the Prognosis and Immunotherapeutic Response of Gastric Cancer Patients. Dig Dis Sci 2024; 69:2055-2073. [PMID: 38573378 DOI: 10.1007/s10620-024-08365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/09/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Gastric cancer (GC) remains one of the most prevalent malignant tumors worldwide. At present, tumor-associated macrophages (TAMs) are essential in the progression, metastasis, and drug resistance of tumors. Therefore, TAMs can be a crucial target for tumor treatment. AIMS We intended to investigate the TAM characteristics in GC and develop a risk signature based on TAM to predict the prognosis of GC patients. METHODS The single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data were acquired from a publicly available database. We utilized the Seurat pipeline to process the scRNA-seq data and determine TAM cell types using marker genes. Univariate Cox regression analysis was utilized to examine TAM-related prognostic genes, and then we employed Lasso-Cox regression analysis, and Multivariate Cox regression analysis established a novel risk profile to forecast the clinical value of the model with a new nomogram combining risk profiles and clinicopathological characteristics. RESULTS The current study employed scRNA-seq data to identify five TAM clusters in GC, among which four were significantly associated with GC prognosis. Accordingly, we further developed a TAM-related risk signature utilizing nine genes. After evaluation, our model accurately predicted the prognosis of gastric cancer. Generally, GC patients with low TAMS scores exhibited a more favorable prognosis, greater benefits from immunotherapy, and higher levels of immune cell infiltration. CONCLUSIONS The prognosis of GC can be effectively predicted by TAM-based risk signatures, and the signature may provide a new perspective for comprehensively guiding clinical diagnosis, prediction, and immunotherapy for gastric cancer.
Collapse
Affiliation(s)
- Hua Xin
- Laboratory Medicine, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, Heilongjiang Province, China
| | - Yu Chen
- Clinical Medicine Department, Jiamusi University, Jiamusi, 154000, Heilongjiang Province, China
| | - Honglin Niu
- Clinical Medicine Department, Jiamusi University, Jiamusi, 154000, Heilongjiang Province, China
| | - Xuebin Li
- Clinical Medicine Department, Jiamusi University, Jiamusi, 154000, Heilongjiang Province, China
| | - Xuejie Gai
- Clinical Medicine Department, Jiamusi University, Jiamusi, 154000, Heilongjiang Province, China
| | - Guoli Cui
- Laboratory Medicine, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, Heilongjiang Province, China.
- Clinical Medicine Department, Jiamusi University, Jiamusi, 154000, Heilongjiang Province, China.
| |
Collapse
|
12
|
Liu K, Wu CX, Liang H, Wang T, Zhang JY, Wang XT. Analysis of the impact of immunotherapy efficacy and safety in patients with gastric cancer and liver metastasis. World J Gastrointest Surg 2024; 16:700-709. [PMID: 38577087 PMCID: PMC10989337 DOI: 10.4240/wjgs.v16.i3.700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/17/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is the fifth most common type of cancer and has the fourth highest death rate among all cancers. There is a lack of studies examining the impact of liver metastases on the effectiveness of immunotherapy in individuals diagnosed with GC. AIM To investigate the influence of liver metastases on the effectiveness and safety of immunotherapy in patients with advanced GC. METHODS This retrospective investigation collected clinical data of patients with advanced stomach cancer who had immunotherapy at our hospital from February 2021 to January 2023. The baseline attributes were compared using either the Chi-square test or the Fisher exact probability method. The chi-square test and Kaplan-Meier survival analysis were employed to assess the therapeutic efficacy and survival duration in GC patients with and without liver metastases. RESULTS The analysis comprised 48 patients diagnosed with advanced GC, who were categorized into two groups: A liver metastasis cohort (n = 20) and a non-liver metastatic cohort (n = 28). Patients with liver metastasis exhibited a more deteriorated physical condition compared to those without liver metastasis. The objective response rates in the cohort with metastasis and the cohort without metastasis were 15.0% and 35.7% (P > 0.05), respectively. Similarly, the disease control rates in these two cohorts were 65.0% and 82.1% (P > 0.05), respectively. The median progression-free survival was 5.0 months in one group and 11.2 months in the other group, with a hazard ratio of 0.40 and a significance level (P) less than 0.05. The median overall survival was 12.0 months in one group and 19.0 months in the other group, with a significance level (P) greater than 0.05. CONCLUSION Immunotherapy is less effective in GC patients with liver metastases compared to those without liver metastasis.
Collapse
Affiliation(s)
- Kai Liu
- Department of Radiation and Oncology, Traditional Chinese Hospital of Lu’an affiliated to Anhui University of Traditional Chinese Medicine, Lu’an 237000, Anhui Province, China
| | - Chun-Xiao Wu
- Department of Gastroenterology, Ehu branch of Xishan People’s Hospital of Wuxi City, Wuxi 214116, Jiangsu Province, China
| | - Hui Liang
- Department of Radiation and Oncology, Traditional Chinese Hospital of Lu’an affiliated to Anhui University of Traditional Chinese Medicine, Lu’an 237000, Anhui Province, China
| | - Tao Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510400, Guangdong Province, China
| | - Ji-Yuan Zhang
- Department of Gastrointestinal Surgery, Hunan Provincial People’s Hospital, Changsha 410002, Hunan Province, China
| | - Xiao-Tao Wang
- Department of Traditional Chinese medicine, Ehu branch of Xishan People’s Hospital of Wuxi City, Wuxi 214116, Jiangsu Province, China
| |
Collapse
|
13
|
Triantafillidis JK, Konstadoulakis MM, Papalois AE. Immunotherapy of gastric cancer: Present status and future perspectives. World J Gastroenterol 2024; 30:779-793. [PMID: 38516237 PMCID: PMC10950642 DOI: 10.3748/wjg.v30.i8.779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/14/2023] [Accepted: 01/29/2024] [Indexed: 02/26/2024] Open
Abstract
In this editorial, we comment on the article entitled "Advances and key focus areas in gastric cancer immunotherapy: A comprehensive scientometric and clinical trial review (1999-2023)," which was published in the recent issue of the World Journal of Gastroenterology. We focused on the results of the authors' bibliometric analysis concerning gastric cancer immunotherapy, which they analyzed in depth by compiling the relevant publications of the last 20 years. Before that, we briefly describe the most recent data concerning the epidemiological parameters of gastric cancer (GC) in different countries, attempting to give an interpretation based on the etiological factors involved in the etiopathogenesis of the neoplasm. We then briefly discuss the conservative treatment (chemotherapy) of the various forms of this malignant neoplasm. We describe the treatment of resectable tumors, locally advanced neoplasms, and unresectable (advanced) cases. Special attention is given to modern therapeutic approaches with emphasis on immunotherapy, which seems to be the future of GC treatment, especially in combination with chemotherapy. There is also a thorough analysis of the results of the study under review in terms of the number of scientific publications, the countries in which the studies were conducted, the authors, and the scientific centers of origin, as well as the clinical studies in progress. Finally, an attempt is made to draw some con-clusions and to point out possible future directions.
Collapse
Affiliation(s)
- John K Triantafillidis
- Inflammatory Bowel Disease Unit, “Metropolitan General” Hospital, Holargos 15562, Attica, Greece. Hellenic Society for Gastrointestinal Oncology, 354 Iera Odos, Chaidari 12461, Attica, Greece
| | - Manousos M Konstadoulakis
- Second Department of Surgery, University of Athens School of Medicine, Aretaieion Hospital, Athens 11528, Attica, Greece
| | - Apostolos E Papalois
- Unit of Surgical Research and Training, Second Department of Surgery, University of Athens, School of Medicine, Aretaieion Hospital, Athens 11528, Attica, Greece
| |
Collapse
|
14
|
Huang HL, Lai CH, Tsai WH, Chen KW, Peng SL, Lin JH, Lin YH. Nanoparticle-enhanced postbiotics: Revolutionizing cancer therapy through effective delivery. Life Sci 2024; 337:122379. [PMID: 38145711 DOI: 10.1016/j.lfs.2023.122379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
AIM Gastric cancer contributes to cancer-related fatalities. Conventional chemotherapy faces challenges due to severe adverse effects, prompting recent research to focus on postbiotics, which are safer biomolecules derived from nonviable probiotics. Despite promising in vitro results, efficient in vivo delivery systems remain a challenge. This study aimed to design a potential nanoparticle (NP) formulation encapsulating the Lacticaseibacillus paracasei GMNL-133 (SGMNL-133) isolate to enhance its therapeutic efficacy in treating gastric cancer. MAIN METHODS We successfully isolated GMNL-133 (SGMNL-133) by optimizing the lysate extraction and column elution processes for L. paracasei GMNL-133, resulting in substantial enhancement of its capacity to inhibit the proliferation of gastric cancer cells. Additionally, we developed a potential NP utilizing arginine-chitosan and fucoidan encapsulating SGMNL-133. KEY FINDINGS This innovative approach protected the SGMNL-133 from degradation by gastric acid, facilitated its penetration through the mucus layer, and enabled interaction with gastric cancer cells. Furthermore, in vivo experiments demonstrated that the encapsulation of SGMNL-133 in NPs significantly enhanced its efficacy in the treatment of orthotopic gastric tumors while simultaneously reducing tissue inflammation levels. SIGNIFICANCE Recent research highlights postbiotics as a safe alternative, but in vivo delivery remains a challenge. Our study optimized the extraction of the lysate and column elution of GMNL-133, yielding SGMNL-133. We also developed NPs to protect SGMNL-133 from gastric acid, enhance mucus penetration, and improve the interaction with gastric cancer cells. This combination significantly enhanced drug delivery and anti-gastric tumor activity.
Collapse
Affiliation(s)
- Hau-Lun Huang
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Molecular Infectious Disease Research Center, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wan-Hua Tsai
- Research and Development Department, GenMont Biotech Incorporation, Tainan, Taiwan
| | - Kuo-Wei Chen
- Division of Hematology and Oncology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | | | - Yu-Hsin Lin
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, Taiwan; Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
15
|
Han Z, Wang N, Qiao Q, He X, Wang N. Association of PD-L1 Expression with Clinicopathologic Characters in Gastric Cancer: A Comprehensive Meta-analysis. Curr Med Chem 2024; 31:3198-3216. [PMID: 37921182 DOI: 10.2174/0109298673263784230922060257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/18/2023] [Accepted: 08/16/2023] [Indexed: 11/04/2023]
Abstract
PURPOSE The expression level of programmed death ligand-1(PD-L1) in patients with gastric cancer is the key to determining the use of immune drugs. The relationship between PD-L1 expression level and clinical characteristics is worth exploring. METHODS By setting the search terms correlated to PD-L1 and gastric cancer, a nearly comprehensive search was carried out in four major databases, and the deadline for searching was September 1, 2022. The retrieved documents were further screened by strict inclusion and exclusion criteria after removing the duplication. Next, the quality of the included studies was evaluated with the Newcastle-Ottawa Scale (NOS) scale. Finally, the STATA15.1 software was used to process data and draw plots, and the odds ratios (ORs) were adopted to assess the pooled effect size. RESULTS A total of 85 works of literature were included in this study through screening strictly, and detailed data were extracted after evaluating the quality of the literature. The process of analysis was conducted in the whole population, Asia-Africa population, European and American population, and Asian population with CPS≥1, amd all found that the expression of PD-L1 in gastric cancer was correlated with age, tumor size, EBV infection, Her-2 expression and microsatellite status. However, the subgroup of the region also found some differences in Asian and Western regions, which was interesting and worth studying further. The included research of this study did not have significant publish bias. CONCLUSION After careful analysis, this study found that age (>60 years), tumor size (>5cm), EBV infection (+), Her-2 expression (+), microsatellite status (MSI), and mismatch repair status (dMMR) were risk factors for positive expression of PD-L1 in gastric cancer.
Collapse
Affiliation(s)
- Zhuo Han
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China
| | - Nan Wang
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China
| | - Qing Qiao
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China
| | - Nan Wang
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China
| |
Collapse
|
16
|
Bunga OD, Danilova NV. [Claudin-18.2 and gastric cancer: from physiology to carcinogenesis]. Arkh Patol 2024; 86:92-99. [PMID: 39686903 DOI: 10.17116/patol20248606192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Today a global problem for humanity is represented by cancer, in particular gastric cancer, which is characterized by high mortality and aggressive course. In this regard, there is a search for new approaches to the diagnosis and therapy of gastric cancer, one of these areas is the study of the expression level of the intercellular adhesion molecule claudin-18.2 in tumor tissue and its use as a target molecule. In the case of various pathological processes, including tumors, the expression profile of claudin-18.2 changes, which indicates its possible role in the initiation and progression of cancer. The aim of this review is to systematize the data on claudin-18.2, its role in normal cell physiology and embryology, as well as in the development of pathological processes in the stomach, its relation to the clinical and morphological characteristics of gastric cancer and importance in biological therapy.
Collapse
Affiliation(s)
- O D Bunga
- Lomonosov Moscow State University, Moscow, Russia
| | - N V Danilova
- Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
17
|
Xu H, Fu X, Liu B, Weng S, Guo C, Quan L, Liu L, Wang L, Xing Z, Cheng Q, Luo P, Chen K, Liu Z, Han X. Immune perturbation network identifies an EMT subtype with chromosomal instability and tumor immune-desert microenvironment. iScience 2023; 26:107871. [PMID: 37766999 PMCID: PMC10520355 DOI: 10.1016/j.isci.2023.107871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Most gastric cancer (GC) subtypes are identified through transcriptional profiling overlooking dynamic changes and interactions in gene expression. Based on the background network of global immune genes, we constructed sample-specific edge-perturbation matrices and identified four molecular network subtypes of GC (MNG). MNG-1 displayed the best prognosis and vigorous cell cycle activity. MNG-2 was enriched by immune-hot phenotype with the potential for immunotherapy response. MNG-3 and MNG-4 were identified with epithelial-mesenchymal transition (EMT) peculiarity and worse prognosis, termed EMT subtypes. MNG-3 was characterized by low mutational burden and stromal cells and considered a replica of previous subtypes associated with poor prognosis. Notably, MNG-4 was considered a previously undefined subtype with a dismal prognosis, characterized by chromosomal instability and immune-desert microenvironment. This subtype tended to metastasize and was resistant to respond to immunotherapy. Pharmacogenomics analysis showed three therapeutic agents (NVP-BEZ235, LY2606368, and rutin) were potential interventions for MNG-4.
Collapse
Affiliation(s)
- Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinyu Fu
- Genetic and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ben Liu
- Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Libo Quan
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kexin Chen
- Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Zaoqu Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|