1
|
Jiao F, Zhou L, Wu Z. The microbiota-gut-brain axis: a potential target in the small-molecule compounds and gene therapeutic strategies for Parkinson's disease. Neurol Sci 2024:10.1007/s10072-024-07878-x. [PMID: 39546084 DOI: 10.1007/s10072-024-07878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUNDS Parkinson's disease (PD) is a common neurodegenerative disorder characterized by motor symptoms and non-motor symptoms. It has been found that intestinal issues usually precede motor symptoms. Microorganisms in the gastrointestinal tract can affect central nervous system through the microbiota-gut-brain axis. Accumulating evidence has shown that disturbances in the microbiota-gut-brain axis are linked with PD. Thus, this pathway appears to be a promising therapeutic target for treatment of PD. OBJECTIVES In this review, we mainly described gut dysbiosis in PD and their underlying mechanisms for mediating neuroinflammation and peripheral immune response in PD pathology and futher discussed the potential small-molecule compounds and genic therapeutic strategies targeting the microbiota-gut-brain axis and their applications in PD. CONCLUSIONS Studies have found that some small molecule compounds and alterations of inflammation-related genes can improve the motor and non-motor symptoms of PD by improving the microbiota-gut-brain axis, which may provide potentially beneficial drugs and molecular targets for the therapies of PD.
Collapse
Affiliation(s)
- Fengjuan Jiao
- School of Mental Health, Jining Medical University, No. 45, Jianshe South Road, Jining City, Shandong Province, 272067, P. R. China.
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong, 272067, P. R. China.
| | - Lincong Zhou
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, PR China
| | - Zaixin Wu
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, PR China
| |
Collapse
|
2
|
Wang X, Yang G, Lai Y, Li Y, Liu X. Exploring the hub Genes and Potential Mechanisms of Complement system-related Genes in Parkinson Disease: Based on Transcriptome Sequencing and Mendelian Randomization. J Mol Neurosci 2024; 74:95. [PMID: 39373800 DOI: 10.1007/s12031-024-02272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
An accurate diagnosis of Parkinson's disease (PD) remains challenging and the exact cause of the disease is unclean. The aims are to identify hub genes associated with the complement system in PD and to explore their underlying molecular mechanisms. Initially, differentially expressed genes (DEGs) and key module genes related to PD were mined through differential expression analysis and WGCNA. Then, differentially expressed CSRGs (DE-CSRGs) were obtained by intersecting the DEGs, key module genes and CSRGs. Subsequently, MR analysis was executed to identify genes causally associated with PD. Based on genes with significant MR results, the expression level and diagnostic performance verification were achieved to yield hub genes. Functional enrichment and immune infiltration analyses were accomplished to insight into the pathogenesis of PD. qRT-PCR was employed to evaluate the expression levels of hub genes. After MR analysis and related verification, CD93, CTSS, PRKCD and TLR2 were finally identified as hub genes. Enrichment analysis indicated that the main enriched pathways for hub genes. Immune infiltration analysis found that the hub genes showed significant correlation with a variety of immune cells (such as myeloid-derived suppressor cell and macrophage). In the qRT-PCR results, the expression levels of CTSS, PRKCD and TLR2 were consistent with those we obtained from public databases. Hence, we mined four hub genes associated with complement system in PD which provided novel perspectives for the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 hospital), Chengdu, 610000, China
| | - Gaoming Yang
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 hospital), Chengdu, 610000, China
| | - Yali Lai
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 hospital), Chengdu, 610000, China
| | - Yuanyuan Li
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 hospital), Chengdu, 610000, China
| | - Xindong Liu
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 hospital), Chengdu, 610000, China.
| |
Collapse
|
3
|
Bhardwaj K, Singh AA, Kumar H. Unveiling the Journey from the Gut to the Brain: Decoding Neurodegeneration-Gut Connection in Parkinson's Disease. ACS Chem Neurosci 2024; 15:2454-2469. [PMID: 38896463 DOI: 10.1021/acschemneuro.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Parkinson's disease, a classical motor disorder affecting the dopaminergic system of the brain, has been as a disease of the brain, but this classical notion has now been viewed differently as the pathology begins in the gut and then gradually moves up to the brain regions. The microorganisms in the gut play a critical role in maintaining the physiology of the gut from maintaining barrier integrity to secretion of microbial products that maintain a healthy gut state. The pathology subsequently alters the normal composition of gut microbes and causes deleterious effects that ultimately trigger strong neuroinflammation and nonmotor symptoms along with characteristic synucleopathy, a pathological hallmark of the disease. Understanding the complex pathomechanisms in distinct and established preclinical models is the primary goal of researchers to decipher how exactly gut pathology has a central effect; the quest has led to many answered and some open-ended questions for researchers. We summarize the popular opinions and some contrasting views, concise footsteps in the treatment strategies targeting the gastrointestinal system.
Collapse
Affiliation(s)
- Kritika Bhardwaj
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Opposite Air force station, Palaj, Gandhinagar, 382355 Gujarat, India
| | - Aditya A Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Opposite Air force station, Palaj, Gandhinagar, 382355 Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Opposite Air force station, Palaj, Gandhinagar, 382355 Gujarat, India
| |
Collapse
|
4
|
Abarca-Merlin DM, Martínez-Durán JA, Medina-Pérez JD, Rodríguez-Santos G, Alvarez-Arellano L. From Immunity to Neurogenesis: Toll-like Receptors as Versatile Regulators in the Nervous System. Int J Mol Sci 2024; 25:5711. [PMID: 38891900 PMCID: PMC11171594 DOI: 10.3390/ijms25115711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 06/21/2024] Open
Abstract
Toll-like receptors (TLRs) are among the main components of the innate immune system. They can detect conserved structures in microorganisms and molecules associated with stress and cellular damage. TLRs are expressed in resident immune cells and both neurons and glial cells of the nervous system. Increasing evidence is emerging on the participation of TLRs not only in the immune response but also in processes of the nervous system, such as neurogenesis and cognition. Below, we present a review of the literature that evaluates the expression and role of TLRs in processes such as neurodevelopment, behavior, cognition, infection, neuroinflammation, and neurodegeneration.
Collapse
Affiliation(s)
- Daniela Melissa Abarca-Merlin
- Laboratorio de Investigación en Neurociencias, Hospital Infantil de México Federico Gómez, Av. Dr. Márquez 162. Colonia Doctores, Mexico City 06720, Mexico; (D.M.A.-M.)
| | - J. Abigail Martínez-Durán
- Laboratorio de Investigación en Neurociencias, Hospital Infantil de México Federico Gómez, Av. Dr. Márquez 162. Colonia Doctores, Mexico City 06720, Mexico; (D.M.A.-M.)
| | - J. David Medina-Pérez
- Laboratorio de Investigación en Neurociencias, Hospital Infantil de México Federico Gómez, Av. Dr. Márquez 162. Colonia Doctores, Mexico City 06720, Mexico; (D.M.A.-M.)
| | - Guadalupe Rodríguez-Santos
- Laboratorio de Investigación en Neurociencias, Hospital Infantil de México Federico Gómez, Av. Dr. Márquez 162. Colonia Doctores, Mexico City 06720, Mexico; (D.M.A.-M.)
| | - Lourdes Alvarez-Arellano
- Laboratorio de Investigación en Neurociencias, Hospital Infantil de México Federico Gómez, Av. Dr. Márquez 162. Colonia Doctores, Mexico City 06720, Mexico; (D.M.A.-M.)
- CONAHCYT-Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
5
|
Vivacqua G, Mancinelli R, Leone S, Vaccaro R, Garro L, Carotti S, Ceci L, Onori P, Pannarale L, Franchitto A, Gaudio E, Casini A. Endoplasmic reticulum stress: A possible connection between intestinal inflammation and neurodegenerative disorders. Neurogastroenterol Motil 2024; 36:e14780. [PMID: 38462652 DOI: 10.1111/nmo.14780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/27/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Different studies have shown the key role of endoplasmic reticulum (ER) stress in autoimmune and chronic inflammatory disorders, as well as in neurodegenerative diseases. ER stress leads to the formation of misfolded proteins which affect the secretion of different cell types that are crucial for the intestinal homeostasis. PURPOSE In this review, we discuss the role of ER stress and its involvement in the development of inflammatory bowel diseases, chronic conditions that can cause severe damage of the gastrointestinal tract, focusing on the alteration of Paneth cells and goblet cells (the principal secretory phenotypes of the intestinal epithelial cells). ER stress is also discussed in the context of neurodegenerative diseases, in which protein misfolding represents the signature mechanism. ER stress in the bowel and consequent accumulation of misfolded proteins might represent a bridge between bowel inflammation and neurodegeneration along the gut-to-brain axis, affecting intestinal epithelial homeostasis and the equilibrium of the commensal microbiota. Targeting intestinal ER stress could foster future studies for designing new biomarkers and new therapeutic approaches for neurodegenerative disorders.
Collapse
Affiliation(s)
- Giorgio Vivacqua
- Integrated Research Center (PRAAB), Campus Biomedico University of Roma, Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Stefano Leone
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Rosa Vaccaro
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Ludovica Garro
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Simone Carotti
- Integrated Research Center (PRAAB), Campus Biomedico University of Roma, Rome, Italy
| | - Ludovica Ceci
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Luigi Pannarale
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Division of Health Sciences, Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Arianna Casini
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|