1
|
Garrappa G, Martínez-López C, Jiménez-Movilla M, García-Vázquez FA. In vitro exposure of porcine sperm to functionalized superparamagnetic nanoparticles. Reprod Domest Anim 2024; 59 Suppl 3:e14654. [PMID: 39396860 DOI: 10.1111/rda.14654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 10/15/2024]
Abstract
Nanotechnology and its applications have advanced significantly in recent decades, contributing to various fields, including reproduction. This study introduces a novel method to label porcine oocytes with nanoparticles (NPs) bound to oviductin (OVGP1, Ov) for use in Assisted Reproductive Technologies (ARTs). Despite promising developments, concerns about NP toxicity in gametes necessitate thorough investigation. This research aims to assess the impact of functionalized NPs (NPOv) on sperm functionality. Boar sperm were co-incubated with NPOv for 0, 0.5 and 1 h in two media: BTS (semen dilution and conservation) and TALP (sperm capacitation and in vitro fertilization-IVF). Sperm quality parameters (viability, motility and kinematics) showed no significant differences in TALP medium (p > .05). In BTS, although some kinetic parameters were altered, motility, progressive motility and viability remained unaffected (p > .05). Additionally, NPs presence on the zona pellucida (ZP) of oocytes did not affect sperm attachment (p > .05). In conclusion, in vitro exposure of boar sperm to OVGP1-functionalized NPs in IVF medium or attached to the ZP surface of matured oocytes does not impair sperm functionality, including their binding ability to the ZP.
Collapse
Affiliation(s)
- Gabriela Garrappa
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum, Universidad de Murcia, Murcia, Spain
- Instituto Nacional de Tecnología Agropecuaria (INTA), Rafaela, Santa Fe, Argentina
| | - Cristina Martínez-López
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - María Jiménez-Movilla
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
- Departamento de Biología Celular e Histología, Facultad de Medicina y Enfermería, Campus de Excelencia Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Francisco A García-Vázquez
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
2
|
Khalil WA, El-Rais MS, Hegazy MM, Hassan MAE, El-Raghi AA, El-Moghazy MM. The Effect of Metallic Nanoparticles Supplementation in Semen Extender on Post-thaw Quality and Fertilizing Ability of Egyptian Buffalo (Bubalus bubalis) Spermatozoa. Biol Trace Elem Res 2024:10.1007/s12011-024-04348-5. [PMID: 39256330 DOI: 10.1007/s12011-024-04348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024]
Abstract
Nanomaterials offer several promising prospects in the field of farm animal reproduction, encompassing a broad range of applications such as transgenesis and the precise delivery of substances to sperm cells, antimicrobial, antioxidants properties as well as their potent role in improving cryopreservation methods. The aim of the present study is to explore the effect of supplementing the semen extender with 10 µg/mL nano gold (Au-NPs10), 10 µg/mL nano silver (Ag-NPs10), 1 µg/mL nano selenium (Se-NPs1), and 100 µg/mL nano zinc oxide (ZnO-NPs100) on sperm characteristics and kinematics parameters, acrosome integrity, oxidative biomarkers, morphological and apoptosis-like changes of frozen-thawed buffalo bull sperm, and, ultimately, their fertilizing capacity. The results revealed that all aforementioned nano materials significantly improved viability, progressive motility, membrane integrity, acrosome integrity, and kinematic parameters as well as apoptosis-like changes of post-thawed buffalo bull sperm compared to the control (p < 0.05). No discernible effects were observed on sperm ultrastructure morphology measures as a response to the addition of these metallic nanoparticles to the extender. The values of caspase 3 significantly decreased by 64.22, 45.99, 75.59, and 49.39% in Au-NPs10, Ag-NPs10, Se-NPs1, and ZnO-NPs100 treated groups, respectively, compared to the control. The addition of 100 µg ZnO-NPs to the extender significantly decreased the total count of bacteria, fungi, and yeast compared to the control (p < 0.05). The AuNPs10 and SeNPs1 treated groups showed lower content of malondialdehyde, hydrogen peroxide, and nitric oxide concentrations and higher values of total antioxidant capacity of post-thawed extended semen (p < 0.05). Pregnancy rates increased by 17.5, 20, and 30% in buffalo cows inseminated with sperm treated with ZnO-NPs100, Se-NPs1, and Au-NPs10, respectively, compared to the control group. The present results indicate that the freezing extender supplemented with metallic nanoparticles can be an effective strategy to enhance the cryotolerance and fertility potential of buffalo bull sperm.
Collapse
Affiliation(s)
- Wael A Khalil
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohamed S El-Rais
- Department of Animal, Poultry and Fish Production, Faculty of Agriculture, Damietta University, Damietta, 34517, Egypt
| | - Mohamed M Hegazy
- Animal Production Research Institute, Agricultural Research Center, Ministry of Agriculture, Dokki, 12618, Giza, Egypt
| | - Mahmoud A E Hassan
- Animal Production Research Institute, Agricultural Research Center, Ministry of Agriculture, Dokki, 12618, Giza, Egypt
| | - Ali A El-Raghi
- Department of Animal, Poultry and Fish Production, Faculty of Agriculture, Damietta University, Damietta, 34517, Egypt.
| | - Mostafa M El-Moghazy
- Department of Animal, Poultry and Fish Production, Faculty of Agriculture, Damietta University, Damietta, 34517, Egypt
| |
Collapse
|
3
|
Bisiau C, Moffett P, Graham J, McCue P. Comparison of Nanoparticles and Single-Layer Centrifugation for Separation of Dead from Live Stallion Spermatozoa. Vet Sci 2024; 11:307. [PMID: 39057991 PMCID: PMC11281328 DOI: 10.3390/vetsci11070307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
The goal of this study was to compare the efficacy of coated iron-core nanoparticles and single-layer centrifugation for separation of dead from live stallion spermatozoa. Our hypothesis was that nanoparticles would bind to dead sperm and allow for separation from live sperm using a magnet, resulting in a population of spermatozoa with a high percentage of total and progressive motility. Treatment Group 1 was an untreated control. Treatment Group 2 (nanoparticles, NP) utilized sperm incubated with nanoparticles followed by application of a magnet to remove dead sperm adhered to the coated nanoparticles. Treatment Group 3 (single-layer centrifugation, SLC) layered sperm above EquiPure™ followed by centrifugation. Semen samples were subsequently evaluated for sperm motility parameters, plasma membrane integrity, acrosome status, and morphology. The SLC technique yielded higher (p < 0.05) progressive motility (76 ± 9.2%) than the NP separation technique (59 ± 12.2%) or the untreated control (47.3 ± 5.1%). However, the total number of sperm recovered was higher (p < 0.05) in the NP technique (526.2 ± 96.6 × 106) than the SLC procedure (211.7 ± 70 × 106), yielding a higher total number of progressively motile sperm (317.6 ± 109 × 106) recovered using the NP technique than the SLC technique (157.8 ± 43.6 × 106). The percentage of live, acrosome intact sperm recovered was higher for SLC than NP. In summary, the SLC technique yielded a higher percentage of sperm motility, intact plasma membranes, and acrosome integrity, but yielded lower total sperm than with the nanoparticle separation technique.
Collapse
Affiliation(s)
- Christian Bisiau
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Paula Moffett
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (P.M.); (J.G.)
| | - James Graham
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (P.M.); (J.G.)
| | - Patrick McCue
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
4
|
Kanwar A, Virmani M, Lal S, Chaudhary K, Kumar S, Magotra A, Pandey AK. Silver nanoparticle as an alternate to antibiotics in cattle semen during cryopreservation. Anim Reprod 2023; 20:e20220030. [PMID: 38026002 PMCID: PMC10681137 DOI: 10.1590/1984-3143-ar2022-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 12/14/2022] [Indexed: 12/01/2023] Open
Abstract
The proposed study was to determine if the silver nanoparticles can be used as potential antimicrobial agents and can replace the use of conventional antibiotics in semen without affecting the motility and fertility of semen. The silver nanoparticles prepared by chemical reduction method were confirmed by determination of the wavelength of surface plasmon resonance peak and further characterized using Zetasizer by determining their size, polydispersity index, and zeta potential. The nanoparticles were assessed for antibacterial activity and their concentration was optimized for use in semen extender for cryopreservation. Cryopreserved semen was further evaluated for seminal parameters, antioxidant parameter, and microbial load. Prepared silver NPs showed a plasmon resonance peak at 417 nm wavelength. NPs were found to possess antibacterial activity and were supplemented in semen extender @ 125 and 250 µg/ml for semen cryopreservation. There was a significant increase in pre and post-freezing motility and other seminal parameters. The microbial load of frozen-thawed semen of control and supplemented groups were well within the permissible limits. Lipid peroxidation levels were reduced in NPs supplemented groups, and reactive oxygen species (ROS) levels were significantly reduced in semen supplemented with 125 µg/ml NPs. Thus it can be conclude that silver NPs can be successfully used as a substitute for antibiotics in cattle bull semen cryopreservation with good antimicrobial activity and no adverse effects on sperm characteristics.
Collapse
Affiliation(s)
- Arushi Kanwar
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Meenakshi Virmani
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Sant Lal
- Division of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Kartik Chaudhary
- Forest Department-Wildlife Wing, Paonta Sahib, Himachal Pradesh, India
| | - Sandeep Kumar
- Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Ankit Magotra
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Anand Kumar Pandey
- Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
5
|
Bisla A, Honparkhe M, Srivastava N. A review on applications and toxicities of metallic nanoparticles in mammalian semen biology. Andrologia 2022; 54:e14589. [DOI: 10.1111/and.14589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Amarjeet Bisla
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science Guru Angad Dev Veterinary and Animal Sciences University Ludhiana India
| | - Mrigank Honparkhe
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science Guru Angad Dev Veterinary and Animal Sciences University Ludhiana India
| | - Neeraj Srivastava
- Germ Plasm Centre, Division of Animal Reproduction ICAR‐Indian Veterinary Research Institute Bareilly India
| |
Collapse
|
6
|
Choi HW, Jang H. Application of Nanoparticles and Melatonin for Cryopreservation of Gametes and Embryos. Curr Issues Mol Biol 2022; 44:4028-4044. [PMID: 36135188 PMCID: PMC9497981 DOI: 10.3390/cimb44090276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Cryopreservation of gametes and embryos, a technique widely applied in human infertility clinics and to preserve desirable genetic traits of livestock, has been developed over 30 years as a component of the artificial insemination process. A number of researchers have conducted studies to reduce cell toxicity during cryopreservation using adjuvants leading to higher gamete and embryo survival rates. Melatonin and Nanoparticles are novel cryoprotectants and recent studies have investigated their properties such as regulating oxidative stresses, lipid peroxidation, and DNA fragmentation in order to protect gametes and embryos during vitrification. This review presented the current status of cryoprotectants and highlights the novel biomaterials such as melatonin and nanoparticles that may improve the survivability of gametes and embryos during this process.
Collapse
Affiliation(s)
- Hyun-Woo Choi
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Hoon Jang
- Department of Life Sciences, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: ; Tel.: +82-63-270-3359
| |
Collapse
|
7
|
Nicy V, Das M, Gurusubramanian G, Mondal P, Roy VK. Treatment of copper nanoparticles (CuNPs) for two spermatogenic cycles impairs testicular activity via down-regulating steroid receptors and inhibition of germ cell proliferation in a mice model. Nanotoxicology 2022; 16:658-678. [PMID: 36256793 DOI: 10.1080/17435390.2022.2133647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although copper is an indispensable trace metal for biological functions, its excess exposure causes hazardous effects on health. Copper in the form of nanoparticles (CuNPs) is widely used at present and therefore, the living organism is at continuous risk of its adverse effect. The prolonged treatment of CuNPs has not been evaluated yet on the male reproductive system. To demonstrate the combined adverse effects and the mechanism of copper nanoparticles (CuNPs), three doses of CuNPs, 10, 100 and 200 mg/kg were orally given to mice for 70 days. The present study demonstrated that CuNPs decreased the sperm quality parameters, male circulating hormones, induces testicular damages, increased oxidative stress, apoptosis, decreases antioxidant enzymes, germ cell proliferation, and increases the expression of 8-oxoguanine DNA glycosylase-1 (OGG1), apelin receptor (APJ) as well. CuNPs also down-regulated the expression of AR and Erα in the testis. These results suggest that CuNPs manifested their adverse effect on testis via modulating steroid and cytokine (apelin) receptors. The adverse effect of testis was most pronounced at the highest dose (200 mg/kg) of CuNPs, however, other doses show a less toxic effect on various parameters. In conclusion, results indicated that CuNPs may impair spermatogenesis via oxidative stress-mediated DNA damage and germ cell apoptosis at high doses.
Collapse
Affiliation(s)
- Vanrohlu Nicy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Milirani Das
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | | - Pradip Mondal
- Department of Zoology, Netaji Mahavidyalaya, Hooghly, West Bengal, India
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| |
Collapse
|
8
|
Silva JRV, Barroso PAA, Nascimento DR, Figueira CS, Azevedo VAN, Silva BR, Santos RPD. Benefits and challenges of nanomaterials in assisted reproductive technologies. Mol Reprod Dev 2021; 88:707-717. [PMID: 34553442 DOI: 10.1002/mrd.23536] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022]
Abstract
Assisted reproductive technology (ART) have contributed to preserve fertility in humans and to increase multiplication of genetically superior animals. Despite being highly practiced worldwide, ART presents some challenges, especially because gametes and embryos are kept in vitro for a variable period of time, and the oxidative stress in vitro can have negative impact on oocyte competence and embryo development. Nanotechnology needs to be considered to help overcome some of those impairments, since it can provide strategies to deliver antioxidants and hormones to gametes and embryos in vitro. The application of nanotechnology to ART can allow the development of new protocols using nanomaterials to improve in vitro oocyte competence and embryo production. This review discusses the applicability of nanomaterials to improve sperm selection, to deliver antioxidants and hormones to preantral follicles, oocytes, and embryos in vitro, as well as the concerns about using nanotechnology in ART.
Collapse
Affiliation(s)
- José Roberto Viana Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara-UFC, Sobral, Brazil
| | - Pedro Alves Aguiar Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara-UFC, Sobral, Brazil
| | - Danisvânia Ripardo Nascimento
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara-UFC, Sobral, Brazil
| | - Ciro Siqueira Figueira
- Laboratory of Materials Engineering and Simulation of Sobral (LEMSS), Federal University of Ceara-UFC, Sobral, Brazil
| | | | - Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara-UFC, Sobral, Brazil
| | - Ricardo Pires Dos Santos
- Laboratory of Materials Engineering and Simulation of Sobral (LEMSS), Federal University of Ceara-UFC, Sobral, Brazil
| |
Collapse
|
9
|
Saadeldin IM, Khalil WA, Alharbi MG, Lee SH. The Current Trends in Using Nanoparticles, Liposomes, and Exosomes for Semen Cryopreservation. Animals (Basel) 2020; 10:E2281. [PMID: 33287256 PMCID: PMC7761754 DOI: 10.3390/ani10122281] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 01/18/2023] Open
Abstract
Cryopreservation is an essential tool to preserve sperm cells for zootechnical management and artificial insemination purposes. Cryopreservation is associated with sperm damage via different levels of plasma membrane injury and oxidative stress. Nanoparticles are often used to defend against free radicals and oxidative stress generated through the entire process of cryopreservation. Recently, artificial or natural nanovesicles including liposomes and exosomes, respectively, have shown regenerative capabilities to repair damaged sperm during the freeze-thaw process. Exosomes possess a potential pleiotropic effect because they contain antioxidants, lipids, and other bioactive molecules regulating and repairing spermatozoa. In this review, we highlight the current strategies of using nanoparticles and nanovesicles (liposomes and exosomes) to combat the cryoinjuries associated with semen cryopreservation.
Collapse
Affiliation(s)
- Islam M. Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Wael A. Khalil
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Mona G. Alharbi
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Seok Hee Lee
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
10
|
Bisla A, Rautela R, Yadav V, Saini G, Singh P, Ngou AA, Kumar A, Ghosh S, Kumar A, Bag S, Mahajan S, Srivastava N. Synthesis of iron oxide nanoparticles-antiubiquitin antibodies conjugates for depletion of dead/damaged spermatozoa from buffalo (Bubalus bubalis) semen. Biotechnol Appl Biochem 2020; 68:1453-1468. [PMID: 33135803 DOI: 10.1002/bab.2066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/30/2020] [Indexed: 12/22/2022]
Abstract
The synthesis of iron oxide nanoparticles (IONPs)-antiubiquitin antibodies (Abs) complex for depletion of dead/damaged spermatozoa from buffalo semen was done. The IONPs synthesized were round in shape with size of 12.09 ± 0.91 nm. At the end of the two-step functionalization, that is, silanization and pegylation of bare IONPs and bioconjugation of functionalized IOPNs, particles with the sizes of 19.15 ± 1.46, 20.72 ± 0.95, and 73.01 ± 7.56 nm, respectively, were obtained. Twenty-four semen samples from four bulls with mean individual progressive motility (%) and sperm concentration (million/mL) of 77.1 ± 0.9 and 1,321.2 ± 84.7, respectively, were divided into Group I (control), and treatment groups viz. Groups II, III, and IV; with each group containing 150 ± 25 million dead/damaged spermatozoa. The IONPs-Abs complex was added at the ratio of 1:1 (0.5 μg/mL), 1:2 (1.0 μg/mL), and 1:4 (2.0 μg/mL), respectively, in the Groups II, III, and IV. The mean efficiency (%) of nanopurification was estimated to be greater in nanopurified semen with the increasing doses of the IONPs-Abs complex. A reduction of 29.3 ± 6.4%, 48.4 ± 5.3%, and 55.4 ± 4.4% in dead/damaged spermatozoa following nanopurification in Groups II, III, and IV, respectively, was observed. The study shows that in-house synthesized IONPs-Abs complex can be successfully used to deplete dead/damaged spermatozoa from buffalo semen with improvement in quality.
Collapse
Affiliation(s)
- Amarjeet Bisla
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, UP, India
| | - Rupali Rautela
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, UP, India
| | - Vinay Yadav
- Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, India
| | - Gitesh Saini
- Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, India
| | - Praveen Singh
- BEMI Section, ICAR-IVRI, Izatnagar, Bareilly, UP, India
| | - Athanas Alex Ngou
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, UP, India
| | - Abhishek Kumar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, UP, India
| | - Subrata Ghosh
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, UP, India
| | - Ajay Kumar
- Division of Animal Biochemistry, ICAR-IVRI, Izatnagar, Bareilly, UP, India
| | - Sadhan Bag
- Division of Veterinary Physiology and Climatology, ICAR-IVRI, Izatnagar, Bareilly, UP, India
| | - Sonalika Mahajan
- Division of Veterinary Biotechnology, ICAR-IVRI, Izatnagar, Bareilly, UP, India
| | - Neeraj Srivastava
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, UP, India
| |
Collapse
|
11
|
Bisla A, Rautela R, Yadav V, Singh P, Kumar A, Ghosh S, Kumar A, Bag S, Kumar B, Srivastava N. Nano-purification of raw semen minimises oxidative stress with improvement in post-thaw quality of buffalo spermatozoa. Andrologia 2020; 52:e13709. [PMID: 32542823 DOI: 10.1111/and.13709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
The study consisted of application of anti-ubiquitin antibodies (Abs)-coated iron oxide-nanoparticles (IONPs) for minimisation of oxidative stress to contemporary live spermatozoa from the raw semen. Round-shaped IONPs (12.09 ± 0.91 nm) after two-stage functionalisation (silanisation and pegylation) were conjugated with Abs. Four aliquots from each of the 24 ejaculates (4 buffalo bulls) formed Control (Group I) and treatment (II, III and IV) groups; each containing 150 ± 25 million dead/damaged spermatozoa. IONPs-Abs complex were added at ratio of 1:1 (0.5 µg/ml), 1:2 (1.0 µg/ml) and 1:4 (2.0 µg/ml), respectively, in Groups II, III and IV. The semen quality parameters showed improvement at lag-stage (post-nano-purification before processing for cryopreservation). The mean post-thaw motility (%) in Group IV was found to be greater (p < .05) than Group I. Moreover, the overall DNA integrity (%) at post-thaw stage was improved in the nano-purified semen samples. The value of malondialdehyde was greater (p < .001) in Group I than Groups II, III and IV. The mean total antioxidant capacity and superoxide dismutase (U/mg protein) activity values in Group IV was greater (p < .05) than Group I. The study results show that IONPs conjugated with anti-ubiquitin Abs at 2.0 µg/ml can be an effective dose for depletion of dead/damaged spermatozoa from buffalo ejaculates to minimise oxidative stress.
Collapse
Affiliation(s)
- Amarjeet Bisla
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Rupali Rautela
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Vinay Yadav
- Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, India
| | | | - Abhishek Kumar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Subrata Ghosh
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Ajay Kumar
- Division of Animal Biochemistry, ICAR-IVRI, Bareilly, India
| | - Sadhan Bag
- Division of Veterinary Physiology and Climatology, ICAR-IVRI, Bareilly, India
| | - Brijesh Kumar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Neeraj Srivastava
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| |
Collapse
|
12
|
Nagata MB, Egashira J, Katafuchi N, Endo K, Ogata K, Yamanaka K, Yamanouchi T, Matsuda H, Hashiyada Y, Yamashita K. Bovine sperm selection procedure prior to cryopreservation for improvement of post-thawed semen quality and fertility. J Anim Sci Biotechnol 2019; 10:91. [PMID: 31807306 PMCID: PMC6857337 DOI: 10.1186/s40104-019-0395-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/21/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The application of cryopreservation and artificial insemination technology have contributed to the advancement of animal reproduction. However, a substantial proportion of spermatozoa undergoes alterations and loses their fertility during cryopreservation, rendering the frozen-thawed semen impractical for routine use. Cryopreservation is known to reduce sperm lifespan and fertility. Variation in cryosurvival of spermatozoa from different sires and even with the individual sire is common in artificial insemination (AI) centers. Our goal is to improve post-thawed semen quality by optimization of cryopreservation technique through sperm selection prior to cryopreservation process. RESULTS Our strategy of sperm selection based on rheotaxis and thermotaxis (SSRT) on macrosale in a rotating fluid flow demonstrated the ability to maintain the original pre-freezing structural integrity, viability and biological function related to fertilization competence. This strategy has a positive effect on the cryosurvival and fertilizing abilities of spermatozoa as supported by the improvement on pregnancy rate of Japanese Black heifers and Holstein repeat breeders. This technique protected further sublethal damage to bovine spermatozoa (higher % cryosurvival than the control) and resulted in the improvement of DNA integrity. Prefreeze selected spermatozoa demonstrated slower and controlled capacitation than unprocessed control which is thought to be related to sperm longevity and consequently to appropriate timing during in vivo fertilization. CONCLUSIONS These results provide solid evidence that improvement of post-thawed semen quality by SSRT method is beneficial in terms of cryosurvival, longevity of post-thawed sperm, and optimization of in vivo fertilization, embryo development and calving as supported by the favorable results of field fertility study.
Collapse
Affiliation(s)
- MariaPortia B. Nagata
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 807-1 Shuku-machi, Tosu, Saga, 841-0052 Japan
| | - Junki Egashira
- Saga Prefectural Livestock Experiment Station, 23242-2 Yamauchi-machi, Miyano, Takeo, Saga, 849-2305 Japan
| | - Naoto Katafuchi
- Saga Prefectural Livestock Experiment Station, 23242-2 Yamauchi-machi, Miyano, Takeo, Saga, 849-2305 Japan
| | - Kenji Endo
- Morinaga Dairy Service Co. Ltd., 1-159 Toyoharaotsu, Nasu-gun Nasu-machi, Tochigi, 329-3224 Japan
| | - Kazuko Ogata
- National Livestock Breeding Center (NLBC), 1 Odakurahara, Odakura, Nishigo-mura, Nishishirakawa-gun, Fukushima, 961-8511 Japan
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ikenodai 2, Tsukuba, Ibaraki, 305-0901 Japan
| | - Kenichi Yamanaka
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, 840-8502 Japan
| | - Tadayuki Yamanouchi
- National Livestock Breeding Center (NLBC), 1 Odakurahara, Odakura, Nishigo-mura, Nishishirakawa-gun, Fukushima, 961-8511 Japan
| | - Hideo Matsuda
- National Livestock Breeding Center (NLBC), 1 Odakurahara, Odakura, Nishigo-mura, Nishishirakawa-gun, Fukushima, 961-8511 Japan
| | - Yutaka Hashiyada
- National Livestock Breeding Center (NLBC), 1 Odakurahara, Odakura, Nishigo-mura, Nishishirakawa-gun, Fukushima, 961-8511 Japan
- Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa, 921-8836 Japan
| | - Kenichi Yamashita
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 807-1 Shuku-machi, Tosu, Saga, 841-0052 Japan
| |
Collapse
|
13
|
Feugang JM, Rhoads CE, Mustapha PA, Tardif S, Parrish JJ, Willard ST, Ryan PL. Treatment of boar sperm with nanoparticles for improved fertility. Theriogenology 2019; 137:75-81. [PMID: 31204016 DOI: 10.1016/j.theriogenology.2019.05.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Continuous progress in nanoscience has allowed the synthesis of various nanoscale particles, known as nanoparticles or nanomaterials which, by harnessing unique physico-chemical properties, are crucial for multiple bio-applications. Despite the revealed toxicity (nanotoxicity) of nanoparticles in various in vitro and in vivo studies, their careful design for biocompatibility and effective interactions with single-celled and multi-cellular organisms has permitted their use in several fields of research and biomedicine. The various nanoparticles synthesized and applied in the veterinary sciences, including reproductive biology, have shown potential to influence routine practices in animal production systems. These include post-collection manipulation of semen and the protection of high-quality spermatozoa to extend their preservation, and to improve sperm-related biotechnologies such as sperm-mediated gene transfer, sperm sorting, sex-sorting, and cryopreservation. Therefore, the application of nanotechnology-based tools to semen may enhance assisted reproductive technologies for biomedical applications and improve economic productivity for farmers. Here, we review the efficacy of available techniques and emerging tools of nanotechnology that might be useful for further selection of high quality boar spermatozoa and productivity improvement.
Collapse
Affiliation(s)
- Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, MS, USA.
| | - Carley E Rhoads
- Department of Animal and Dairy Sciences, Mississippi State University, MS, USA
| | | | | | - John J Parrish
- Department of Animal Sciences, University of Wisconsin, WI, USA
| | - Scott T Willard
- Department of Animal and Dairy Sciences, Mississippi State University, MS, USA; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, MS, USA
| | - Peter L Ryan
- Department of Animal and Dairy Sciences, Mississippi State University, MS, USA; Department of Population and Pathology Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
14
|
Durfey CL, Swistek SE, Liao SF, Crenshaw MA, Clemente HJ, Thirumalai RVKG, Steadman CS, Ryan PL, Willard ST, Feugang JM. Nanotechnology-based approach for safer enrichment of semen with best spermatozoa. J Anim Sci Biotechnol 2019; 10:14. [PMID: 30774950 PMCID: PMC6368687 DOI: 10.1186/s40104-018-0307-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Advances in nanotechnology have permitted molecular-based targeting of cells through safe and biocompatible magnetic nanoparticles (MNP). Their use to detect and remove damaged spermatozoa from semen doses could be of great interest. Here, MNP were synthesized and tested for their ability to target apoptotic (annexin V) and acrosome-reacted (lectin) boar spermatozoa, for high-throughout retrieval in a magnetic field (nanoselection). The potential impacts of nanoselection on sperm functions and performance of offspring sired by sperm subjected to nanoselection were determined. Fresh harvested and extended boar semen was mixed with various amounts (0, 87.5, and 175 μg) of MNP-conjugates (Annexin V-MNP or Lectin-MNP) and incubated (10 to 15 min) for 37 °C in Exp. 1. In Exp. 2, extended semen was mixed with optimal concentrations of MNP-conjugates and incubated (0, 30, 90, or 120 min). In Exp. 3, the synergistic effects of both MNP-conjugates (87.5 μg - 30 min) on spermatozoa was evaluated, followed by sperm fertility assessments through pregnancy of inseminated gilts and performance of neonatal offspring. Sperm motion, viability, and morphology characteristics were evaluated in all experiments. RESULTS Transmission electron microscopy, atomic force microscopy, and hyperspectral imaging techniques were used to confirm attachment of MNP-conjugates to damaged spermatozoa. The motility of nanoselected spermatozoa was improved (P < 0.05). The viability of boar sperm, as assessed by the abundance of reactive oxygen species and the integrity of the acrosome, plasma membrane, and mitochondrial membrane was not different between nanoselected and control spermatozoa. The fertility of gilts inseminated with control or nanoselected spermatozoa, as well as growth and health of their offspring were not different between (P > 0.05). CONCLUSIONS The findings revealed the benefit of magnetic nanoselection for high-throughput targeting of damaged sperm, for removal and rapid and effortless enrichment of semen doses with highly motile, viable, and fertile spermatozoa. Therefore, magnetic nanoselection for removal of abnormal spermatozoa from semen is a promising tool for improving fertility of males, particularly during periods, such as heat stress during the summer months.
Collapse
Affiliation(s)
- Casey L. Durfey
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS USA
| | - Sabrina E. Swistek
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State, MS USA
| | - Shengfa F. Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS USA
| | - Mark A. Crenshaw
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS USA
| | | | - Rooban V. K. G. Thirumalai
- Institute of Imaging and Analytic Technology (I2AT), Mississippi State University, Mississippi State, MS USA
| | - Christy S. Steadman
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS USA
| | - Peter L. Ryan
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS USA
- Department of Pathobiology and Population Medicine Biochemistry, Mississippi State University, Mississippi State, MS USA
| | - Scott T. Willard
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State, MS USA
| | - Jean M. Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS USA
| |
Collapse
|