1
|
Lozada-Soto EA, Maltecca C, Jiang J, Cole JB, VanRaden PM, Tiezzi F. Effect of germplasm exchange strategies on genetic gain, homozygosity, and genetic diversity in dairy stud populations: A simulation study. J Dairy Sci 2024:S0022-0302(24)01085-3. [PMID: 39216524 DOI: 10.3168/jds.2024-24992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
While genomic selection has led to considerable improvements in genetic gain, it has also seemingly led to increased rates of inbreeding and homozygosity, which can negatively affect genetic diversity and the long-term sustainability of dairy populations. Using genotypes from US Holstein animals from 3 distinct stud populations, we performed a simulation study consisting of 10 rounds of selection, with each breeding population composed of 200 males and 2000 females. The investigated selection strategies consisted of selection using true breeding values (TBV), estimated breeding values (EBV), estimated breeding values penalized for the average future genomic inbreeding of progeny (PEN-EBV), or random selection (RAND). We also simulated several germplasm exchange strategies where the germplasm of males from other populations was used for breeding. These strategies included exchanging males based on EBV, PEN-EBV, low genomic future inbreeding of progeny (GFI), or randomly (RAND). Variations of several parameters, such as the correlation between the selection objectives of populations and the size of the exchange, were simulated. Penalizing genetic merit to minimize genomic inbreeding of progeny provided similar genetic gain and reduced the average homozygosity of populations compared with the EBV strategy. Germplasm exchange was found to generally provide long-term benefits to all stud populations. In both the short and long-term, germplasm exchange using the EBV or PEN-EBV strategies provided more cumulative genetic progress than the no-exchange strategy; the amount of long-term genetic progress achieved with germplasm exchange using these strategies was higher for scenarios with a higher genetic correlation between the traits selected by the studs and for a larger size of the exchange. Both the PEN-EBV and GFI exchange strategies allowed decreases in homozygosity and provided significant benefits to genetic diversity compared with other strategies, including larger average minor allele frequencies and smaller proportions of markers near fixation. Overall, this study showed the value of breeding strategies to balance genetic progress and genetic diversity and the benefits of cooperation between studs to ensure the sustainability of their respective breeding programs.
Collapse
Affiliation(s)
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Jicai Jiang
- Department of Animal Science, North Carolina State University, Raleigh, NC 27607, USA
| | | | - Paul M VanRaden
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Francesco Tiezzi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50144 Florence, Italy.
| |
Collapse
|
2
|
Ojeda-Marín C, Cervantes I, Formoso-Rafferty N, Gutiérrez JP. Genomic inbreeding measures applied to a population of mice divergently selected for birth weight environmental variance. Front Genet 2023; 14:1303748. [PMID: 38155710 PMCID: PMC10752941 DOI: 10.3389/fgene.2023.1303748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
This study aimed to compare different inbreeding measures estimated from pedigree and molecular data from two divergent mouse lines selected for environmental birth weight during 26 generations. Furthermore, the performance of different approaches and both molecular and pedigree data sources for estimating Ne were tested in this population. A total of 1,699 individuals were genotyped using a high-density genotyping array. Genomic relationship matrices were used to calculate molecular inbreeding: Nejati-Javaremi (F NEJ), Li and Horvitz (F L&H), Van Raden method 1 (F VR1) and method 2 (F VR2), and Yang (F YAN). Inbreeding based on runs of homozygosity (F ROH) and pedigree inbreeding (F PED) were also computed. F ROH, F NEJ, and F L&H were also adjusted for their average values in the first generation of selection and named F ROH0, F NEJ0, and F L&H0. ∆F was calculated from pedigrees as the individual inbreeding rate between the individual and his parents (∆F PEDt) and individual increases in inbreeding (∆F PEDi). Moreover, individual ∆F was calculated from the different molecular inbreeding coefficients (∆F NEJ0, ∆F L&H, ∆F L&H0, ∆F VR1, ∆F VR2, ∆F YAN, and ∆F ROH0). The Ne was obtained from different ∆F, such as Ne PEDt, Ne PEDi, Ne NEJ0, Ne L&H, Ne L&H0, Ne VR1, Ne VR2, Ne YAN, and Ne ROH0. Comparing with F PED , F ROH , F NEJ and F VR2 overestimated inbreeding while F NEJ0 , F L&H , F L&H0 , F VR1 and F YAN underestimated inbreeding. Correlations between inbreeding coefficients and ∆F were calculated. F ROH had the highest correlation with F PED (0.89); F YAN had correlations >0.95 with all the other molecular inbreeding coefficients. Ne PEDi was more reliable than Ne PEDt and presented similar behaviour to Ne L&H0 and Ne NEJ0. Stable trends in Ne were not observed until the 10th generation. In the 10th generation Ne PEDi was 42.20, Ne L&H0 was 45.04 and Ne NEJ0 was 45.05 and in the last generation these Ne were 35.65, 35.94 and 35.93, respectively F ROH presented the highest correlation with F PED, which addresses the identity by descent probability (IBD). The evolution of Ne L&H0 and Ne NEJ0 was the most similar to that of Ne PEDi. Data from several generations was necessary to reach a stable trend for Ne, both with pedigree and molecular data. This population was useful to test different approaches to computing inbreeding coefficients and Ne using molecular and pedigree data.
Collapse
Affiliation(s)
- Candela Ojeda-Marín
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Isabel Cervantes
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Nora Formoso-Rafferty
- Departamento de Producción Agraria, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Juan Pablo Gutiérrez
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Arias KD, Gutiérrez JP, Fernández I, Álvarez I, Goyache F. Approaching autozygosity in a small pedigree of Gochu Asturcelta pigs. Genet Sel Evol 2023; 55:74. [PMID: 37880572 PMCID: PMC10601182 DOI: 10.1186/s12711-023-00846-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND In spite of the availability of single nucleotide polymorphism (SNP) array data, differentiation between observed homozygosity and that caused by mating between relatives (autozygosity) introduces major difficulties. Homozygosity estimators show large variation due to different causes, namely, Mendelian sampling, population structure, and differences among chromosomes. Therefore, the ascertainment of how inbreeding is reflected in the genome is still an issue. The aim of this research was to study the usefulness of genomic information for the assessment of genetic diversity in the highly endangered Gochu Asturcelta pig breed. Pedigree depth varied from 0 (founders) to 4 equivalent discrete generations (t). Four homozygosity parameters (runs of homozygosity, FROH; heterozygosity-rich regions, FHRR; Li and Horvitz's, FLH; and Yang and colleague's FYAN) were computed for each individual, adjusted for the variability in the base population (BP; six individuals) and further jackknifed over autosomes. Individual increases in homozygosity (depending on t) and increases in pairwise homozygosity (i.e., increase in the parents' mean) were computed for each individual in the pedigree, and effective population size (Ne) was computed for five subpopulations (cohorts). Genealogical parameters (individual inbreeding, individual increase in inbreeding, and Ne) were used for comparisons. RESULTS The mean F was 0.120 ± 0.074 and the mean BP-adjusted homozygosity ranged from 0.099 ± 0.081 (FLH) to 0.152 ± 0.075 (FYAN). After jackknifing, the mean values were slightly lower. The increase in pairwise homozygosity tended to be twofold higher than the corresponding individual increase in homozygosity values. When compared with genealogical estimates, estimates of Ne obtained using FYAN tended to have low root-mean-squared errors. However, Ne estimates based on increases in pairwise homozygosity using both FROH and FHRR estimates of genomic inbreeding had lower root-mean-squared errors. CONCLUSIONS Parameters characterizing homozygosity may not accurately depict losses of variability in small populations in which breeding policy prohibits matings between close relatives. After BP adjustment, the performance of FROH and FHRR was highly consistent. Assuming that an increase in homozygosity depends only on pedigree depth can lead to underestimating it in populations with shallow pedigrees. An increase in pairwise homozygosity computed from either FROH or FHRR is a promising approach for characterizing autozygosity.
Collapse
Affiliation(s)
- Katherine D Arias
- Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, 33394, Gijón, Spain
| | - Juan Pablo Gutiérrez
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avda. Puerta de Hierro S/N, 28040, Madrid, Spain
| | - Iván Fernández
- Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, 33394, Gijón, Spain
| | - Isabel Álvarez
- Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, 33394, Gijón, Spain
| | - Félix Goyache
- Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, 33394, Gijón, Spain.
| |
Collapse
|
4
|
Špehar M, Ramljak J, Kasap A. Estimation of genetic parameters and the effect of inbreeding on dairy traits in Istrian sheep. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2031320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Marija Špehar
- Croatian Agency for Agriculture and Food, Zagreb, Croatia
| | - Jelena Ramljak
- Zavod za specijalno stočarstvo, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - Ante Kasap
- Zavod za specijalno stočarstvo, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| |
Collapse
|
5
|
New developments in the field of genomic technologies and their relevance to conservation management. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01415-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractRecent technological advances in the field of genomics offer conservation managers and practitioners new tools to explore for conservation applications. Many of these tools are well developed and used by other life science fields, while others are still in development. Considering these technological possibilities, choosing the right tool(s) from the toolbox is crucial and can pose a challenging task. With this in mind, we strive to inspire, inform and illuminate managers and practitioners on how conservation efforts can benefit from the current genomic and biotechnological revolution. With inspirational case studies we show how new technologies can help resolve some of the main conservation challenges, while also informing how implementable the different technologies are. We here focus specifically on small population management, highlight the potential for genetic rescue, and discuss the opportunities in the field of gene editing to help with adaptation to changing environments. In addition, we delineate potential applications of gene drives for controlling invasive species. We illuminate that the genomic toolbox offers added benefit to conservation efforts, but also comes with limitations for the use of these novel emerging techniques.
Collapse
|
6
|
vonHoldt BM, Aardema ML. Updating the Bibliography of Interbreeding among Canis in North America. J Hered 2021; 111:249-262. [PMID: 32034410 DOI: 10.1093/jhered/esaa004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 02/05/2020] [Indexed: 01/29/2023] Open
Abstract
This bibliography provides a collection of references that documents the evolution of studies evidencing interbreeding among Canis species in North America. Over the past several decades, advances in biology and genomic technology greatly improved our ability to detect and characterize species interbreeding, which has significance for understanding species in a changing landscape as well as for endangered species management. This bibliography includes a discussion within each category of interbreeding, the timeline of developing evidence, and includes a review of past research conducted on experimental crosses. Research conducted in the early 20th century is rich with detailed records and photographs of hybrid offspring development and behavior. With the progression of molecular methods, studies can estimate historical demographic parameters and detect chromosomal patterns of ancestry. As these methods continue to increase in accessibility, the field will gain a deeper and richer understanding of the evolutionary history of North American Canis.
Collapse
Affiliation(s)
- Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ
| | - Matthew L Aardema
- Department of Biology, Montclair State University, Montclair, NJ.,Sackler Institute for Comparative Genomics, American Museum of Natural History, New York City, NY
| |
Collapse
|
7
|
Villanueva B, Fernández A, Saura M, Caballero A, Fernández J, Morales-González E, Toro MA, Pong-Wong R. The value of genomic relationship matrices to estimate levels of inbreeding. Genet Sel Evol 2021; 53:42. [PMID: 33933002 PMCID: PMC8088726 DOI: 10.1186/s12711-021-00635-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Genomic relationship matrices are used to obtain genomic inbreeding coefficients. However, there are several methodologies to compute these matrices and there is still an unresolved debate on which one provides the best estimate of inbreeding. In this study, we investigated measures of inbreeding obtained from five genomic matrices, including the Nejati-Javaremi allelic relationship matrix (FNEJ), the Li and Horvitz matrix based on excess of homozygosity (FL&H), and the VanRaden (methods 1, FVR1, and 2, FVR2) and Yang (FYAN) genomic relationship matrices. We derived expectations for each inbreeding coefficient, assuming a single locus model, and used these expectations to explain the patterns of the coefficients that were computed from thousands of single nucleotide polymorphism genotypes in a population of Iberian pigs. RESULTS Except for FNEJ, the evaluated measures of inbreeding do not match with the original definitions of inbreeding coefficient of Wright (correlation) or Malécot (probability). When inbreeding coefficients are interpreted as indicators of variability (heterozygosity) that was gained or lost relative to a base population, both FNEJ and FL&H led to sensible results but this was not the case for FVR1, FVR2 and FYAN. When variability has increased relative to the base, FVR1, FVR2 and FYAN can indicate that it decreased. In fact, based on FYAN, variability is not expected to increase. When variability has decreased, FVR1 and FVR2 can indicate that it has increased. Finally, these three coefficients can indicate that more variability than that present in the base population can be lost, which is also unreasonable. The patterns for these coefficients observed in the pig population were very different, following the derived expectations. As a consequence, the rate of inbreeding depression estimated based on these inbreeding coefficients differed not only in magnitude but also in sign. CONCLUSIONS Genomic inbreeding coefficients obtained from the diagonal elements of genomic matrices can lead to inconsistent results in terms of gain and loss of genetic variability and inbreeding depression estimates, and thus to misleading interpretations. Although these matrices have proven to be very efficient in increasing the accuracy of genomic predictions, they do not always provide a useful measure of inbreeding.
Collapse
Affiliation(s)
- Beatriz Villanueva
- Departamento de Mejora Genética Animal, INIA, Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain
| | - Almudena Fernández
- Departamento de Mejora Genética Animal, INIA, Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain
| | - María Saura
- Departamento de Mejora Genética Animal, INIA, Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain
| | - Armando Caballero
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Bioquímica, Genética E Inmunología, Campus de Vigo, 36310 Vigo, Spain
| | - Jesús Fernández
- Departamento de Mejora Genética Animal, INIA, Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain
| | | | - Miguel A. Toro
- Departamento de Producción Agraria, ETSI Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Ricardo Pong-Wong
- Genetics and Genomics, The Roslin Institute and the R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| |
Collapse
|
8
|
Cairns KM, Newman KD, Crowther MS, Letnic M. Pelage variation in dingoes across southeastern Australia: implications for conservation and management. J Zool (1987) 2021. [DOI: 10.1111/jzo.12875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- K. M. Cairns
- Centre for Ecosystem Science School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
- Evolution and Ecology Research Centre School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
| | - K. D. Newman
- School of Biosciences University of Melbourne Parkville VIC Australia
| | - M. S. Crowther
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| | - M. Letnic
- Centre for Ecosystem Science School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
- Evolution and Ecology Research Centre School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
| |
Collapse
|
9
|
Kasarda R, Moravčíková N, Vostrý L, Krupová Z, Krupa E, Lehocká K, Olšanská B, Trakovická A, Nádaský R, Polák P, Židek R, Belej Ľ, Golian J. Fine-scale analysis of six beef cattle breeds revealed patterns of their genomic diversity. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1852894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Radovan Kasarda
- Katedra genetiky a plemenárskej biológie, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Nina Moravčíková
- Katedra genetiky a plemenárskej biológie, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Luboš Vostrý
- Katedra genetiky a šlechtění, Czech University of Life Sciences Prague, Praha, Czech Republic
- Institute of Animal Science, Praha-Uhříněves, Czech Republic
| | - Zuzana Krupová
- Institute of Animal Science, Praha-Uhříněves, Czech Republic
| | - Emil Krupa
- Institute of Animal Science, Praha-Uhříněves, Czech Republic
| | - Kristína Lehocká
- Katedra genetiky a plemenárskej biológie, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Barbora Olšanská
- Katedra genetiky a plemenárskej biológie, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Anna Trakovická
- Katedra genetiky a plemenárskej biológie, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Rudolf Nádaský
- Agricultural cooperation Špačince, Špačince, Slovak Republic
| | - Peter Polák
- Beef Breeders Association, Ivanka pri Nitre, Slovak Republic
| | - Radoslav Židek
- Katedra hygieny a bezpečnosti potravín, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Ľubomír Belej
- Katedra hygieny a bezpečnosti potravín, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Jozef Golian
- Katedra hygieny a bezpečnosti potravín, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| |
Collapse
|
10
|
Vanvanhossou SFU, Scheper C, Dossa LH, Yin T, Brügemann K, König S. A multi-breed GWAS for morphometric traits in four Beninese indigenous cattle breeds reveals loci associated with conformation, carcass and adaptive traits. BMC Genomics 2020; 21:783. [PMID: 33176675 PMCID: PMC7656759 DOI: 10.1186/s12864-020-07170-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Specific adaptive features including disease resistance and growth abilities in harsh environments are attributed to indigenous cattle breeds of Benin, but these breeds are endangered due to crossbreeding. So far, there is a lack of systematic trait recording, being the basis for breed characterizations, and for structured breeding program designs aiming on conservation. Bridging this gap, own phenotyping for morphological traits considered measurements for height at withers (HAW), sacrum height (SH), heart girth (HG), hip width (HW), body length (BL) and ear length (EL), including 449 cattle from the four indigenous Benin breeds Lagune, Somba, Borgou and Pabli. In order to utilize recent genomic tools for breed characterizations and genetic evaluations, phenotypes for novel traits were merged with high-density SNP marker data. Multi-breed genetic parameter estimations and genome-wide association studies (GWAS) for the six morphometric traits were carried out. Continuatively, we aimed on inferring genomic regions and functional loci potentially associated with conformation, carcass and adaptive traits. RESULTS SNP-based heritability estimates for the morphometric traits ranged between 0.46 ± 0.14 (HG) and 0.74 ± 0.13 (HW). Phenotypic and genetic correlations ranged from 0.25 ± 0.05 (HW-BL) to 0.89 ± 0.01 (HAW-SH), and from 0.14 ± 0.10 (HW-BL) to 0.85 ± 0.02 (HAW-SH), respectively. Three genome-wide and 25 chromosome-wide significant SNP positioned on different chromosomes were detected, located in very close chromosomal distance (±25 kb) to 15 genes (or located within the genes). The genes PIK3R6 and PIK3R1 showed direct functional associations with height and body size. We inferred the potential candidate genes VEPH1, CNTNAP5, GYPC for conformation, growth and carcass traits including body weight and body fat deposition. According to their functional annotations, detected potential candidate genes were associated with stress or immune response (genes PTAFR, PBRM1, ADAMTS12) and with feed efficiency (genes MEGF11 SLC16A4, CCDC117). CONCLUSIONS Accurate measurements contributed to large SNP heritabilities for some morphological traits, even for a small mixed-breed sample size. Multi-breed GWAS detected different loci associated with conformation or carcass traits. The identified potential candidate genes for immune response or feed efficiency indicators reflect the evolutionary development and adaptability features of the breeds.
Collapse
Affiliation(s)
| | - Carsten Scheper
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Luc Hippolyte Dossa
- School of Science and Technics of Animal Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Kerstin Brügemann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany.
| |
Collapse
|
11
|
He J, Wu XL, Zeng Q, Li H, Ma H, Jiang J, Rosa GJM, Gianola D, Tait Jr. RG, Bauck S. Genomic mating as sustainable breeding for Chinese indigenous Ningxiang pigs. PLoS One 2020; 15:e0236629. [PMID: 32797113 PMCID: PMC7428355 DOI: 10.1371/journal.pone.0236629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 07/10/2020] [Indexed: 11/18/2022] Open
Abstract
An important economic reason for the loss of local breeds is that they tend to be less productive, and hence having less market value than commercial breeds. Nevertheless, local breeds often have irreplaceable values, genetically and sociologically. In the breeding programs with local breeds, it is crucial to balance the selection for genetic gain and the maintaining of genetic diversity. These two objectives are often conflicting, and finding the optimal point of the trade-off has been a challenge for breeders. Genomic selection (GS) provides a revolutionary tool for the genetic improvement of farm animals. At the same time, it can increase inbreeding and produce a more rapid depletion of genetic variability of the selected traits in future generations. Optimum-contribution selection (OCS) represents an approach to maximize genetic gain while constraining inbreeding within a targeted range. In the present study, 515 Ningxiang pigs were genotyped with the Illumina Porcine SNP60 array or the GeneSeek Genomic Profiler Porcine 50K array. The Ningxiang pigs were found to be highly inbred at the genomic level. Average locus-wise inbreeding coefficients were 0.41 and 0.37 for the two SNP arrays used, whereas genomic inbreeding coefficients based on runs of homozygosity were 0.24 and 0.25, respectively. Simulated phenotypic data were used to assess the utility of genomic OCS (GOCS) in comparison with GS without inbreeding control. GOCS was conducted under two scenarios, selecting sires only (GOCS_S) or selecting sires and dams (GOCS_SD), while kinships were constrained on selected parents. The genetic gain for average daily body weight gain (ADG) per generation was between 18.99 and 20.55 g with GOCS_S, and between 23.20 and 28.92 with GOCS_SD, and it varied from 25.38 to 48.38 g under GS without controlling inbreeding. While the rate of genetic gain per generation obtained using GS was substantially larger than that obtained by the two scenarios of genomic OCS in the beginning generations of selection, the difference in the genetic gain of ADG between GS and GOCS reduced quickly in latter generations. At generation ten, the difference in the realized rates of genetic gain between GS and GOCS_SD diminished and ended up with even a slightly higher genetic gain with GOCS_SD, due to the rapid loss of genetic variance with GS and fixation of causative genes. The rate of inbreeding was mostly maintained below 5% per generation with genomic OCS, whereas it increased to between 10.5% and 15.3% per generation with GS. Therefore, genomic OCS appears to be a sustainable strategy for the genetic improvement of local breeds such as Ningxiang pigs, but keeping mind that a variety of GOCS methods exist and the optimal forms remain to be exploited further.
Collapse
Affiliation(s)
- Jun He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiao-Lin Wu
- Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, United States of America
- Department of Animal Sciences, University of Wisconsin, Madison, WI, United States of America
- * E-mail:
| | - Qinghua Zeng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Ningxiang Pig Farm of Dalong Livestock Technology Co., Ltd., Ningxiang, Hunan, China
| | - Hao Li
- Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, United States of America
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Juan Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Guilherme J. M. Rosa
- Department of Animal Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Daniel Gianola
- Department of Animal Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Richard G. Tait Jr.
- Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, United States of America
| | - Stewart Bauck
- Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, United States of America
| |
Collapse
|
12
|
Meuwissen THE, Sonesson AK, Gebregiwergis G, Woolliams JA. Management of Genetic Diversity in the Era of Genomics. Front Genet 2020; 11:880. [PMID: 32903415 PMCID: PMC7438563 DOI: 10.3389/fgene.2020.00880] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/17/2020] [Indexed: 12/27/2022] Open
Abstract
Management of genetic diversity aims to (i) maintain heterozygosity, which ameliorates inbreeding depression and loss of genetic variation at loci that may become of importance in the future; and (ii) avoid genetic drift, which prevents deleterious recessives (e.g., rare disease alleles) from drifting to high frequency, and prevents random drift of (functional) traits. In the genomics era, genomics data allow for many alternative measures of inbreeding and genomic relationships. Genomic relationships/inbreeding can be classified into (i) homozygosity/heterozygosity based (e.g., molecular kinship matrix); (ii) genetic drift-based, i.e., changes of allele frequencies; or (iii) IBD-based, i.e., SNPs are used in linkage analyses to identify IBD segments. Here, alternative measures of inbreeding/relationship were used to manage genetic diversity in genomic optimal contribution (GOC) selection schemes. Contrary to classic inbreeding theory, it was found that drift and homozygosity-based inbreeding could differ substantially in GOC schemes unless diversity management was based upon IBD. When using a homozygosity-based measure of relationship, the inbreeding management resulted in allele frequency changes toward 0.5 giving a low rate of increase in homozygosity for the panel used for management, but not for unmanaged neutral loci, at the expense of a high genetic drift. When genomic relationship matrices were based on drift, following VanRaden and as in GCTA, drift was low at the expense of a high rate of increase in homozygosity. The use of IBD-based relationship matrices for inbreeding management limited both drift and the homozygosity-based rate of inbreeding to their target values. Genetic improvement per percent of inbreeding was highest when GOC used IBD-based relationships irrespective of the inbreeding measure used. Genomic relationships based on runs of homozygosity resulted in very high initial improvement per percent of inbreeding, but also in substantial discrepancies between drift and homozygosity-based rates of inbreeding, and resulted in a drift that exceeded its target value. The discrepancy between drift and homozygosity-based rates of inbreeding was caused by a covariance between initial allele frequency and the subsequent change in frequency, which becomes stronger when using data from whole genome sequence.
Collapse
Affiliation(s)
- Theo H E Meuwissen
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - John A Woolliams
- The Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Li H, Qu W, Obrycki JJ, Meng L, Zhou X, Chu D, Li B. Optimizing Sample Size for Population Genomic Study in a Global Invasive Lady Beetle, Harmonia Axyridis. INSECTS 2020; 11:E290. [PMID: 32397374 PMCID: PMC7291016 DOI: 10.3390/insects11050290] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/30/2022]
Abstract
Finding optimal sample sizes is critical for the accurate estimation of genetic diversity of large invasive populations. Based on previous studies, we hypothesized that a minimal sample size of 3-8 individuals is sufficient to dissect the population architecture of the harlequin lady beetle, Harmonia axyridis, a biological control agent and an invasive alien species. Here, equipped with a type IIB endonuclease restriction site-associated (2b-RAD) DNA sequencing approach, we identified 13,766 and 13,929 single nucleotide polymorphisms (SNPs), respectively, among native and invasive H. axyridis populations. With this information we simulated populations using a randomly selected 3000 SNPs and a subset of individuals. From this simulation we finally determined that six individuals is the minimum sample size required for the accurate estimation of intra- and inter-population genetic diversity within and across H. axyridis populations. Our findings provide an empirical advantage for population genomic studies of H. axyridis in particular and suggest useful tactics for similar studies on multicellular organisms in general.
Collapse
Affiliation(s)
- Hongran Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (H.L.); (L.M.)
| | - Wanmei Qu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (W.Q.); (D.C.)
| | - John J. Obrycki
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA; (J.J.O.); (X.Z.)
| | - Ling Meng
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (H.L.); (L.M.)
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA; (J.J.O.); (X.Z.)
| | - Dong Chu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (W.Q.); (D.C.)
| | - Baoping Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (H.L.); (L.M.)
| |
Collapse
|
14
|
Olsen HF, Tenhunen S, Dolvik NI, Våge DI, Klemetsdal G. Segment-based coancestry, additive relationship and genetic variance within and between the Norwegian and the Swedish Fjord horse populations. ACTA AGR SCAND A-AN 2020. [DOI: 10.1080/09064702.2019.1711155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hanne Fjerdingby Olsen
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Saija Tenhunen
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- Viking Genetics, Hollola, Finland
| | - Nils Ivar Dolvik
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Dag Inge Våge
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Gunnar Klemetsdal
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
15
|
Toro MA, Villanueva B, Fernández J. The concept of effective population size loses its meaning in the context of optimal management of diversity using molecular markers. J Anim Breed Genet 2019; 137:345-355. [PMID: 31713272 DOI: 10.1111/jbg.12455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 11/28/2022]
Abstract
Effective population size is a key parameter in conservation genetics. In the management of conservation programs using pedigree information, there is a consensus that the optimal method for maximizing effective population size is to calculate the contribution of each potential parent (the number of offspring that each individual leaves to the next generation) by minimizing the global pedigree-based coancestry between potential parents weighted by their contributions. When using molecular data, the optimal method for managing genetic diversity will remain the same but now the molecular coancestry calculated from markers will replace the pedigree-based coancestry. However, in this situation, the concept of effective population size loses its meaning because with optimal molecular management, genetic diversity increases in early generations and therefore effective population size takes negative values. Furthermore, in the long term, the molecular effective population size does not attain an asymptotic value but it shows an unpredictable behaviour.
Collapse
Affiliation(s)
- Miguel A Toro
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, Madrid, Spain
| | | | | |
Collapse
|
16
|
|
17
|
Wang Y, Bennewitz J, Wellmann R. Managing genomes of conserved livestock breeds with historical introgression to decrease genetic overlap with other breeds. J Anim Breed Genet 2019; 136:505-517. [PMID: 31115935 DOI: 10.1111/jbg.12405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 01/01/2023]
Abstract
Recovering the native genetic background of a breed and increasing the founder genome equivalent (FGE) that is contributed by a breed to the gene pool of the species can increase its value for conservation. The suitability of several strategies was compared, whereby a hypothetical multi-breed population, the core set, was used to approximate the genetic diversity of the species. Twenty-five generations of management were simulated based on genotypes of German Angler cattle. The scenarios were compared when the kinship reached 0.10. The native contribution (NC) increased in a population with 400 births per generation from 0.317 to 0.706, whereas 1,000 births enabled to reach 0.894. This scenario maximized the NC, constrained the native kinship, and the kinship of the core set so that its genetic diversity could not decrease. It increased the proportions of mainstream breeds because their genes were removed from the target breed. A substantial increase of the FGE was achieved in some other scenarios, which arose from reduced genetic overlap and from increased diversity within the breed. The latter factor is especially important for breeds with high contributions to the core set.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Robin Wellmann
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
18
|
Flesch EP, Rotella JJ, Thomson JM, Graves TA, Garrott RA. Evaluating sample size to estimate genetic management metrics in the genomics era. Mol Ecol Resour 2018; 18:1077-1091. [PMID: 29856123 DOI: 10.1111/1755-0998.12898] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 11/29/2022]
Abstract
Inbreeding and relationship metrics among and within populations are useful measures for genetic management of wild populations, but accuracy and precision of estimates can be influenced by the number of individual genotypes analysed. Biologists are confronted with varied advice regarding the sample size necessary for reliable estimates when using genomic tools. We developed a simulation framework to identify the optimal sample size for three widely used metrics to enable quantification of expected variance and relative bias of estimates and a comparison of results among populations. We applied this approach to analyse empirical genomic data for 30 individuals from each of four different free-ranging Rocky Mountain bighorn sheep (Ovis canadensis canadensis) populations in Montana and Wyoming, USA, through cross-species application of an Ovine array and analysis of approximately 14,000 single nucleotide polymorphisms (SNPs) after filtering. We examined intra- and interpopulation relationships using kinship and identity by state metrics, as well as FST between populations. By evaluating our simulation results, we concluded that a sample size of 25 was adequate for assessing these metrics using the Ovine array to genotype Rocky Mountain bighorn sheep herds. However, we conclude that a universal sample size rule may not be able to sufficiently address the complexities that impact genomic kinship and inbreeding estimates. Thus, we recommend that a pilot study and sample size simulation using R code we developed that includes empirical genotypes from a subset of populations of interest would be an effective approach to ensure rigour in estimating genomic kinship and population differentiation.
Collapse
Affiliation(s)
| | - Jay J Rotella
- Ecology Department, Montana State University, Bozeman, Montana
| | - Jennifer M Thomson
- Animal and Range Sciences Department, Montana State University, Bozeman, Montana
| | - Tabitha A Graves
- U.S. Geological Survey Glacier Field Station, Northern Rocky Mountain Science Center, West Glacier, Montana
| | | |
Collapse
|
19
|
Long-Term Impact of Optimum Contribution Selection Strategies on Local Livestock Breeds with Historical Introgression Using the Example of German Angler Cattle. G3-GENES GENOMES GENETICS 2017; 7:4009-4018. [PMID: 29089375 PMCID: PMC5714497 DOI: 10.1534/g3.117.300272] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The long-term performance of different selection strategies was evaluated via simulation using the example of a local cattle breed, German Angler cattle. Different optimum contribution selection (OCS) approaches to maximize genetic gain were compared to a reference scenario without selection and truncation selection. The kinships and migrant contribution (MC) were estimated from genomic data. Truncation selection achieved the highest genetic gain but decreased diversity considerably at native alleles. It also caused the highest increase in MCs. Traditional OCS, which only constrains kinship, achieved almost the same genetic gain but also caused a small increase of MC and remarkably reduced the diversity of native alleles. When MC was required not to increase and the increase of kinship at native alleles was restricted, the MC levels and the diversity at native alleles were well managed, and the genetic gain was only slightly reduced. However, genetic progress was substantially lower in the scenario that aimed to recover the original genetic background. Truncation selection and traditional OCS selection both reduce the genetic originality of breeds with historical introgression. The inclusion of MC and kinship at native alleles as additional constraints in OCS showed great potential for conservation. Recovery of the original genetic background is possible but requires many generations of selection and reduces the genetic progress in performance traits. Hence, constraining MCs at their current values can be recommended to avoid further reduction of genetic originality.
Collapse
|
20
|
Nyamushamba GB, Mapiye C, Tada O, Halimani TE, Muchenje V. Conservation of indigenous cattle genetic resources in Southern Africa's smallholder areas: turning threats into opportunities - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:603-621. [PMID: 27004814 PMCID: PMC5411820 DOI: 10.5713/ajas.16.0024] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/15/2016] [Accepted: 03/18/2016] [Indexed: 01/14/2023]
Abstract
The current review focuses on characterization and conservation efforts vital for the development of breeding programmes for indigenous beef cattle genetic resources in Southern Africa. Indigenous African cattle breeds were identified and characterized using information from refereed journals, conference papers and research reports. Results of this current review reviewed that smallholder beef cattle production in Southern Africa is extensive and dominated by indigenous beef cattle strains adaptable to the local environment. The breeds include Nguni, Mashona, Tuli, Malawi Zebu, Bovino de Tete, Angoni, Landim, Barotse, Twsana and Ankole. These breeds have important functions ranging from provision of food and income to socio-economic, cultural and ecological roles. They also have adaptive traits ranging from drought tolerant, resistance to ticks and tick borne diseases, heat tolerance and resistance to trypanosomosis. Stakeholders in the conservation of beef cattle were also identified and they included farmers, national government, research institutes and universities as well as breeding companies and societies in Southern Africa. Research efforts made to evaluate threats and opportunities of indigenous beef cattle production systems, assess the contribution of indigenous cattle to household food security and income, genetically and phenotypically characterize and conserve indigenous breeds, and develop breeding programs for smallholder beef production are highlighted. Although smallholder beef cattle production in the smallholder farming systems contributes substantially to household food security and income, their productivity is hindered by several constraints that include high prevalence of diseases and parasites, limited feed availability and poor marketing. The majority of the African cattle populations remain largely uncharacterized although most of the indigenous cattle breeds have been identified.
Collapse
Affiliation(s)
- G B Nyamushamba
- Department of Livestock and Pasture Science, University of Fort Hare, Alice 5700, South Africa
| | - C Mapiye
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| | - O Tada
- Department of Animal Production and Technology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - T E Halimani
- Department of Animal Science, University of Zimbabwe, Harare, Zimbabwe
| | - V Muchenje
- Department of Livestock and Pasture Science, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
21
|
Fernández J, Toro M, Gómez-Romano F, Villanueva B. The use of genomic information can enhance the efficiency of conservation programs. Anim Front 2016. [DOI: 10.2527/af.2016-0009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- J. Fernández
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - M.A. Toro
- Departamento de Producción Agraria, ETSI Agrónomos, UPM, Madrid, Spain
| | | | - B. Villanueva
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| |
Collapse
|
22
|
Bruford MW, Ginja C, Hoffmann I, Joost S, Orozco-terWengel P, Alberto FJ, Amaral AJ, Barbato M, Biscarini F, Colli L, Costa M, Curik I, Duruz S, Ferenčaković M, Fischer D, Fitak R, Groeneveld LF, Hall SJG, Hanotte O, Hassan FU, Helsen P, Iacolina L, Kantanen J, Leempoel K, Lenstra JA, Ajmone-Marsan P, Masembe C, Megens HJ, Miele M, Neuditschko M, Nicolazzi EL, Pompanon F, Roosen J, Sevane N, Smetko A, Štambuk A, Streeter I, Stucki S, Supakorn C, Telo Da Gama L, Tixier-Boichard M, Wegmann D, Zhan X. Prospects and challenges for the conservation of farm animal genomic resources, 2015-2025. Front Genet 2015; 6:314. [PMID: 26539210 PMCID: PMC4612686 DOI: 10.3389/fgene.2015.00314] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022] Open
Abstract
Livestock conservation practice is changing rapidly in light of policy developments, climate change and diversifying market demands. The last decade has seen a step change in technology and analytical approaches available to define, manage and conserve Farm Animal Genomic Resources (FAnGR). However, these rapid changes pose challenges for FAnGR conservation in terms of technological continuity, analytical capacity and integrative methodologies needed to fully exploit new, multidimensional data. The final conference of the ESF Genomic Resources program aimed to address these interdisciplinary problems in an attempt to contribute to the agenda for research and policy development directions during the coming decade. By 2020, according to the Convention on Biodiversity's Aichi Target 13, signatories should ensure that “…the genetic diversity of …farmed and domesticated animals and of wild relatives …is maintained, and strategies have been developed and implemented for minimizing genetic erosion and safeguarding their genetic diversity.” However, the real extent of genetic erosion is very difficult to measure using current data. Therefore, this challenging target demands better coverage, understanding and utilization of genomic and environmental data, the development of optimized ways to integrate these data with social and other sciences and policy analysis to enable more flexible, evidence-based models to underpin FAnGR conservation. At the conference, we attempted to identify the most important problems for effective livestock genomic resource conservation during the next decade. Twenty priority questions were identified that could be broadly categorized into challenges related to methodology, analytical approaches, data management and conservation. It should be acknowledged here that while the focus of our meeting was predominantly around genetics, genomics and animal science, many of the practical challenges facing conservation of genomic resources are societal in origin and are predicated on the value (e.g., socio-economic and cultural) of these resources to farmers, rural communities and society as a whole. The overall conclusion is that despite the fact that the livestock sector has been relatively well-organized in the application of genetic methodologies to date, there is still a large gap between the current state-of-the-art in the use of tools to characterize genomic resources and its application to many non-commercial and local breeds, hampering the consistent utilization of genetic and genomic data as indicators of genetic erosion and diversity. The livestock genomic sector therefore needs to make a concerted effort in the coming decade to enable to the democratization of the powerful tools that are now at its disposal, and to ensure that they are applied in the context of breed conservation as well as development.
Collapse
Affiliation(s)
- Michael W Bruford
- School of Biosciences, Cardiff University Cardiff, UK ; Sustainable Places Research Institute, Cardiff University Cardiff, UK
| | - Catarina Ginja
- Faculdade de Ciências, Centro de Ecologia, Evolução e Alterações Ambientais (CE3C), Universidade de Lisboa Lisboa, Portugal ; Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-InBIO), Universidade do Porto, Campus Agrário de Vairão Portugal
| | - Irene Hoffmann
- Food and Agriculture Organization of the United Nations, Animal Genetic Resources Branch, Animal Production and Health Division Rome, Italy
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | | | - Florian J Alberto
- Laboratoire d'Ecologie Alpine, Université Grenoble Alpes Grenoble, France
| | - Andreia J Amaral
- Faculty of Sciences, BioISI- Biosystems and Integrative Sciences Institute, University of Lisbon Campo Grande, Portugal
| | - Mario Barbato
- School of Biosciences, Cardiff University Cardiff, UK
| | | | - Licia Colli
- BioDNA Centro di Ricerca sulla Biodiversità a sul DNA Antico, Istituto di Zootecnica, Università Cattolica del Sacro Cuore di Piacenza Italy
| | - Mafalda Costa
- School of Biosciences, Cardiff University Cardiff, UK
| | - Ino Curik
- Faculty of Agriculture, University of Zagreb Zagreb, Croatia
| | - Solange Duruz
- Laboratory of Geographic Information Systems (LASIG), School of Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | | | - Daniel Fischer
- Natural Resources Institute Finland (Luke), Green Technology Jokioinen, Finland
| | - Robert Fitak
- Institut für Populationsgenetik Vetmeduni, Vienna, Austria
| | | | | | - Olivier Hanotte
- School of Life Sciences, University of Nottingham Nottingham, UK
| | - Faiz-Ul Hassan
- School of Life Sciences, University of Nottingham Nottingham, UK ; Department of Animal Breeding and Genetics, University of Agriculture Faisalabad, Pakistan
| | - Philippe Helsen
- Centre for Research and Conservation, Royal Zoological Society of Antwerp Antwerp, Belgium
| | - Laura Iacolina
- Department of Chemistry and Bioscience, Aalborg University Aalborg, Denmark
| | - Juha Kantanen
- Natural Resources Institute Finland (Luke), Green Technology Jokioinen, Finland ; Department of Biology, University of Eastern Finland Kuopio, Finland
| | - Kevin Leempoel
- Laboratory of Geographic Information Systems (LASIG), School of Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | | | - Paolo Ajmone-Marsan
- BioDNA Centro di Ricerca sulla Biodiversità a sul DNA Antico, Istituto di Zootecnica, Università Cattolica del Sacro Cuore di Piacenza Italy
| | - Charles Masembe
- Institute of the Environment and Natural Resources, Makerere University Kampala, Uganda
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics Centre, Wageningen University Wageningen, Netherlands
| | - Mara Miele
- School of Planning and Geography, Cardiff University Cardiff, UK
| | | | | | - François Pompanon
- Laboratoire d'Ecologie Alpine, Université Grenoble Alpes Grenoble, France
| | - Jutta Roosen
- TUM School of Management, Technische Universität München Munich, Germany
| | - Natalia Sevane
- Department of Animal Production, Veterinary Faculty, Universidad Complutense de Madrid Madrid, Spain
| | | | - Anamaria Štambuk
- Department of Biology, Faculty of Science, University of Zagreb Zagreb, Croatia
| | - Ian Streeter
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus Hinxton, Cambridge, UK
| | - Sylvie Stucki
- Laboratory of Geographic Information Systems (LASIG), School of Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - China Supakorn
- School of Life Sciences, University of Nottingham Nottingham, UK ; School of Agricultural Technology, Walailak University Tha Sala, Thailand
| | - Luis Telo Da Gama
- Centre of Research in Animal Health (CIISA) - Faculty of Veterinary Medicine, University of Lisbon Lisbon, Portugal
| | | | - Daniel Wegmann
- Department of Biology, University of Fribourg Fribourg, Switzerland
| | - Xiangjiang Zhan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences Beijing, China ; Cardiff University - Institute of Zoology, Joint Laboratory for Biocomplexity Research Beijing, China
| |
Collapse
|
23
|
Grueber CE, Peel E, Gooley R, Belov K. Genomic insights into a contagious cancer in Tasmanian devils. Trends Genet 2015; 31:528-35. [DOI: 10.1016/j.tig.2015.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/03/2015] [Accepted: 05/04/2015] [Indexed: 02/08/2023]
|
24
|
Bosse M, Megens HJ, Madsen O, Crooijmans RPMA, Ryder OA, Austerlitz F, Groenen MAM, de Cara MAR. Using genome-wide measures of coancestry to maintain diversity and fitness in endangered and domestic pig populations. Genome Res 2015; 25:970-81. [PMID: 26063737 PMCID: PMC4484394 DOI: 10.1101/gr.187039.114] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/13/2015] [Indexed: 01/08/2023]
Abstract
Conservation and breeding programs aim at maintaining the most diversity, thereby avoiding deleterious effects of inbreeding while maintaining enough variation from which traits of interest can be selected. Theoretically, the most diversity is maintained using optimal contributions based on many markers to calculate coancestries, but this can decrease fitness by maintaining linked deleterious variants. The heterogeneous patterns of coancestry displayed in pigs make them an excellent model to test these predictions. We propose methods to measure coancestry and fitness from resequencing data and use them in population management. We analyzed the resequencing data of Sus cebifrons, a highly endangered porcine species from the Philippines, and genotype data from the Pietrain domestic breed. By analyzing the demographic history of Sus cebifrons, we inferred two past bottlenecks that resulted in some inbreeding load. In Pietrain, we analyzed signatures of selection possibly associated with commercial traits. We also simulated the management of each population to assess the performance of different optimal contribution methods to maintain diversity, fitness, and selection signatures. Maximum genetic diversity was maintained using marker-by-marker coancestry, and least using genealogical coancestry. Using a measure of coancestry based on shared segments of the genome achieved the best results in terms of diversity and fitness. However, this segment-based management eliminated signatures of selection. We demonstrate that maintaining both diversity and fitness depends on the genomic distribution of deleterious variants, which is shaped by demographic and selection histories. Our findings show the importance of genomic and next-generation sequencing information in the optimal design of breeding or conservation programs.
Collapse
Affiliation(s)
- Mirte Bosse
- ABGC Wageningen University, 6700 Wageningen, The Netherlands
| | | | - Ole Madsen
- ABGC Wageningen University, 6700 Wageningen, The Netherlands
| | | | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research, Escondido, California 92027, USA
| | | | | | | |
Collapse
|
25
|
Grueber CE. Comparative genomics for biodiversity conservation. Comput Struct Biotechnol J 2015; 13:370-5. [PMID: 26106461 PMCID: PMC4475778 DOI: 10.1016/j.csbj.2015.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 12/31/2022] Open
Abstract
Genomic approaches are gathering momentum in biology and emerging opportunities lie in the creative use of comparative molecular methods for revealing the processes that influence diversity of wildlife. However, few comparative genomic studies are performed with explicit and specific objectives to aid conservation of wild populations. Here I provide a brief overview of comparative genomic approaches that offer specific benefits to biodiversity conservation. Because conservation examples are few, I draw on research from other areas to demonstrate how comparing genomic data across taxa may be used to inform the characterisation of conservation units and studies of hybridisation, as well as studies that provide conservation outcomes from a better understanding of the drivers of divergence. A comparative approach can also provide valuable insight into the threatening processes that impact rare species, such as emerging diseases and their management in conservation. In addition to these opportunities, I note areas where additional research is warranted. Overall, comparing and contrasting the genomic composition of threatened and other species provide several useful tools for helping to preserve the molecular biodiversity of the global ecosystem.
Collapse
|
26
|
Kristensen TN, Hoffmann AA, Pertoldi C, Stronen AV. What can livestock breeders learn from conservation genetics and vice versa? Front Genet 2015; 6:38. [PMID: 25713584 PMCID: PMC4322732 DOI: 10.3389/fgene.2015.00038] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/26/2015] [Indexed: 11/17/2022] Open
Abstract
The management of livestock breeds and threatened natural population share common challenges, including small effective population sizes, high risk of inbreeding, and the potential benefits and costs associated with mixing disparate gene pools. Here, we consider what has been learnt about these issues, the ways in which the knowledge gained from one area might be applied to the other, and the potential of genomics to provide new insights. Although there are key differences stemming from the importance of artificial versus natural selection and the decreased level of environmental heterogeneity experienced by many livestock populations, we suspect that information from genetic rescue in natural populations could be usefully applied to livestock. This includes an increased emphasis on maintaining substantial population sizes at the expense of genetic uniqueness in ensuring future adaptability, and on emphasizing the way that environmental changes can influence the relative fitness of deleterious alleles and genotypes in small populations. We also suspect that information gained from cross-breeding and the maintenance of unique breeds will be increasingly important for the preservation of genetic variation in small natural populations. In particular, selected genes identified in domestic populations provide genetic markers for exploring adaptive evolution in threatened natural populations. Genomic technologies in the two disciplines will be important in the future in realizing genetic gains in livestock and maximizing adaptive capacity in wildlife, and particularly in understanding how parts of the genome may respond differently when exposed to population processes and selection.
Collapse
Affiliation(s)
- Torsten N. Kristensen
- Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Ary A. Hoffmann
- Department of Zoology and Department of Genetics, Bio21 Institute, The University of MelbourneMelbourne, VIC, Australia
| | - Cino Pertoldi
- Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
- Aalborg ZooAalborg, Denmark
| | - Astrid V. Stronen
- Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| |
Collapse
|