1
|
Wertman E. Essential New Complexity-Based Themes for Patient-Centered Diagnosis and Treatment of Dementia and Predementia in Older People: Multimorbidity and Multilevel Phenomenology. J Clin Med 2024; 13:4202. [PMID: 39064242 PMCID: PMC11277671 DOI: 10.3390/jcm13144202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Dementia is a highly prevalent condition with devastating clinical and socioeconomic sequela. It is expected to triple in prevalence by 2050. No treatment is currently known to be effective. Symptomatic late-onset dementia and predementia (SLODP) affects 95% of patients with the syndrome. In contrast to trials of pharmacological prevention, no treatment is suggested to remediate or cure these symptomatic patients. SLODP but not young onset dementia is intensely associated with multimorbidity (MUM), including brain-perturbating conditions (BPCs). Recent studies showed that MUM/BPCs have a major role in the pathogenesis of SLODP. Fortunately, most MUM/BPCs are medically treatable, and thus, their treatment may modify and improve SLODP, relieving suffering and reducing its clinical and socioeconomic threats. Regrettably, the complex system features of SLODP impede the diagnosis and treatment of the potentially remediable conditions (PRCs) associated with them, mainly due to failure of pattern recognition and a flawed diagnostic workup. We suggest incorporating two SLODP-specific conceptual themes into the diagnostic workup: MUM/BPC and multilevel phenomenological themes. By doing so, we were able to improve the diagnostic accuracy of SLODP components and optimize detecting and favorably treating PRCs. These revolutionary concepts and their implications for remediability and other parameters are discussed in the paper.
Collapse
Affiliation(s)
- Eli Wertman
- Department of Neurology, Hadassah University Hospital, The Hebrew University, Jerusalem 9190500, Israel;
- Section of Neuropsychology, Department of Psychology, The Hebrew University, Jerusalem 9190500, Israel
- Or’ad: Organization for Cognitive and Behavioral Changes in the Elderly, Jerusalem 9458118, Israel
- Merhav Neuropsychogeriatric Clinics, Nehalim 4995000, Israel
| |
Collapse
|
2
|
Li Z, Mo RL, Gong JF, Han L, Wang WF, Huang DK, Xu JG, Sun YJ, Chen S, Han GC, Sun DQ. Dihydrotanshinone I inhibits gallbladder cancer growth by targeting the Keap1-Nrf2 signaling pathway and Nrf2 phosphorylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155661. [PMID: 38677269 DOI: 10.1016/j.phymed.2024.155661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/19/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Gallbladder cancer (GBC) poses a significant risk to human health. Its development is influenced by numerous factors, particularly the homeostasis of reactive oxygen species (ROS) within cells. This homeostasis is crucial for tumor cell survival, and abnormal regulation of ROS is associated with the occurrence and progression of many cancers. Dihydrotanshinone I (DHT I), a biologically effective ingredient isolated from Salvia miltiorrhiza, has exhibited cytotoxic properties against various tumor cells by inducing apoptosis. However, the precise molecular mechanisms by which dht I exerts its cytotoxic effects remain unclear. PURPOSE To explore the anti-tumor impact of dht I on GBC and elucidate the potential molecular mechanisms. METHODS The proliferation of GBC cells, NOZ and SGC-996, was assessed using various assays, including CCK-8 assay, colony formation assay and EdU staining. We also examined cell apoptosis, cell cycle progression, ROS levels, and alterations in mitochondrial membrane potential to delve into the intricate molecular mechanism. Quantitative PCR (qPCR), immunofluorescence staining, and Western blotting were performed to evaluate target gene expression at both the mRNA and protein levels. The correlation between nuclear factor erythroid 2-related factor 2 (Nrf2) and kelch-like ECH-associated protein 1 (Keap1) were examined using co-immunoprecipitation. Finally, the in vivo effect of dht I was investigated using a xenograft model of gallbladder cancer in mice. RESULTS Our research findings indicated that dht I exerted cytotoxic effects on GBC cells, including inhibiting proliferation, disrupting mitochondrial membrane potential, inducing oxidative stress and apoptosis. Our in vivo studies substantiated the inhibition of dht I on tumor growth in xenograft nude mice. Mechanistically, dht I primarily targeted Nrf2 by promoting Keap1 mediated Nrf2 degradation and inhibiting protein kinase C (PKC) induced Nrf2 phosphorylation. This leads to the suppression of Nrf2 nuclear translocation and reduction of its target gene expression. Moreover, Nrf2 overexpression effectively counteracted the anti-tumor effects of dht I, while Nrf2 knockdown significantly enhanced the inhibitory effect of dht I on GBC. Meanwhile, PKC inhibitors and nuclear import inhibitors increased the sensitivity of GBC cells to dht I treatment. Conversely, Nrf2 activators, proteasome inhibitors, antioxidants and PKC activators all antagonized dht I induced apoptosis and ROS generation in NOZ and SGC-996 cells. CONCLUSION Our findings indicated that dht I inhibited the growth of GBC cells by regulating the Keap1-Nrf2 signaling pathway and Nrf2 phosphorylation. These insights provide a strong rationale for further investigation of dht I as a potential therapeutic agent for GBC treatment.
Collapse
Affiliation(s)
- Zhuang Li
- Department of General Surgery, The Chinese People's Armed Police Forces Anhui Provincial Corps Hospital, Hefei 230041, China; Research Technology Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Rong-Liang Mo
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jun-Feng Gong
- Department of General Surgery, The Chinese People's Armed Police Forces Anhui Provincial Corps Hospital, Hefei 230041, China
| | - Lin Han
- Department of General Surgery, The Chinese People's Armed Police Forces Anhui Provincial Corps Hospital, Hefei 230041, China
| | - Wen-Fei Wang
- Department of General Surgery, The Chinese People's Armed Police Forces Anhui Provincial Corps Hospital, Hefei 230041, China
| | - Da-Ke Huang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jie-Gou Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yan-Jun Sun
- Department of General Surgery, The Chinese People's Armed Police Forces Anhui Provincial Corps Hospital, Hefei 230041, China
| | - Shuo Chen
- Research Technology Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Gen-Cheng Han
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Deng-Qun Sun
- Department of General Surgery, The Chinese People's Armed Police Forces Anhui Provincial Corps Hospital, Hefei 230041, China.
| |
Collapse
|
3
|
Rajendran K, Krishnan UM. Mechanistic insights and emerging therapeutic stratagems for Alzheimer's disease. Ageing Res Rev 2024; 97:102309. [PMID: 38615895 DOI: 10.1016/j.arr.2024.102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD), a multi-factorial neurodegenerative disorder has affected over 30 million individuals globally and these numbers are expected to increase in the coming decades. Current therapeutic interventions are largely ineffective as they focus on a single target. Development of an effective drug therapy requires a deep understanding of the various factors influencing the onset and progression of the disease. Aging and genetic factors exert a major influence on the development of AD. Other factors like post-viral infections, iron overload, gut dysbiosis, and vascular dysfunction also exacerbate the onset and progression of AD. Further, post-translational modifications in tau, DRP1, CREB, and p65 proteins increase the disease severity through triggering mitochondrial dysfunction, synaptic loss, and differential interaction of amyloid beta with different receptors leading to impaired intracellular signalling. With advancements in neuroscience tools, new inter-relations that aggravate AD are being discovered including pre-existing diseases and exposure to other pathogens. Simultaneously, new therapeutic strategies involving modulation of gene expression through targeted delivery or modulation with light, harnessing the immune response to promote clearance of amyloid deposits, introduction of stem cells and extracellular vesicles to replace the destroyed neurons, exploring new therapeutic molecules from plant, marine and biological sources delivered in the free state or through nanoparticles and use of non-pharmacological interventions like music, transcranial stimulation and yoga. Polypharmacology approaches involving combination of therapeutic agents are also under active investigation for superior therapeutic outcomes. This review elaborates on various disease-causing factors, their underlying mechanisms, the inter-play between different disease-causing players, and emerging therapeutic options including those under clinical trials, for treatment of AD. The challenges involved in AD therapy and the way forward have also been discussed.
Collapse
Affiliation(s)
- Kayalvizhi Rajendran
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India
| | - Uma Maheswari Krishnan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India.
| |
Collapse
|
4
|
Long Q, Li T, Zhu Q, He L, Zhao B. SuanZaoRen decoction alleviates neuronal loss, synaptic damage and ferroptosis of AD via activating DJ-1/Nrf2 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117679. [PMID: 38160863 DOI: 10.1016/j.jep.2023.117679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE SuanZaoRen Decoction (SZRD), a famous herbal prescription, and has been widely proven to have positive therapeutic effects on insomnia, depression and Alzheimer's disease (AD). However, the anti-AD molecular mechanism of SZRD remains to be further investigated. AIM OF THE STUDY To elucidate the molecular mechanism of SZRD's improvement in AD's neuronal loss, synaptic damage and ferroptosis by regulating DJ-1/Nrf2 signaling pathway. MATERIALS AND METHODS LC-MS/MS was used to detect the active ingredients from SZRD. APP/PS1 mice was treated with SZRD and a ferroptosis inhibitor (Liproxstatin-1), respectively. Upon the completion of behavioral tests, Nissl staining, FJB staining, Golgi staining, immunofluorescence, immunohistochemistry, and transmission electron microscopy were preformed to evaluate the effects of SZRD on neuronal loss, synaptic damage, Aβ deposition. Iron staining, transmission electron microscopy, and iron assay kit was performed to estimate the effects of SZRD on ferroptosis. SOD kit, MDA kit, GSH kit, and GSH/GSSG kit were utilized to measure the oxidative stress levels in the hippocampus. The protein expression of TfR1, FTH1, FTL, FPN1, DJ-1, Nrf2, GPX4, SLC7A11, and ACSL4 were detected by Western blot. RESULTS A total of 16 active ingredients were identified from SZRD extract. SZRD SZRD significantly alleviated learning and memory impairment in APP/PS1 mice. SZRD improved the hippocampal neuronal loss and degenerated neurons in APP/PS1 mice via inhibiting the Aβ deposit. SZRD mitigated the hippocampal synaptic damage in APP/PS1 mice. SZRD inhibited iron accumulation, and alleviated the oxidative stress level in the hippocampus of APP/PS1 mice. Meanwhile, SZRD could up-regulate the protein expression level of FPN1, DJ-1, Nrf2, GPX4 and SLC7A11 in the hippocampus, and inhibit TfR1, FTH1, FTL, and ACSL4 protein expression. CONCLUSION SZRD alleviated neuronal loss, synaptic damage and ferroptosis in AD via activating DJ-1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Qinghua Long
- Health Medical Center, Hubei Minzu University, Enshi, 445000, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Hubei Minzu University, Enshi, 445000, China
| | - Tong Li
- Health Medical Center, Hubei Minzu University, Enshi, 445000, China
| | - Qihang Zhu
- Health Medical Center, Hubei Minzu University, Enshi, 445000, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Hubei Minzu University, Enshi, 445000, China
| | - Liling He
- Health Medical Center, Hubei Minzu University, Enshi, 445000, China.
| | - Binbin Zhao
- Basic Medicine College, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China.
| |
Collapse
|
5
|
Tang AS, Rankin KP, Cerono G, Miramontes S, Mills H, Roger J, Zeng B, Nelson C, Soman K, Woldemariam S, Li Y, Lee A, Bove R, Glymour M, Aghaeepour N, Oskotsky TT, Miller Z, Allen IE, Sanders SJ, Baranzini S, Sirota M. Leveraging electronic health records and knowledge networks for Alzheimer's disease prediction and sex-specific biological insights. NATURE AGING 2024; 4:379-395. [PMID: 38383858 PMCID: PMC10950787 DOI: 10.1038/s43587-024-00573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Identification of Alzheimer's disease (AD) onset risk can facilitate interventions before irreversible disease progression. We demonstrate that electronic health records from the University of California, San Francisco, followed by knowledge networks (for example, SPOKE) allow for (1) prediction of AD onset and (2) prioritization of biological hypotheses, and (3) contextualization of sex dimorphism. We trained random forest models and predicted AD onset on a cohort of 749 individuals with AD and 250,545 controls with a mean area under the receiver operating characteristic of 0.72 (7 years prior) to 0.81 (1 day prior). We further harnessed matched cohort models to identify conditions with predictive power before AD onset. Knowledge networks highlight shared genes between multiple top predictors and AD (for example, APOE, ACTB, IL6 and INS). Genetic colocalization analysis supports AD association with hyperlipidemia at the APOE locus, as well as a stronger female AD association with osteoporosis at a locus near MS4A6A. We therefore show how clinical data can be utilized for early AD prediction and identification of personalized biological hypotheses.
Collapse
Affiliation(s)
- Alice S Tang
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, San Francisco and Berkeley, CA, USA.
| | - Katherine P Rankin
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Gabriel Cerono
- Weill Institute for Neuroscience. Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Silvia Miramontes
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Hunter Mills
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Jacquelyn Roger
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Billy Zeng
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Charlotte Nelson
- Weill Institute for Neuroscience. Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Karthik Soman
- Weill Institute for Neuroscience. Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah Woldemariam
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Yaqiao Li
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Albert Lee
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Riley Bove
- Weill Institute for Neuroscience. Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Glymour
- Department of Anesthesiology, Pain, and Perioperative Medicine, Stanford University, Palo Alto, CA, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Pain, and Perioperative Medicine, Stanford University, Palo Alto, CA, USA
- Department of Pediatrics, Stanford University, Palo Alto, CA, USA
- Department of Biomedical Data Science, Stanford University, Palo Alto, CA, USA
| | - Tomiko T Oskotsky
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Zachary Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Isabel E Allen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Stephan J Sanders
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Sergio Baranzini
- Weill Institute for Neuroscience. Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pediatrics, University of California, San Francisco, CA, USA.
| |
Collapse
|