1
|
Zhang Y, Song Z, Qu K, Sun P, Li L, Hu J, Wang Z. Detection and Characterization of Multidimensional Information of Adipocyte Model Based on AFM-Raman. Microsc Res Tech 2024. [PMID: 39580807 DOI: 10.1002/jemt.24740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
Excessive accumulation of white adipose tissue leads to metabolic disorders, and the excessive differentiation of preadipocytes into white adipocytes is one of the contributing factors to obesity. The browning of white adipocytes has been regarded as a promising therapeutic strategy. To analyze the origins and potential solutions for obesity from a fundamental perspective, we employed atomic force microscopy, and Raman confocal microscopy to investigate and characterize multidimensional information regarding the differentiation process of 3 T3-L1 preadipocyte models into white adipocytes and their subsequent browning into beige adipocytes. The results from atomic force microscopy indicated that during the differentiation of preadipocytes into mature white adipocytes, there was an increase in cell height, a decrease in length, and a transformation in shape from fibroblast-like morphology to spherical form. Additionally, Young's modulus, stiffness, and adhesion decreased throughout this process. Following browning, cells maintained their spherical shape but exhibited reduced height compared to white adipocytes; lipid droplet decomposition resulted in increased surface roughness. Raman spectroscopy studies revealed that preadipocytes lacked specific lipid peaks; however, as they differentiated into white adipocytes, peak Raman signals transitioned from weak to sharp. After browning occurred, lipid peak signals became sparse and dispersed. Furthermore, by calibrating temperature standard curves based on water molecule hydrogen-oxygen stretching bands, it was found that beige adipocytes possess thermogenic capabilities. Based on Segment Anything Model for lipid droplet segmentation and color clustering 3D K-Means point cloud analysis: White adipocyte lipid droplets aggregated with deeper coloration post-staining appearing duller; conversely, beige adipocyte coloration appeared lighter and brighter with more clusters present within the clustering point cloud. In summary, this study provides a novel method for multidimensional detection and characterization through an interdisciplinary approach combining cellular biology with physical chemistry.
Collapse
Affiliation(s)
- Yuchi Zhang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun, China
| | - Zhengxun Song
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun, China
| | - Kaige Qu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun, China
| | - Peishuang Sun
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun, China
| | - Lifang Li
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun, China
| | - Jing Hu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
2
|
Lovins HB, Mehta A, Leuenberger LA, Yaeger MJ, Schott E, Hutton G, Manke J, Armstrong M, Reisdorph N, Tighe RM, Cochran SJ, Shaikh SR, Gowdy KM. Dietary Eicosapentaenoic Acid Improves Ozone-Induced Pulmonary Inflammation in C57BL/6 Mice. J Nutr 2024:S0022-3166(24)01173-8. [PMID: 39536972 DOI: 10.1016/j.tjnut.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Ambient concentrations of the air pollutant, ozone, are rising with increasing global temperatures. Ozone is known to increase incidence and exacerbation of chronic lung diseases, which will increase as ambient ozone levels rise. Studies have identified diet as a variable that is able to modulate the pulmonary health effects associated with ozone exposure. Eicosapentaenoic acid (EPA) is an n-3 (ω-3) PUFA consumed through diet, which lowers inflammation through conversion to oxylipins including hydroxy-eicosapentaenoic acids (HEPEs). However, the role of dietary EPA in ozone-induced pulmonary inflammation is unknown. OBJECTIVE Therefore, we hypothesized increasing dietary EPA will decrease ozone-induced pulmonary inflammation and injury through the production of HEPEs. METHODS To test this, male C57BL/6J mice were fed a purified control diet or EPA-supplemented diet for 4 wk and then exposed to filtered air or 1 part per million ozone for 3 h. 24 or 48 h after exposure, bronchoalveolar lavage fluid was collected to assess airspace inflammation/injury and lung tissue was collected for targeted liquid chromatography-mass spectrometry lipidomics. RESULTS Following ozone exposure, EPA supplementation did not alter markers of lung injury but decreased ozone-induced airspace neutrophilia. Targeted liquid chromatography-mass spectrometry lipidomics revealed dietary EPA supplementation increased pulmonary EPA-derived metabolites including 5-HEPE and 12-HEPE. Additionally, EPA supplementation decreased pulmonary amounts of proinflammatory arachidonic acid-derived metabolites. To evaluate whether dietary EPA reduces ozone-induced pulmonary inflammation through increased pulmonary HEPEs, C57BL/6J mice were administered 5-HEPEs and 12-HEPEs systemically before filtered air or ozone exposure. Pretreatment with 5-HEPEs and 12-HEPEs reduced ozone-driven increases in airspace macrophages. CONCLUSIONS Together, these data indicate that an EPA-supplemented diet protects against ozone-induced airspace inflammation which is, in part, due to increasing pulmonary amounts of 5-HEPEs and 12-HEPEs. These findings suggest that dietary EPA and/or increasing EPA-derived metabolites in the lung can reduce ozone-driven incidences and exacerbations of chronic pulmonary diseases.
Collapse
Affiliation(s)
- Hannah B Lovins
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Anushka Mehta
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Laura A Leuenberger
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Michael J Yaeger
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Evangeline Schott
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Grace Hutton
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Jonathan Manke
- Department of Pharmaceutical Sciences, University of Colorado-AMC, Aurora, CO, United States
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, University of Colorado-AMC, Aurora, CO, United States
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado-AMC, Aurora, CO, United States
| | - Robert M Tighe
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Samuel J Cochran
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kymberly M Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
3
|
Ağagündüz D, Yeşildemir Ö, Koçyiğit E, Koçak T, Özen Ünaldı B, Ayakdaş G, Budán F. Oxylipins Derived from PUFAs in Cardiometabolic Diseases: Mechanism of Actions and Possible Nutritional Interactions. Nutrients 2024; 16:3812. [PMID: 39599599 PMCID: PMC11597274 DOI: 10.3390/nu16223812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Oxylipins are oxidized fatty acids, both saturated and unsaturated, formed through pathways that involve singlet oxygen or dioxygen-mediated oxygenation reactions and are primarily produced by enzyme families such as cyclooxygenases, lipoxygenases, and cytochrome P450. These lipid-based complex bioactive molecules are pivotal signal mediators, acting in a hormone-like manner in the pathophysiology of numerous diseases, especially cardiometabolic diseases via modulating plenty of mechanisms. It has been reported that omega-6 and omega-3 oxylipins are important novel biomarkers of cardiometabolic diseases. Moreover, collected literature has noted that diet and dietary components, especially fatty acids, can modulate these oxygenated lipid products since they are mainly derived from dietary omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) or linoleic acid and α-linolenic by elongation and desaturation pathways. This comprehensive review aims to examine their correlations to cardiometabolic diseases and how diets modulate oxylipins. Also, some aspects of developing new biomarkers and therapeutical utilization are detailed in this review.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490 Ankara, Türkiye
| | - Özge Yeşildemir
- Department of Nutrition and Dietetics, Bursa Uludag University, Görükle Campus, 16059 Bursa, Türkiye;
| | - Emine Koçyiğit
- Department of Nutrition and Dietetics, Ordu University, Cumhuriyet Yerleşkesi, 52200 Ordu, Türkiye;
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Gümüşhane University, Gümüşhanevî Kampüsü, 29100 Gümüşhane, Türkiye;
| | - Buket Özen Ünaldı
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Türkiye;
| | - Gamze Ayakdaş
- Department of Nutrition and Dietetics, Acıbadem University, Kerem Aydınlar Campus, 34752 İstanbul, Türkiye;
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
4
|
Cai Z, Zhong Q, Zhang D, Feng Y, Wang Q, Yang Y, Xu Y, Liang C, Liu Z, Cai K. Z-Spectral MRI Quantifies the Mass and Metabolic Activity of Adipose Tissues With Fat-Water-Fraction and Amide-Proton-Transfer Contrasts. J Magn Reson Imaging 2024. [PMID: 39215496 DOI: 10.1002/jmri.29598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) is metabolically activatable and plays an important role in obesity and metabolic diseases. With reduced fat-water-fraction (FWF) compared with white adipose tissue (WAT), BAT mass and its functional activation may be quantified with Z-spectra MRI, with built-in FWF and the metabolic amide proton transfer (APT) contrasts. PURPOSE To investigate if Z-spectral MRI can quantify the mass and metabolic activity of adipose tissues. STUDY TYPE Prospective. SUBJECTS Seven groups of 8-week-old male rats, including two groups (n = 7 per group) for in vivo MRI study and five groups (n = 5 per group) for ex vivo validation; 12 young and healthy volunteers with 6 male and 6 female. FIELD STRENGTH/SEQUENCE The 7 T small animal and 3 T clinical systems, T2-weighted imaging, Rapid Acquisition with Relaxation Enhancement (RARE) readout based chemical exchange saturation transfer (CEST) Z-spectral MRI sequence. ASSESSMENT Quantified FWF and APT from Z-spectra in rats before and after norepinephrine (NE) stimulation and in healthy human subjects; ex vivo measurements of total proteins in BAT from rats. STATISTICAL TESTS Two-tailed unpaired Student's t-tests and repeated measures ANOVA. P-value <0.05 was considered significant. RESULTS Decreased FWF (from 39.6% ± 7.2% before NE injection to 16.4% ± 7.2% 120 minutes after NE injection, P < 0.0001) and elevated APT (from 1.1% ± 0.5% before NE injection to 2.9% ± 0.5% 120 minutes after NE injection, P < 0.0001) signals in BAT were observed with in vivo Z-spectral MRI in rats injected with NE at 7 T MRI. At clinical 3 T, Z-spectral MRI was used to quantify the FWF (58.5% ± 7.2% in BAT and 73.7% ± 6.5% in WAT with P < 0.0001) and APT (2.6% ± 0.8% in BAT and 0.9% ± 0.3% in WAT with P < 0.0001) signals in healthy volunteers. APT signals of BAT were negatively correlated with the BMI in humans (r = 0.71). DATA CONCLUSION Endogenous Z-spectral MRI was demonstrated to simultaneously quantify BAT mass and function based on its FWF and APT contrasts. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE 1.
Collapse
Affiliation(s)
- Zimeng Cai
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Qiaoling Zhong
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Daming Zhang
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, The Biomedical Translational Research Institute, Health Science Center, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
- Department of Radiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, China
| | - Qian Wang
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, The Biomedical Translational Research Institute, Health Science Center, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, China
| | - Yuanbo Yang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | | | - Changhong Liang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Zaiyi Liu
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Kejia Cai
- Radiology Department, University of Illinois at Chicago, Chicago, Illinois, USA
- Biomedical Engineering Department, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Bakbak E, Krishnaraj A, Bhatt DL, Quan A, Park B, Bakbak AI, Bari B, Terenzi KA, Pan Y, Fry EJ, Terenzi DC, Puar P, Khan TS, Rotstein OD, Mazer CD, Leiter LA, Teoh H, Hess DA, Verma S. Icosapent ethyl modulates circulating vascular regenerative cell content: The IPE-PREVENTION CardioLink-14 trial. MED 2024; 5:718-734.e4. [PMID: 38552629 DOI: 10.1016/j.medj.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND REDUCE-IT (Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial) showed that icosapent ethyl (IPE) reduced major adverse cardiovascular events by 25%. Since the underlying mechanisms for these benefits are not fully understood, the IPE-PREVENTION CardioLink-14 trial (ClinicalTrials.gov: NCT04562467) sought to determine if IPE regulates vascular regenerative (VR) cell content in people with mild to moderate hypertriglyceridemia. METHODS Seventy statin-treated individuals with triglycerides ≥1.50 and <5.6 mmol/L and either atherosclerotic cardiovascular disease or type 2 diabetes with additional cardiovascular risk factors were randomized to IPE (4 g/day) or usual care. VR cells with high aldehyde dehydrogenase activity (ALDHhi) were isolated from blood collected at the baseline and 3-month visits and characterized with lineage-specific cell surface markers. The primary endpoint was the change in frequency of pro-vascular ALDHhiside scatter (SSC)lowCD133+ progenitor cells. Change in frequencies of ALDHhiSSCmid monocyte and ALDHhiSSChi granulocyte precursor subsets, reactive oxygen species production, serum biomarkers, and omega-3 levels were also evaluated. FINDINGS Baseline characteristics, cardiovascular risk factors, and medications were balanced between the groups. Compared to usual care, IPE increased the mean frequency of ALDHhiSSClowCD133+ cells (-1.00% ± 2.45% vs. +7.79% ± 1.70%; p = 0.02), despite decreasing overall ALDHhiSSClow cell frequency. IPE assignment also reduced oxidative stress in ALDHhiSSClow progenitors and increased ALDHhiSSChi granulocyte precursor cell content. CONCLUSIONS IPE-PREVENTION CardioLink-14 provides the first translational evidence that IPE can modulate VR cell content and suggests a novel mechanism that may underlie the cardioprotective effects observed with IPE in REDUCE-IT. FUNDING HLS Therapeutics provided the IPE in kind and had no role in the study design, conduct, analyses, or interpretation.
Collapse
Affiliation(s)
- Ehab Bakbak
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Aishwarya Krishnaraj
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Deepak L Bhatt
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adrian Quan
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada
| | - Brady Park
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | - Basel Bari
- Markham Health+ Plex, Markham, ON, Canada
| | | | - Yi Pan
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada
| | | | | | - Pankaj Puar
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tayyab S Khan
- Division of Endocrinology and Metabolism, St. Joseph's Healthcare Centre, London, ON, Canada; Department of Medicine, Western University, London, ON, Canada
| | - Ori D Rotstein
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Division of General Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - C David Mazer
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Anesthesia, St. Michael's Hospital of Unity Health Toronto, Toronto, ON, Canada; Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Lawrence A Leiter
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Division of Endocrinology and Metabolism, St. Michael's Hospital of Unity Health Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Division of Endocrinology and Metabolism, St. Michael's Hospital of Unity Health Toronto, Toronto, ON, Canada
| | - David A Hess
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Physiology and Pharmacology, Western University, London, ON, Canada; Molecular Medicine Research Labs, Robarts Research Institute, London, ON, Canada.
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Speckmann B, Wagner T, Jordan PM, Werz O, Wilhelm M, tom Dieck H, Schön C. Synbiotic Bacillus megaterium DSM 32963 and n-3 PUFA Salt Composition Elevates Pro-Resolving Lipid Mediator Levels in Healthy Subjects: A Randomized Controlled Study. Nutrients 2024; 16:1354. [PMID: 38732601 PMCID: PMC11085393 DOI: 10.3390/nu16091354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Beneficial health effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) are partly attributed to specialized pro-resolving mediators (SPMs), which promote inflammation resolution. Strategies to improve n-3 PUFA conversion to SPMs may, therefore, be useful to treat or prevent chronic inflammatory disorders. Here, we explored a synbiotic strategy to increase circulating SPM precursor levels. Healthy participants (n = 72) received either SynΩ3 (250 mg eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) lysine salts; two billion CFU Bacillus megaterium; n = 23), placebo (n = 24), or fish oil (300 mg EPA plus DHA; N = 25) capsules daily for 28 days in a randomized, double-blind placebo-controlled parallel 3-group design. Biomarkers were assessed at baseline and after 2 and 28 days of intervention. The primary analysis involved the comparison between SynΩ3 and placebo. In addition, SynΩ3 was compared to fish oil. The synbiotic SynΩ3 comprising Bacillus megaterium DSM 32963 and n-3 PUFA salts significantly increased circulating SPM precursor levels, including 18-hydroxy-eicosapentaenoic acid (18-HEPE) plus 5-HEPE, which was not achieved to this extent by fish oil with a similar n-3 PUFA content. Omega-3 indices were increased slightly by both SynΩ3 and fish oil. These findings suggest reconsidering conventional n-3 PUFA supplementation and testing the effectiveness of SynΩ3 particularly in conditions related to inflammation.
Collapse
Affiliation(s)
- Bodo Speckmann
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany
| | - Tanja Wagner
- BioTeSys GmbH, Schelztorstrasse 54-56, 73728 Esslingen, Germany
| | - Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Manfred Wilhelm
- Department of Mathematics, Natural and Economic Sciences, Ulm University of Applied Sciences, 89081 Ulm, Germany
| | - Heike tom Dieck
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany
| | | |
Collapse
|
7
|
Wu S, Ren W, Hong J, Yang Y, Lu Y. Ablation of histone methyltransferase Suv39h2 in hepatocytes attenuates NASH in mice. Life Sci 2024; 343:122524. [PMID: 38401627 DOI: 10.1016/j.lfs.2024.122524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
AIMS Non-alcoholic steatohepatitis (NASH) is characterized by aberrant lipid metabolism in hepatocytes. We investigated the involvement of a histone H3K9 methyltransferase Suv39h2 in the pathogenesis of NASH. METHODS AND MATERIALS NASH is induced by feeding the mice with a high-fat high-carbohydrate (HFHC) diet or a high-fat choline-deficient amino acid defined (HFD-CDAA) diet. The Suv39h2f/f mice were crossbred with the Alb-Cre mice to specifically delete Suv39h2 in hepatocytes. KEY FINDINGS Ablation of Suv39h2 in hepatocytes improved insulin sensitivity of the mice fed either the HFHC diet or the CDAA-HFD diet. Importantly, Suv39h2 deletion significantly ameliorated NAFLD as evidenced by reduced lipid accumulation, inflammation, and fibrosis in the liver. RNA-seq uncovered Vanin-1 (Vnn1) as a novel transcriptional target for Suv39h2. Mechanistically, Suv39h2 repressed Vnn1 transcription in hepatocytes exposed to free fatty acids. Consistently, Vanin-1 knockdown normalized lipid accumulation in Suv39h2-null hepatocytes. Importantly, a significant correlation between Suv39h2, Vanin-1, and hepatic triglyceride levels was identified in NASH patients. SIGNIFICANCE Our study uncovers a novel mechanism whereby Suv39h2 may contribute to NASH pathogenesis and suggests that targeting the Suv39h2-Vanin-1 axis may yield novel therapeutic solutions against NASH.
Collapse
Affiliation(s)
- Shiqiang Wu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenjing Ren
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jiameng Hong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Yunjie Lu
- Suzhou Medical College, Soochow University, Suzhou, China; Department of Hepatobiliary and Pancreatic Surgery, the third Affiliated Hospital of Soochow University, Changzhou, China; Africa Hepatopancreatobiliary Cancer Consortium, Mayo Clinic, Jacksonville, USA.
| |
Collapse
|
8
|
Chen H, Liu L, Jiang L, Hu W, Cen Q, Zhang R, Hui F, Li J, Zeng X. Effect of L. Plantarum Y279 and W. Cibaria Y113 on microorganism, lipid oxidation and fatty acid metabolites in Yu jiaosuan, A Chinese tradition fermented snack. Food Chem X 2024; 21:101246. [PMID: 38426073 PMCID: PMC10901845 DOI: 10.1016/j.fochx.2024.101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024] Open
Abstract
Fatty acids are one of the main sources of flavour in fermented Yu jiaosuan (YJS) in southwest China. Bacilli (50.18 %) and Oxyphotobacteria (32.70 %) were the dominant class. Lactiplantibacillus (40.51 %) and Weissella (20.43 %) were the dominant species in the inoculated fermented group (HY). The peroxide value (ZY: 0.025 g/100 g, HY: 0.016 g/100 g) and lipoxygenase (LOX) (ZY: 5.7654 U/min·g, HY: 3.3856 U/min·g) in the HY group were significantly lower compared with the natural fermentation group (ZY), while acid lipase activity (ZY: 0.3184 U/h·g, HY: 0.7075 U/h·g) and neutral lipase activity (ZY: 12.65443 U/h·g, HY: 20.25142 U/h·g) were significantly higher than the control sample. Totally 40 differential fatty acid metabolites were screened. Arachidonic acid metabolism, unsaturated fatty acid biosynthesis and linoleic acid metabolism were potential metabolic pathways. Seven major bacterial species were closely associated with 15 differential fatty acid. This study contributes to the targeted production of fatty acid functional active substances of YJS.
Collapse
Affiliation(s)
- Hongyan Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Lu Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Bureau of Agriculture and Rural Affairs of Majiang County, Guizhou Province, China
| | - Lu Jiang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Wenkang Hu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Qin Cen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Rui Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Fuyi Hui
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Jiamin Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Xuefeng Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
- Edible Fungus Research Institute Guizhou University, Guiyang, China
| |
Collapse
|
9
|
Chen S, Fu Y, Wang T, Chen Z, Zhao P, Huang X, Qiao M, Li T, Song L. Effect of 2'-Fucosyllactose on Beige Adipocyte Formation in 3T3-L1 Adipocytes and C3H10T1/2 Cells. Foods 2023; 12:4137. [PMID: 38002194 PMCID: PMC10670332 DOI: 10.3390/foods12224137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
2'-Fucosyllactose (2'-FL), the functional oligosaccharide naturally present in milk, has been shown to exert health benefits. This study was aimed to investigate the effect of 2'-fucosyllactose (2'-FL) on the browning of white adipose tissue in 3T3-L1 adipocytes and C3H10T1/2 cells. The results revealed that 2'-FL decreased lipid accumulations with reduced intracellular triglyceride contents in vitro. 2'-FL intervention increased the mitochondria density and the proportion of UCP1-positive cells. The mRNA expressions of the mitochondrial biogenesis-related and browning markers (Cox7a, Cyto C, Tfam, Ucp1, Pgc1α, Prdm16, Cidea, Elovl3, Pparα, CD137, and Tmem26) were increased after 2'-FL intervention to some extent. Similarly, the protein expression of the browning markers, including UCP1, PGC1α, and PRDM16, was up-regulated in the 2'-FL group. Additionally, an adenosine monophosphate-activated protein kinase (AMPK) inhibitor, compound C (1 μM), significantly decreased the induction of thermogenic proteins expressions mediated by 2'-FL, indicating that the 2'-FL-enhanced beige cell formation was partially dependent on the AMPK pathway. In conclusion, 2'-FL effectively promoted the browning of white adipose in vitro.
Collapse
Affiliation(s)
- Siru Chen
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
| | - Yankun Fu
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
| | - Tianlin Wang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
| | - Zhenglin Chen
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
| | - Peijun Zhao
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
| | - Xianqing Huang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
- Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Mingwu Qiao
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
- Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Tiange Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
| | - Lianjun Song
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (S.C.); (Z.C.)
- Henan Technology Innovation Center of Meat Processing and Research, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|