1
|
Dagaew G, Wongtangtintharn S, Prachumchai R, Cherdthong A. The effects of fermented cassava pulp with yeast waste and different roughage-to-concentrate ratios on ruminal fermentation, nutrient digestibility, and milk production in lactating cows. Heliyon 2023; 9:e14585. [PMID: 37035355 PMCID: PMC10073638 DOI: 10.1016/j.heliyon.2023.e14585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
The study's goal was to evaluate the impact of concentrate diets containing fermented cassava pulp with yeast waste (CSYW) with various roughage to concentrate ratios (R:C) on ruminal fermentation, nutritional digestibility, milk production, and milk composition in lactating cows. Four mid-lactation Thai crossbred dairy cows were randomly assigned a 2 × 2 factorial arrangement in a 4 × 4 Latin square design, weighing 440 ± 60.0 kg (75% Holstein Friesian and 25% Thai native breed), and having 90 days-in-milk (DIM). The different dietary treatments consisted of the following: factor A: soybean meal (SBM) and replacing SBM with CSYW at 100% dry matter (DM) in the concentrate diet, whereas factor B consisted of varying the R:C ratio from 60:40 to 50:50. An interaction effect between protein source and R:C ratio on intake was not observed (P > 0.05). The CSYW-diet did not affect the intake of concentrate and rice straw. However, when the R:C ratio was changed to 50:50, there was a significant increase in the apparent digestibility of neutral detergent fiber and acid detergent fiber (P < 0.05). There was no evidence of an interaction effect between CSYW and the R:C ratio on the parameters of the rumen, the microorganisms in the rumen, or blood urea-nitrogen. The concentration of ammonia-nitrogen in the rumen, however, significantly increased (P < 0.05) when animals were given a concentrated diet containing CSYW. Total VFA, C2:C3 ratios, acetic acid (C2), propionic acid (C3), butyric acid (C4), and methane levels were unaffected by the replacement of SBM with CSYW in concentrate diets or the R:C ratio given to lactating cows (P > 0.05). There was no evidence of an interaction between CSYW and the R:C ratio across any and all milk-related parameters (P > 0.05). The R:C ratio had no effect on milk production or composition (P > 0.05). With the exception of milk protein (P < 0.05), milk yield and milk composition were not affected by replacing SBM with CSYW in concentrate diets (P > 0.05). The concentration of protein in milk produced by animals fed a CSYW-diet increased from 3.05 to 3.25%. On the basis of this research, it is recommended that CSYW be used as a protein source in a concentrate diet in place of SBM with a R:C ratio of 60:40 or 50:50.
Collapse
|
2
|
Effects of substituting agro-industrial by-products for soybean meal on beef cattle feed utilization and rumen fermentation. Sci Rep 2022; 12:21630. [PMID: 36517532 PMCID: PMC9751048 DOI: 10.1038/s41598-022-26191-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
The purpose of the present investigation was to detect the effect of replacement of soybean meal (SBM) with citric waste fermented yeast waste (CWYW) as an alternative protein source of portentous substances in a concentrate mixture diet of beef cattle on intake, digestibility, ruminal fermentation, plasma urea-nitrogen, energy partitioning, and nitrogen balance. Four Thai-native beef bulls (170 ± 10.0 kg of initial body weight) were randomly allocated to a 4 × 4 Latin square design. The dietary treatments were four levels of CWYW replacing SBM in a concentrated diet at ratios of 0, 33, 67, and 100%. SBM was added to the concentrate diet at a dose of 150 g/kg DM. All cattle were offered ad libitum rice straw and the concentrate diet at 5 g/kg of body weight. The study was composed of four periods, each lasting for 21 days. The findings demonstrated that there was no difference in total dry matter intake, nutritional intake, or digestibility between treatments (p > 0.05). When CWYW replaced SBM at 100% after 4 h of feeding, ruminal pH, ammonia nitrogen, plasma urea nitrogen, and bacterial population were highest (p < 0.05). Volatile fatty acids and energy partitioning were not different (p > 0.05) among dietary treatments. Urinary nitrogen excretion was greatest (p < 0.05) for cattle fed CWYW to replace SBM at 100% of the concentrate. However, nitrogen absorption and retention for Thai-native cattle were similar (p > 0.05) among treatments. In conclusion, CWYW may be utilized as a substitute for SBM as a source of protein in Thai-native beef cattle without having an adverse impact on feed utilization, rumen fermentation characteristics, or blood metabolites.
Collapse
|
3
|
Effect of Cyanide-Utilizing Bacteria and Sulfur Supplementation on Reducing Cyanide Concentration and In Vitro Degradability Using In Vitro Gas Production Technique. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of this research was to supplement the cyanide-utilizing bacteria and sulfur in the HCN-rich diet, affecting the gas production and fermentation of rumen in vitro, and lowering the HCN content and the digestion of nutrients. A 2 × 2 × 3 factorial experiment in a completely randomized design was applied during the test. In the experiments, three factors were used. Factor A was the level of CUB at 0 and 108 CFU/mL. Factor B was the level of sulfur in the diet at 0% and 3% of dry matter (DM). Factor C was the three levels of potassium cyanide (KCN) at 0, 300, and 600 ppm. The interaction of CUB × sulfur × KCN affected gas production from the immediately soluble fraction (a) (p < 0.05). However, the greatest ruminal cyanide concentration was found when CUB (with and without), sulfur (3%), and KCN (600 ppm) were introduced at 0 h (p < 0.05). It revealed that the addition of CUB and sulfur had a significant impact on gas accumulation at 96 h (p < 0.05). The addition of CUB with sulfur had an effect on pH at 2 h and ruminal cyanide levels at 6 h (p < 0.05). At 2 h, sulfur supplementation with KCN had an effect on NH3-N (p < 0.01). The addition of sulfur (3%) and KCN (300 ppm) produced the highest ammonia nitrogen. However, the combination of sulfur (3%) and KCN (600 ppm) produced the lowest level of ammonia nitrogen (p < 0.01). CUB supplementation increased the in vitro dry matter digestibility (IVDMD) by 11.16% compared to the without-CUB supplemented group (p < 0.05). Supplementation with 3% sulfur increased the in vitro neutral detergent fiber (IVNDFD) by 16.87% but had no effect on IVDMD or in vitro acid detergent fiber (IVADFD) (p < 0.05). The volatile fatty acid (VFA) such as acetate, propionate, and butyrate were not different when CUB, sulfur, and KCN were added. Doses above 600 ppm had the lowest concentrations of TVFA and propionate (p < 0.01). Based on the results of this investigation, supplementing with CUB and sulfur (3%) may improve cumulative gas, digestibility, and TVAF. Supplementing with CUB, on the other hand, reduced HCN the most, by 54.6%.
Collapse
|
4
|
Suriyapha C, Supapong C, So S, Wanapat M, Cherdthong A. Bioconversion of agro-industrial residues as a protein source supplementation for multiparous Holstein Thai crossbreed cows. PLoS One 2022; 17:e0273916. [PMID: 36048798 PMCID: PMC9436144 DOI: 10.1371/journal.pone.0273916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022] Open
Abstract
The purpose of this field study was to compare the effects of top-dressing tropical lactating cows with soybean meal (SBM) or citric waste fermented yeast waste (CWYW) on intake, digestibility, ruminal fermentation, blood metabolites, purine derivatives, milk production, and economic return. Sixteen mid-lactation Thai crossbreeds, Holstein Friesian (16.7 ± 0.30 kg/day milk yield and 490 ± 40.0 kg of initial body weight) were randomly allocated to two treatments in a completed randomized design: SBM as control (n = 8) or CWYW (n = 8). The feeding trial lasted for 60 days plus 21 days for treatment adaptation. The results showed that total dry matter intake, nutrient intake, and digestibility did not (p>0.05) differ between SBM and CWYW top-dressing. Ruminal pH and the protozoal population did not (p>0.05) differ between SBM and CWYW top-dressing. After 4 hours of feeding, CWYW top-dressing showed greater ammonia nitrogen, plasma urea nitrogen, and bacterial population compared with the top-dressing of SBM. Volatile fatty acids and purine derivatives were not different (p>0.05) between SBM and CWYW top-dressing. For milk urea nitrogen, there was a greater (p<0.05) and somatic cell count was lower (p<0.05) for cows fed the CWYW top-dress compared to cows fed the SBM top-dress. The cost of the top-dress and total feed cost were less (p<0.05) for CWYW compared to SBM top-dressing, at 0.59 vs 1.16 US dollars/cow/day and 4.14 vs 4.75 US dollars/cow/day, respectively. In conclusion, CWYW could be used as an alternative protein source to SBM without having a negative impact on tropical lactating cows.
Collapse
Affiliation(s)
- Chaichana Suriyapha
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Chanadol Supapong
- Department of Animal Science, Faculty of Agriculture, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat Campus, Nakhon Si Thammarat, Thailand
| | - Sarong So
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
- Department of Animal Science, Faculty of Agriculture and Food Processing, National University of Battambang, Battambang, Cambodia
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Anusorn Cherdthong
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
5
|
Ouppamong T, Gunun N, Tamkhonburee C, Khejornsart P, Kaewpila C, Kesorn P, Kimprasit T, Cherdthong A, Wanapat M, Polyorach S, Foiklang S, Gunun P. Fermented Rubber Seed Kernel with Yeast in the Diets of Tropical Lactating Dairy Cows: Effects on Feed Intake, Hematology, Microbial Protein Synthesis, Milk Yield and Milk Composition. Vet Sci 2022; 9:360. [PMID: 35878377 PMCID: PMC9325126 DOI: 10.3390/vetsci9070360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of the present study was to analyze the effects of yeast-fermented rubber seed kernels (YERSEK) on the feed intake, hematology, microbial protein synthesis, milk yield, and milk composition in dairy cows. Six crossbred Holstein Friesian (HF) × Thai lactating dairy cows with 110 ± 10 days in milk were randomly assigned to three different amounts of YERSEK at 0%, 10%, and 20% in a concentrate mixture using a 3 × 3 repeated Latin square design. Cows were fed with concentrate diets at a concentrate-to-milk yield ratio of 1:1.5, with rice straw fed ad libitum. The inclusion of YERSEK did not adversely affect feed intake, nutrient intake, or digestibility (p > 0.05), whereas ether extract intake and digestibility linearly increased in dairy cows receiving YERSEK (p < 0.01). Increasing YERSEK levels did not adversely affect blood urea nitrogen (BUN) levels, hematological parameters, or microbial protein synthesis (p > 0.05). Supplementation of YERSEK did not influence milk production, lactose, or protein levels (p > 0.05). However, milk fat and total solids decreased linearly (p < 0.05) with the addition of YERSEK. In conclusion, in a concentrate diet, YERSEK could be used as a protein source without negative effects on feed intake, digestibility, hematology, microbial protein synthesis, or milk yield. However, it reduced the milk fat and total solids of tropical lactating dairy cows.
Collapse
Affiliation(s)
- Thanaporn Ouppamong
- Department of Animal Science, Faculty of Natural Resources, Rajamangala University of Technology Isan, Sakon Nakhon Campus, Phangkhon, Sakon Nakhon 47160, Thailand; (T.O.); (C.K.); (P.K.); (T.K.)
| | - Nirawan Gunun
- Department of Animal Science, Faculty of Technology, Udon Thani Rajabhat University, Udon Thani 41000, Thailand
| | - Chayapol Tamkhonburee
- Dairy Farming Promotion Organization of Thailand (DPO), Northeast Region, Khon Kaen 40260, Thailand;
| | - Pichad Khejornsart
- Faculty of Natural Resources and Agro-Industry, Kasetsart University Chalermphrakiat Sakon Nakhon, Province Campus, Sakon Nakhon 47000, Thailand;
| | - Chatchai Kaewpila
- Department of Animal Science, Faculty of Natural Resources, Rajamangala University of Technology Isan, Sakon Nakhon Campus, Phangkhon, Sakon Nakhon 47160, Thailand; (T.O.); (C.K.); (P.K.); (T.K.)
| | - Piyawit Kesorn
- Department of Animal Science, Faculty of Natural Resources, Rajamangala University of Technology Isan, Sakon Nakhon Campus, Phangkhon, Sakon Nakhon 47160, Thailand; (T.O.); (C.K.); (P.K.); (T.K.)
| | - Thachawech Kimprasit
- Department of Animal Science, Faculty of Natural Resources, Rajamangala University of Technology Isan, Sakon Nakhon Campus, Phangkhon, Sakon Nakhon 47160, Thailand; (T.O.); (C.K.); (P.K.); (T.K.)
| | - Anusorn Cherdthong
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (A.C.); (M.W.)
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (A.C.); (M.W.)
| | - Sineenart Polyorach
- Department of Animal Production Technology and Fisheries, Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Suban Foiklang
- Faculty of Animal Science and Technology, Maejo University, Chiang Mai 50290, Thailand;
| | - Pongsatorn Gunun
- Department of Animal Science, Faculty of Natural Resources, Rajamangala University of Technology Isan, Sakon Nakhon Campus, Phangkhon, Sakon Nakhon 47160, Thailand; (T.O.); (C.K.); (P.K.); (T.K.)
| |
Collapse
|
6
|
Effects of Rubber Seed Kernel Fermented with Yeast on Feed Utilization, Rumen Fermentation and Microbial Protein Synthesis in Dairy Heifers. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060288] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Yeast (Saccharomyces cerevisiae) has been used to improve the nutritive value of feedstuffs, especially rubber seed kernel. In the current study, rubber seed kernel was grated and subjected to solid-state fermentation with yeast to enhance the nutritive value. The yeast-fermented rubber seed kernel (YERSEK) was substituted for soybean meal in ruminant diets to evaluate the effect of YERSEK on feed intake, digestibility, rumen fermentation and microbial protein synthesis in dairy heifers. Five Holstein Friesian crossbred heifers with an initial body weight (BW) of 215 ± 20 kg were used in this research. The experimental design was a 5 × 5 Latin squared design and the dietary treatments were five levels of YERSEK at 0, 100, 150, 200 and 250 g/kg dry matter in concentrate at 1% of BW, with rice straw fed ad libitum. The supplementation with YERSEK reduced rice straw and total DM intake linearly (p < 0.05). The intake of neutral detergent fiber and acid detergent fiber decreased linearly (p < 0.05), while ether extract intake increased linearly (p < 0.01) with YERSEK supplementation. The ether extract digestibility tended to be high (p < 0.01) with increasing levels of YERSEK. Supplementation with the YERSEK did not change (p > 0.05) ruminal pH and blood urea nitrogen in this study, but ruminal ammonia nitrogen was increased (p < 0.01) in the heifers receiving YERSEK. Increasing the YERSEK levels did not adversely affect the proportion of volatile fatty acids (VFA), which included acetate, propionate and butyrate and the microbial population (p > 0.05). Microbial protein synthesis was similar among the treatments (p > 0.05). The inclusion of YERSEK at 250 g/kg DM in concentrate feed had no effect on the utilization of feed, rumen fermentation characteristics and microbial protein synthesis. The YERSEK could be used as a protein replacement for up to 86% of the soybean meal in feed concentrate for dairy heifers.
Collapse
|
7
|
da Silva VP, Pereira OG, da Silva LD, Agarussi MCN, Filho SDCV, Ribeiro KG. Stylosanthes silage as an alternative to reduce the protein concentrate in diets for finishing beef cattle. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Soladoye PO, Juárez M, Estévez M, Fu Y, Álvarez C. Exploring the prospects of the fifth quarter in the 21st century. Compr Rev Food Sci Food Saf 2022; 21:1439-1461. [PMID: 35029308 DOI: 10.1111/1541-4337.12879] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023]
Abstract
A variable proportion of slaughtered livestock, generally referred to as the fifth quarter, is not part of the edible dressed meat and regarded as animal byproduct. In order for the fifth quarter to play a significant role in the current effort toward a circular bio-based economy, it has to successfully support food security, social inclusivity, environmental sustainability, and a viable economy. The high volume of these low-value streams and their nutrient-dense nature can facilitate their position as a very important candidate to explore within the context of a circular bio-based economy to achieve some of the United Nations Sustainable Development Goals (UN-SDGs). While these sources have been traditionally used for various applications across different cultures and industries, it seems evident that their full potential has not yet been exploited, leaving these products more like an environmental burden rather than valuable resources. With innovation and well-targeted interdisciplinary collaborations, the potential of the fifth quarter can be fully realized. The present review intends to explore these low-value streams, their current utilization, and their potential to tackle the global challenges of increasing protein demands while preventing environmental degradation. Factors that limit widespread applications of the fifth quarter across industries and cultures will also be discussed.
Collapse
Affiliation(s)
- Philip O Soladoye
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| | - Manuel Juárez
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| | - Mario Estévez
- IPROCAR Research Institute, University of Extremadura, Caceres, Spain
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
| | - Carlos Álvarez
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| |
Collapse
|
9
|
Nutritive Value Variation of Paunch Manure as an Alternative Feed Ingredient. Animals (Basel) 2021; 11:ani11123573. [PMID: 34944348 PMCID: PMC8698144 DOI: 10.3390/ani11123573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Sustainable livestock production is a benchmark for advancements in animal nutrition. Recovery of nutrients from products currently disposed of provides a potential solution to this mandate. Paunch manure is a potential novel feed ingredient comprised of digested feedstuffs at different stages of degradation, saliva, microorganisms, and products of fermentation. Thus, our objective was to determine the variability in nutritive values of dried paunch manure collected from harvested cattle. Animal-to-animal variation accounted for 30% to 75% of the variance in all measures of nutritive value. We believe that dried paunch manure may be a viable feed ingredient for inclusion in livestock rations, but a centralized composting system may be necessary to increase consistency. Abstract Ruminants, which have multi-compartmented stomachs, are adapted to digest cellulosic materials, which constitute the primary expense on ranches and dairies. Industrial byproducts can be repurposed for livestock diets to decrease these costs. Therefore, finding alternative feedstuffs may benefit the economics of livestock production. The goal of this project was to evaluate the variation in nutritive value of ruminal waste as a potential feedstuff. Twelve paunch samples were collected from individual cattle across multiple harvest dates at the Tarleton State University Meat Laboratory, Stephenville, TX. Samples were dried and assayed for dry matter (DM), crude protein (CP), sequential neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL), and physically-effective fiber (peNDF). Samples were subjected to batch-culture in vitro digestibility assays for the determination of digestibility coefficients. Mean NDF, ADF, ADL, CP and peNDF concentrations were 681, 399, 109, 150, and 387 g kg−1 DM, respectively. Contribution to variance from sample for NDF, ADF, ADL, CP, and peNDF were 75.3, 41.9, 33.0, 51.2, and 71.3%, respectively. In vitro true digestibility (IVTD) and in vitro NDF digestibility (IVNDFD) were recorded as 462 and 216 g kg−1 DM, respectively. Contribution to variation of sample for IVTD and IVNDFD were 31.0 and 30.7%, respectively. Results indicate that rumen waste harvested from abattoirs may be useful for sustainable livestock production, while reducing environmental threats posed by disposal, but the viability of the product is highly dependent on the source animal. For full viability of application in a sustainable system, a centralized receiving and compositing system may be useful for developing a consistent product.
Collapse
|
10
|
Abstract
Enzymes are widely used in the food industry. Their use as a supplement to the raw material for animal feed is a current research topic. Although there are several studies on the application of enzyme additives in the animal feed industry, it is necessary to search for new enzymes, as well as to utilize bioinformatics tools for the design of specific enzymes that work in certain environmental conditions and substrates. This will allow the improvement of the productive parameters in animals, reducing costs and making the processes more efficient. Technological needs have considered these catalysts as essential in many industrial sectors and research is constantly being carried out to optimize their use in those processes. This review describes the enzymes used in animal nutrition, their mode of action, their production and new sources of production as well as studies on different animal models to evaluate their effect on the productive performance intended for the production of animal feed.
Collapse
|
11
|
Pongjongmit T, Norrapoke T. Effect of additive fermented residues from factory on rumen fermentation and microbial population in beef cattle. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Suboptimal beef production resulting from poor growth performance of the animals in Thailand may be due to insufficient energy and protein in the animal feed. Therefore, there is a need to find new, locally available and economical nutrient-rich feed resources. By-products from the agri-industry could be one such alternative to improve livestock feed quality. The aim of the study was to evaluate the feed intake, nutrient digestibility, rumen fermentation and microbial population of additive fermented cassava pulp with residues from noodle factory (CN). Four beef cattle at ~2–3 years of age were randomly assigned according to a 4 × 4 Latin square design. Four feed treatments had cassava pulp:residue ratios of 0:0 (NCN), 70:30 (CN1), 60:40 (CN2), 50:50 (CN3). In conclusion, feeding with CN at 60:40 might be an alternative to improve rumen fermentation efficiency, estimated energy, apparent digestibility and bacteria population.
Aims
The aim of the present study was to determine feed intake, nutrient digestibility, rumen fermentation and microbial population of cattle fed additive fermented cassava pulp with residues from noodle factory (CN).
Methods
Four beef cattle of ~2–3 years of age and of initial bodyweight of 150 ± 40 kg were randomly assigned to the following four treatments, according to a 4 × 4 Latin square design: cassava pulp:residue at ratios of 0:0 (NCN), 70:30 (CN1), 60:40 (CN2) and 50:50 (CN3) was added. All animals were fed concentrated 16% crude protein and cassava pulp–residue at 1% of bodyweight of animals. Rice straw, water and mineral salt block were offered ad libitum.
Key results
Feed intake and bodyweight change were not affected, while estimated energy intake and nutrient digestibilities increased (P < 0.05) after animals were fed CN2 and CN3. Ruminal pH, ruminal temperature, ammonia nitrogen and blood urea nitrogen were not altered by CN, whereas total volatile fatty acids and the proportion of propionate increased with an increasing proportion of residues from noodle factory (P < 0.05). Simultaneously, methane production was reduced by CN. In addition, bacterial population and efficiency of microbial nitrogen synthesis were increased (P < 0.05) by CN. Real-time polymerase chain reaction showed that the populations of total bacterial and F. succinogenes increased (P < 0.05), whereas populations of protozoa, R. flavefaciens and R. albus were not significantly different among the treatments.
Conclusions
It is concluded that feeding with CN can improve rumen fermentation efficiency, estimated energy, apparent digestibility and bacterial population. Feeding with CN2 is recommended because it showed the best response
Implications
Agri-industry by-products such as cassava pulp and residues from noodle factory can provide an economical alternative to improve feed quality and, hence, beef animal performace in Thailand.
Collapse
|
12
|
Influence of spray-dried rumen fluid supplementation on performance, blood metabolites and cytokines in suckling Holstein calves. Animal 2020; 14:1849-1856. [PMID: 32228743 DOI: 10.1017/s1751731120000518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Rumen fluid from slaughtered animals is one of the wastes of slaughterhouses released to the environment that, due to its high nitrogen and phosphorus contents, can lead to soil and groundwater pollution. Meanwhile, it contains ruminal microbes and some bioactive compounds such as enzymes, minerals, vitamins and organic acids. This study was designed to examine the potential of rumen fluid as a feed additive. Therefore, the effects of spray-dried rumen fluid (SDR) with 1% maltodextrin on the performance, blood metabolites and some cytokines of sucking dairy calves during the pre-weaning phase were investigated. Forty male Holstein calves, with a mean weight of 39.4 ± 3.7 kg and 7 ± 1 days old, were randomly assigned to four groups (n = 10 calves per group) in a completely randomized design. Experimental treatments were: control diet with no additive (CON); control diet with 0.5 g/day of SDR (SDR0.5); control diet with 1 g/day of SDR (SDR1); and control diet with 1.5 g/day of SDR (SDR1.5). Daily feed intake and average daily gain of calves were not affected by feeding SDR as a feed additive. Cholesterol concentration was significantly affected by the 20th and 40th days of the experiment and decreased linearly by increasing SDR feeding level. Levels of liver enzymes, including aspartate aminotransferase and alanine aminotransferase, in the blood decreased by feeding SDR at day 40 of the experiment. Serum concentration of interleukin-6 at day 20 was not affected by dried rumen fluid feeding, whereas at day 40, a significant effect was observed among experimental treatments. The lowest value was recorded for SDR1.5 v. control calves. At day 20, the serum concentration of interferon-γ was influenced by supplementing SDR, and the highest value was recorded for SDR1.5 calves. The inclusion of SDR with 1% maltodextrin in suckling dairy calves had beneficial effects on the stimulation of calves' immune system.
Collapse
|
13
|
Seankamsorn A, Cherdthong A. Dried Rumen Digesta Pellet Can Enhance Nitrogen Utilization in Thai Native, Wagyu-Crossbred Cattle Fed Rice Straw Based Diets. Animals (Basel) 2019; 10:ani10010056. [PMID: 31888047 PMCID: PMC7022813 DOI: 10.3390/ani10010056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Generated rumen digesta is wasted and becomes an environmental contaminant in most slaughterhouses in Thailand. Dried rumen digesta (DRD) is a mixture of digestible and indigestible feed residues and are fairly rich in nutrients. DRD has the capacity to become an alternative protein source for ruminants’ diets. DRD in pellet form could be an alternative strategic supplement for Thai-native, Wagyu-crossbred cattle to enhance N balances and microorganisms. Abstract The goal of the current research was to study the effects of a diet of dried rumen digesta pellets (DRDP) on diet utilization, ruminal microorganisms, and ruminal microbes in Thai native, Wagyu-crossbred cattle. Four Thai native, Wagyu-crossbred, beef cattle were assigned to a 4 × 4 Latin square design to supplement DRDP levels at 0, 50, 100, and 150 g/d, respectively. Rice straw intake, total intake, and estimated energy intake varied significantly among the different DRDP levels. Nitrogen intake, apparent N absorption, and apparent N retention were significantly enhanced when compared to the 0 g/d DRDP. DRDP supplementation at 150 g/d produced the greatest apparent digestibility of crude protein compared to the group that was not fed DRDP. Supplementation of DRDP did not alter the population of protozoa, whereas the addition of 150 g DRDP significantly increased the fungal zoospore. Supplementation of DRDP at various levels did not change the concentration of volatile fatty acid (VFA) or the VFA profiles. Thus, DRDP could be an alternative strategic supplement for Thai-native, Wagyu-crossbred cattle in order to enhance N utilization and fungal zoospores.
Collapse
|
14
|
Cherdthong A, Sumadong P, Foiklang S, Milintawisamai N, Wanapat M, Chanjula P, Gunun N, Gunun P. Effect of post-fermentative yeast biomass as a substitute for soybean meal on feed utilization and rumen ecology in Thai native beef cattle. JOURNAL OF ANIMAL AND FEED SCIENCES 2019. [DOI: 10.22358/jafs/110992/2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Potential use of rumen digesta as ruminant diet-a review. Trop Anim Health Prod 2019; 52:1-6. [PMID: 31327105 DOI: 10.1007/s11250-019-02018-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
Abstract
This review paper is aimed at presenting and discussing the effects of rumen digesta (RD) as an alternative protein source on nutrient utilization, rumen fermentation characteristics, growth performances, and milk production in ruminants. RD is a by-product of abattoir; it is a partially digested feed that mainly originates from rumen of ruminants. RD consisted of 13.5-46.1% crude protein and some essential nutrients (microbial cells, amino acids, minerals, and volatile fatty acids [VFAs]), which beneficially affect the ruminant production. Recent studies have shown that transfer of RD from buffalo to cattle improved nutrient digestibility. Ensiling RD with agro-industrial by-products improved the nutritional value of agro-industrial by-products, such as by improving protein contents and increasing their digestibility. In addition, dried RD could enhance ruminal fermentation, diet utilization, and rumen microorganisms in in vitro, beef cattle and buffalo, which has no adverse effect on production performance. Therefore, utilization of RD is suggested because it improves nutrient utilization, reduces feed costs, and controls waste disposal to the environment.
Collapse
|
16
|
Supapong C, Cherdthong A, Seankamsorn A, Khonkhaeng B, Wanapat M, Gunun N, Gunun P, Chanjula P, Polyorach S. Effect of Delonix regia seed meal supplementation in Thai native beef cattle on feed intake, rumen fermentation characteristics and methane production. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
The Potential of Animal By-Products in Food Systems: Production, Prospects and Challenges. SUSTAINABILITY 2017. [DOI: 10.3390/su9071089] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Effect of dried rumen digesta pellet levels on feed use, rumen ecology, and blood metabolite in swamp buffalo. Trop Anim Health Prod 2016; 49:79-86. [DOI: 10.1007/s11250-016-1161-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/22/2016] [Indexed: 11/25/2022]
|