1
|
Callegaro S, Tiezzi F, Fabbri MC, Biffani S, Bozzi R. Evaluating genotype by environment interaction for growth traits in Limousine cattle. Animal 2024; 18:101344. [PMID: 39426371 DOI: 10.1016/j.animal.2024.101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/21/2024] Open
Abstract
Environmental conditions affect the growth and health of animals, making it crucial to quantify heat stress and the genetic basis of heat tolerance in animal breeding. The main objective of this study was to evaluate heat stress on growth and investigate the genetic background of tolerance to harsh environmental conditions in the Italian Limousine beef cattle. Three growth traits were analysed: average daily gain (ADG), weaning weight (WW), and yearling weight (YW). Data were collected from animals raised between 1991 and 2022 and combined with 14 environmental covariates. Records for ADG, WW, and YW encompassed 108 205, 100 058, and 24 939 individuals, respectively, with 4 617, 4 670, and 2 048 genotyped individuals. Climatic variables were compared for inclusion in a linear mixed model using the Deviance Information Criterion. Multiple-trait models and genomic information incorporated environmental conditions with the largest impact on the studied traits Genotype by environment interaction (G × E) was detected in all the studied traits, showing substantial heterogeneity of the variance components across the different environments (Env). Heritability for WW remains constant among Env; instead, for ADG and YW decreased under uncomfortable environmental conditions. YW showed the lowest genetic correlation (0.28) between divergent conditions (Env 2 and Env 5,) for ADG and WW correlations dropped below 0.50 among Env. The values of genetic correlations indicate that growth traits are moderately to strongly affected by G × E. Eigenvalue decomposition of the additive genetic (co)variance matrix for ADG, WW, and YW indicated that three components accounted for over 0.80 of the proportion of the variance explained, suggesting different animal performances across Env. Spearman rank correlations showed potential re-ranking of genotyped sires, because ADG, WW, and YW showed correlations between Env below 0.80. The accuracy of single-step genomic EBV was higher compared to EBV for al traits. Overall, the result confirms the existence of G × E for growth traits in the Italian Limousine population. Including G × E in the model allows for more environment-aware predictions, helping breeders understand how different genetic bases respond to varying conditions. Genomic predictions incorporating G × E could accelerate genetic gains and improve response to selection for heat tolerance.
Collapse
Affiliation(s)
- S Callegaro
- Department of Agriculture, Food, Environment, and Forestry (DAGRI), University of Florence, Florence 50144, Italy
| | - F Tiezzi
- Department of Agriculture, Food, Environment, and Forestry (DAGRI), University of Florence, Florence 50144, Italy.
| | - M C Fabbri
- Department of Agriculture, Food, Environment, and Forestry (DAGRI), University of Florence, Florence 50144, Italy
| | - S Biffani
- Institute of Agricultural Biology and Biotechnology-CNR, Milano 20133, Italy
| | - R Bozzi
- Department of Agriculture, Food, Environment, and Forestry (DAGRI), University of Florence, Florence 50144, Italy
| |
Collapse
|
2
|
He W, Liu X, Feng Y, Ding H, Sun H, Li Z, Shi B. Dietary fat supplementation relieves cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis in pigs. J Anim Sci Biotechnol 2024; 15:56. [PMID: 38584279 PMCID: PMC11000307 DOI: 10.1186/s40104-024-01014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Cold stress has negative effects on the growth and health of mammals, and has become a factor restricting livestock development at high latitudes and on plateaus. The gut-liver axis is central to energy metabolism, and the mechanisms by which it regulates host energy metabolism at cold temperatures have rarely been illustrated. In this study, we evaluated the status of glycolipid metabolism and oxidative stress in pigs based on the gut-liver axis and propose that AMP-activated protein kinase (AMPK) is a key target for alleviating energy stress at cold temperatures by dietary fat supplementation. RESULTS Dietary fat supplementation alleviated the negative effects of cold temperatures on growth performance and digestive enzymes, while hormonal homeostasis was also restored. Moreover, cold temperature exposure increased glucose transport in the jejunum. In contrast, we observed abnormalities in lipid metabolism, which was characterized by the accumulation of bile acids in the ileum and plasma. In addition, the results of the ileal metabolomic analysis were consistent with the energy metabolism measurements in the jejunum, and dietary fat supplementation increased the activity of the mitochondrial respiratory chain and lipid metabolism. As the central nexus of energy metabolism, the state of glycolipid metabolism and oxidative stress in the liver are inconsistent with that in the small intestine. Specifically, we found that cold temperature exposure increased glucose transport in the liver, which fully validates the idea that hormones can act on the liver to regulate glucose output. Additionally, dietary fat supplementation inhibited glucose transport and glycolysis, but increased gluconeogenesis, bile acid cycling, and lipid metabolism. Sustained activation of AMPK, which an energy receptor and regulator, leads to oxidative stress and apoptosis in the liver; dietary fat supplementation alleviates energy stress by reducing AMPK phosphorylation. CONCLUSIONS Cold stress reduced the growth performance and aggravated glycolipid metabolism disorders and oxidative stress damage in pigs. Dietary fat supplementation improved growth performance and alleviated cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis. In this study, we highlight the importance of AMPK in dietary fat supplementation-mediated alleviation of host energy stress in response to environmental changes.
Collapse
Affiliation(s)
- Wei He
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, PR China
| | - Xinyu Liu
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, PR China
| | - Ye Feng
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, PR China
| | - Hongwei Ding
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, PR China
| | - Haoyang Sun
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, PR China
| | - Zhongyu Li
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, PR China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, PR China.
| |
Collapse
|
3
|
Luo T, Zhu J, Li K, Li Y, Li J, Chen Y, Shi H. Crosstalk between innate immunity and rumen-fecal microbiota under the cold stress in goats. Front Immunol 2024; 15:1363664. [PMID: 38476231 PMCID: PMC10928366 DOI: 10.3389/fimmu.2024.1363664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
The balance of the microbiome, which is sensitive to temperature changes, plays a crucial role in maintaining overall health and reducing the risk of diseases. However, the specific mechanisms by which immunity and microbiota interact to adapt to cold stress have yet to be addressed. In this study, Nanjiang Yellow goats were chosen as a model and sampled during the cold (winter, cold stress) and warm (spring) seasons, respectively. Analyses of serum immune factors, as well as the composition of rumen and fecal microbial communities, were conducted to explore the crosstalk between microbiota and innate immunity under cold stress. Significantly increased levels of IgA (P < 0.01) were observed in the cold season compared to the warm season. Conversely, the levels of IL-2 (P = 0.02) and IL-6 (P < 0.01) diminished under cold stress. However, no significant differences were observed in IgG (P = 0.89), IgM (P = 0.42), and IL-4 (P = 0.56). While there were no significant changes in the diversity of bacterial communities between the warm and cold seasons, positive correlations between serum IgA, IL-2, IL-6 concentrations and several genera were observed. Furthermore, the weighted gene co-expression network analysis indicated that the microbiota enriched in the MEbrown module positively correlated with IgA, while the microbiota enriched in the MEblue module positively correlated with IL-2 and IL-6. The strong correlation between certain probiotics, including Alistipes, Bacteroides, Blautia, and Prevotellaceae_UCG.004, and the concentration of IL-2, and IL-6 suggests their potential role in immunomodulatory properties. This study provides valuable insights into the crosstalk between microbial communities and immune responses under the challenge of cold stress. Further studies on the immunomodulatory properties of these probiotics would contribute to the development of strategies to enhance the stress resistance of animals for improved overall health and survival.
Collapse
Affiliation(s)
- Tao Luo
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jiangjiang Zhu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| | - Kerui Li
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| | - Yongtao Li
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jun Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yu Chen
- Institute of Nanjiang Yellow Goat Sciences, Bazhong, Sichuan, China
| | - Hengbo Shi
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Tuong DTC, Moniruzzaman M, Smirnova E, Chin S, Sureshbabu A, Karthikeyan A, Min T. Curcumin as a Potential Antioxidant in Stress Regulation of Terrestrial, Avian, and Aquatic Animals: A Review. Antioxidants (Basel) 2023; 12:1700. [PMID: 37760003 PMCID: PMC10525612 DOI: 10.3390/antiox12091700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Stress has brought about a variety of harmful impacts on different animals, leading to difficulties in the management of animal husbandry and aquaculture. Curcumin has been recognized as a potential component to ameliorate the adverse influence of animal stress induced by toxicity, inflammation, diseases, thermal effect, and so on. In detail, this compound is known to offer various outstanding functions, including antibacterial properties, antioxidant effects, immune response recovery, and behavioral restoration of animals under stress conditions. However, curcumin still has some limitations, owing to its low bioavailability. This review summarizes the latest updates on the regulatory effects of curcumin in terms of stress management in terrestrial, avian, and aquatic animals.
Collapse
Affiliation(s)
- Do Thi Cat Tuong
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA), Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea; (D.T.C.T.); (E.S.); (S.C.); (A.S.)
| | - Mohammad Moniruzzaman
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA), Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea; (D.T.C.T.); (E.S.); (S.C.); (A.S.)
| | - Elena Smirnova
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA), Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea; (D.T.C.T.); (E.S.); (S.C.); (A.S.)
| | - Sungyeon Chin
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA), Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea; (D.T.C.T.); (E.S.); (S.C.); (A.S.)
| | - Anjana Sureshbabu
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA), Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea; (D.T.C.T.); (E.S.); (S.C.); (A.S.)
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Republic of Korea;
| | - Taesun Min
- Department of Animal Biotechnology, Bio-Resources Computing Research Center, Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
5
|
Teng T, Sun G, Ding H, Song X, Bai G, Shi B, Shang T. Characteristics of glucose and lipid metabolism and the interaction between gut microbiota and colonic mucosal immunity in pigs during cold exposure. J Anim Sci Biotechnol 2023; 14:84. [PMID: 37400906 DOI: 10.1186/s40104-023-00886-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/03/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Cold regions have long autumn and winter seasons and low ambient temperatures. When pigs are unable to adjust to the cold, oxidative damage and inflammation may develop. However, the differences between cold and non-cold adaptation regarding glucose and lipid metabolism, gut microbiota and colonic mucosal immunological features in pigs are unknown. This study revealed the glucose and lipid metabolic responses and the dual role of gut microbiota in pigs during cold and non-cold adaptation. Moreover, the regulatory effects of dietary glucose supplements on glucose and lipid metabolism and the colonic mucosal barrier were evaluated in cold-exposed pigs. RESULTS Cold and non-cold-adapted models were established by Min and Yorkshire pigs. Our results exhibited that cold exposure induced glucose overconsumption in non-cold-adapted pig models (Yorkshire pigs), decreasing plasma glucose concentrations. In this case, cold exposure enhanced the ATGL and CPT-1α expression to promote liver lipolysis and fatty acid oxidation. Meanwhile, the two probiotics (Collinsella and Bifidobacterium) depletion and the enrichment of two pathogens (Sutterella and Escherichia-Shigella) in colonic microbiota are not conducive to colonic mucosal immunity. However, glucagon-mediated hepatic glycogenolysis in cold-adapted pig models (Min pigs) maintained the stability of glucose homeostasis during cold exposure. It contributed to the gut microbiota (including the enrichment of the Rikenellaceae RC9 gut group, [Eubacterium] coprostanoligenes group and WCHB1-41) that favored cold-adapted metabolism. CONCLUSIONS The results of both models indicate that the gut microbiota during cold adaptation contributes to the protection of the colonic mucosa. During non-cold adaptation, cold-induced glucose overconsumption promotes thermogenesis through lipolysis, but interferes with the gut microbiome and colonic mucosal immunity. Furthermore, glucagon-mediated hepatic glycogenolysis contributes to glucose homeostasis during cold exposure.
Collapse
Affiliation(s)
- Teng Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Guodong Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Hongwei Ding
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Xin Song
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Guangdong Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Tingting Shang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
6
|
Magona C, Hassen A, Tesfamariam E, Visser C, Oosting S, van der Linden A. Evaluation of LiGAPS-Beef to assess extensive pasture-based beef production in three agro-ecological regions in South Africa. Livest Sci 2023. [DOI: 10.1016/j.livsci.2023.105231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
7
|
Napolitano F, Bragaglio A, Braghieri A, El-Aziz AHA, Titto CG, Villanueva-García D, Mora-Medina P, Pereira AMF, Hernández-Avalos I, José-Pérez N, Casas-Alvarado A, Lezama-García K, Domínguez-Oliva A, Rodríguez-González D, Bertoni A, Mota-Rojas D. The effect of birth weight and time of day on the thermal response of newborn water buffalo calves. Front Vet Sci 2023; 10:1084092. [PMID: 36925607 PMCID: PMC10011160 DOI: 10.3389/fvets.2023.1084092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
During the 1st days of life, water buffalo calves, especially those with low birth weight, are susceptible to hypothermic mortality due to scarce energy reserves provided by fats. This means that monitoring the thermal state of newborns is essential. The objectives of the present study were to apply infrared thermography (IRT) in 109 buffalo calves to detect differences in the surface temperatures of six thermal windows -lacrimal gland, lacrimal caruncle, periocular region, nostrils, ear canal, pelvic limbs-, and determine their association to birth weight during the first 6 days of life. The calves were divided into four categories according to their weight (Q1, 37.8-41.25 kg; Q2, 41.3-46.3 kg; Q3, 46.4-56.3 kg; Q4, 56.4-60.3 kg). The thermographic images were recorded in the morning and afternoon. Results showed that the animals in Q4 registered the highest temperatures in all the thermal windows, and that these were higher in the afternoon (p < 0.0001). When considering the thermal windows, those located in the facial region recorded the highest temperatures; in contrast, the temperatures at the pelvic limbs remained below the average values of the other windows (33.41 and 33.76°C in the morning and afternoon, respectively). According to these results, the birth weight of water buffaloes is a factor that alters their thermoregulation during the 1st days of life, a condition that can be partially compensated by colostrum intake to promote development of an efficient thermoregulatory mechanism in water buffalo calves.
Collapse
Affiliation(s)
- Fabio Napolitano
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Andrea Bragaglio
- Consiglio per la Ricerca in Agricoltura e l'Analisi Dell'Economia Agraria (CREA), Research Centre for Engineering and Food Processing, Treviglio, Italy
| | - Ada Braghieri
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Ayman H Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Cristiane Gonçalves Titto
- Laboratório de Biometeorologia e Etologia, FZEA-USP, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Dina Villanueva-García
- Division of Neonatology, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán, Mexico
| | - Alfredo M F Pereira
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, Évora, Portugal
| | - Ismael Hernández-Avalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán, Mexico
| | - Nancy José-Pérez
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Karina Lezama-García
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Daniela Rodríguez-González
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Aldo Bertoni
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City, Mexico
| |
Collapse
|
8
|
Teng T, Song X, Sun G, Ding H, Sun H, Bai G, Shi B. Glucose supplementation improves intestinal amino acid transport and muscle amino acid pool in pigs during chronic cold exposure. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:360-374. [PMID: 36788930 PMCID: PMC9898627 DOI: 10.1016/j.aninu.2022.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022]
Abstract
Mammals in northern regions chronically suffer from low temperatures during autumn-winter seasons. The aim of this study was to investigate the response of intestinal amino acid transport and the amino acid pool in muscle to chronic cold exposure via Min pig models (cold adaptation) and Yorkshire pig models (non-cold adaptation). Furthermore, this study explored the beneficial effects of glucose supplementation on small intestinal amino acid transport and amino acid pool in muscle of cold-exposed Yorkshire pigs. Min pigs (Exp. 1) and Yorkshire pigs (Exp. 2) were divided into a control group (17 °C, n = 6) and chronic cold exposure group (7 °C, n = 6), respectively. Twelve Yorkshire pigs (Exp. 3) were divided into a cold control group and cold glucose supplementation group (8 °C). The results showed that chronic cold exposure inhibited peptide transporter protein 1 (PepT1) and excitatory amino acid transporter 3 (EAAT3) expression in ileal mucosa and cationic amino acid transporter-1 (CAT-1) in the jejunal mucosa of Yorkshire pigs (P < 0.05). In contrast, CAT-1, PepT1 and EAAT3 expression was enhanced in the duodenal mucosa of Min pigs (P < 0.05). Branched amino acids (BCAA) in the muscle of Yorkshire pigs were consumed by chronic cold exposure, accompanied by increased muscle RING-finger protein-1 (MuRF1) and muscle atrophy F-box (atrogin-1) expression (P < 0.05). More importantly, reduced concentrations of dystrophin were detected in the muscle of Yorkshire pigs (P < 0.05). However, glycine concentration in the muscle of Min pigs was raised (P < 0.05). In the absence of interaction between chronic cold exposure and glucose supplementation, glucose supplementation improved CAT-1 expression in the jejunal mucosa and PepT1 expression in the ileal mucosa of cold-exposed Yorkshire pigs (P < 0.05). It also improved BCAA and inhibited MuRF1 and atrogin-1 expression in muscle (P < 0.05). Moreover, dystrophin concentration was improved by glucose supplementation (P < 0.05). In summary, chronic cold exposure inhibits amino acid absorption in the small intestine, depletes BCAA and promotes protein degradation in muscle. Glucose supplementation ameliorates the negative effects of chronic cold exposure on amino acid transport and the amino acid pool in muscle.
Collapse
|
9
|
Hu L, Brito LF, Zhang H, Zhao M, Liu H, Chai H, Wang D, Wu H, Cui J, Liu A, Xu Q, Wang Y. Metabolome profiling of plasma reveals different metabolic responses to acute cold challenge between Inner-Mongolia Sanhe and Holstein cattle. J Dairy Sci 2022; 105:9162-9178. [PMID: 36175226 DOI: 10.3168/jds.2022-21996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022]
Abstract
Low-temperature conditions influence cattle productivity and survivability. Understanding the metabolic regulations of specific cattle breeds and identifying potential biomarkers related to cold challenges are important for cattle management and optimization of genetic improvement programs. In this study, 28 Inner-Mongolia Sanhe and 22 Holstein heifers were exposed to -25°C for 1 h to evaluate the differences in metabolic mechanisms of thermoregulation. In response to this acute cold challenge, altered rectal temperature was only observed in Holstein cattle. Further metabolome analyses showed a greater baseline of glycolytic activity and mobilization of AA in Sanhe cattle during normal conditions. Both breeds responded to the acute cold challenge by altering their metabolism of volatile fatty acids and AA for gluconeogenesis, which resulted in increased glucose levels. Furthermore, Sanhe cattle mobilized the citric acid cycle activity, and creatine and creatine phosphate metabolism to supply energy, whereas Holstein cattle used greater AA metabolism for this purpose. Altogether, we found that propionate and methanol are potential biomarkers of acute cold challenge response in cattle. Our findings provide novel insights into the biological mechanisms of acute cold response and climatic resilience, and will be used as the basis when developing breeding tools for genetically selecting for improved cold adaptation in cattle.
Collapse
Affiliation(s)
- Lirong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, 100193, China; College of Life Sciences and Bioengineering, Beijing Jiaotong University, Haidian District, Beijing, 100044, China; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Hailiang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Man Zhao
- Xiertala Cattle Breeding Farm, Hailaer Farm Buro, Hailaer, Inner Mongolia, 021012, China
| | - Huazhu Liu
- Xiertala Cattle Breeding Farm, Hailaer Farm Buro, Hailaer, Inner Mongolia, 021012, China
| | - He Chai
- Xiertala Cattle Breeding Farm, Hailaer Farm Buro, Hailaer, Inner Mongolia, 021012, China
| | - Dongsheng Wang
- Xiertala Cattle Breeding Farm, Hailaer Farm Buro, Hailaer, Inner Mongolia, 021012, China
| | - Hongjun Wu
- Xiertala Cattle Breeding Farm, Hailaer Farm Buro, Hailaer, Inner Mongolia, 021012, China
| | - Jiuhui Cui
- Xiertala Cattle Breeding Farm, Hailaer Farm Buro, Hailaer, Inner Mongolia, 021012, China
| | - Airong Liu
- Xiertala Cattle Breeding Farm, Hailaer Farm Buro, Hailaer, Inner Mongolia, 021012, China
| | - Qing Xu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Haidian District, Beijing, 100044, China.
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, 100193, China.
| |
Collapse
|
10
|
Alves MS, Bignardi AB, Zuim DM, Silva JAD, Cardoso MGR, Piccoli ML, Roso VM, Carvalheiro R, Faro LE, Pereira RJ, Santana ML. Thermal stress during late gestation impairs postnatal growth and provides background for genotype-environment interaction in Hereford-Braford and Angus-Brangus cattle. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Sun G, Song X, Zou Y, Teng T, Jiang L, Shi B. Dietary Glucose Ameliorates Impaired Intestinal Development and Immune Homeostasis Disorders Induced by Chronic Cold Stress in Pig Model. Int J Mol Sci 2022; 23:ijms23147730. [PMID: 35887078 PMCID: PMC9317271 DOI: 10.3390/ijms23147730] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023] Open
Abstract
Endotherms are easily challenged by chronic cold stress. In this study, the development and injury of the small intestine in the Min pig model and Yorkshire pig model under chronic cold stress, and the molecular mechanisms by which glucose supplementation reduces small intestinal mucosal damage were investigated. The results showed that morphological structure lesions of the jejunal mucosa and ileal mucosa were visible in Yorkshire pigs under chronic cold stress. Meanwhile, the Occludin mRNA and protein expression in jejunal mucosa of Yorkshire pigs was decreased. Chronic cold stress enhanced the expression of Toll-like receptor 4 (TLR4), the myeloid differentiation main response 88 (MyD88), nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3), cleaved caspase-1, mature-IL-1β, and high-mobility group box 1 (HMGB 1) mRNA and protein expression in jejunal mucosa of Yorkshire pigs, whereas the mRNA and protein of Bax was triggered in ileal mucosa. In Min pigs, no such deleterious consequences were observed. Dietary glucose supplementation ameliorates small intestinal mucosal injury, declined TLR4 and MyD88 expression in jejunal mucosa. In conclusion, chronic cold stress induced the small intestinal mucosa damage in Yorkshire pigs, whereas glucose supplementation mitigated the deleterious effects of chronic cold stress on the small intestine.
Collapse
|
12
|
Passamonti MM, Somenzi E, Barbato M, Chillemi G, Colli L, Joost S, Milanesi M, Negrini R, Santini M, Vajana E, Williams JL, Ajmone-Marsan P. The Quest for Genes Involved in Adaptation to Climate Change in Ruminant Livestock. Animals (Basel) 2021; 11:2833. [PMID: 34679854 PMCID: PMC8532622 DOI: 10.3390/ani11102833] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022] Open
Abstract
Livestock radiated out from domestication centres to most regions of the world, gradually adapting to diverse environments, from very hot to sub-zero temperatures and from wet and humid conditions to deserts. The climate is changing; generally global temperature is increasing, although there are also more extreme cold periods, storms, and higher solar radiation. These changes impact livestock welfare and productivity. This review describes advances in the methodology for studying livestock genomes and the impact of the environment on animal production, giving examples of discoveries made. Sequencing livestock genomes has facilitated genome-wide association studies to localize genes controlling many traits, and population genetics has identified genomic regions under selection or introgressed from one breed into another to improve production or facilitate adaptation. Landscape genomics, which combines global positioning and genomics, has identified genomic features that enable animals to adapt to local environments. Combining the advances in genomics and methods for predicting changes in climate is generating an explosion of data which calls for innovations in the way big data sets are treated. Artificial intelligence and machine learning are now being used to study the interactions between the genome and the environment to identify historic effects on the genome and to model future scenarios.
Collapse
Affiliation(s)
- Matilde Maria Passamonti
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (M.M.P.); (E.S.); (M.B.); (L.C.); (R.N.); (J.L.W.)
| | - Elisa Somenzi
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (M.M.P.); (E.S.); (M.B.); (L.C.); (R.N.); (J.L.W.)
| | - Mario Barbato
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (M.M.P.); (E.S.); (M.B.); (L.C.); (R.N.); (J.L.W.)
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-Food and Forest Systems–DIBAF, Università Della Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy; (G.C.); (M.M.)
| | - Licia Colli
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (M.M.P.); (E.S.); (M.B.); (L.C.); (R.N.); (J.L.W.)
- Research Center on Biodiversity and Ancient DNA—BioDNA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (S.J.); (E.V.)
| | - Marco Milanesi
- Department for Innovation in Biological, Agro-Food and Forest Systems–DIBAF, Università Della Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy; (G.C.); (M.M.)
| | - Riccardo Negrini
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (M.M.P.); (E.S.); (M.B.); (L.C.); (R.N.); (J.L.W.)
| | - Monia Santini
- Impacts on Agriculture, Forests and Ecosystem Services (IAFES) Division, Fondazione Centro Euro-Mediterraneo Sui Cambiamenti Climatici (CMCC), Viale Trieste 127, 01100 Viterbo, Italy;
| | - Elia Vajana
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (S.J.); (E.V.)
| | - John Lewis Williams
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (M.M.P.); (E.S.); (M.B.); (L.C.); (R.N.); (J.L.W.)
| | - Paolo Ajmone-Marsan
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (M.M.P.); (E.S.); (M.B.); (L.C.); (R.N.); (J.L.W.)
- Nutrigenomics and Proteomics Research Center—PRONUTRIGEN, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| |
Collapse
|
13
|
Godde C, Mason-D’Croz D, Mayberry D, Thornton P, Herrero M. Impacts of climate change on the livestock food supply chain; a review of the evidence. GLOBAL FOOD SECURITY-AGRICULTURE POLICY ECONOMICS AND ENVIRONMENT 2021; 28:100488. [PMID: 33738188 PMCID: PMC7938222 DOI: 10.1016/j.gfs.2020.100488] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022]
Abstract
The potential impacts of climate change on current livestock systems worldwide are a major concern, and yet the topic is covered to a limited extent in global reports such as the ones produced by the Intergovernmental Panel on Climate Change. In this article, we review the risk of climate-related impacts along the land-based livestock food supply chain. Although a quantification of the net impacts of climate change on the livestock sector is beyond the reach of our current understanding, there is strong evidence that there will be impacts throughout the supply chain, from farm production to processing operations, storage, transport, retailing and human consumption. The risks of climate-related impacts are highly context-specific but expected to be higher in environments that are already hot and have limited socio-economic and institutional resources for adaptation. Large uncertainties remain as to climate futures and the exposure and responses of the interlinked human and natural systems to climatic changes over time. Consequently, adaptation choices will need to account for a wide range of possible futures, including those with low probability but large consequences. Risk results from the interaction of climate-related hazards with the exposure and vulnerability of human and natural systems. Climate change will impact the livestock sector throughout the food supply chain—from farm production to human consumption. Key hazards relate to climate change trends but also, and importantly, to climate variability and climate extremes. Large uncertainties remain as to climate futures and the exposure and responses of the interlinked human and natural systems. Adaptation choices will need to account for a wide range of possible futures.
Collapse
Affiliation(s)
- C.M. Godde
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, St Lucia, QLD, 4067, Australia
- Corresponding author.
| | - D. Mason-D’Croz
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, St Lucia, QLD, 4067, Australia
| | - D.E. Mayberry
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, St Lucia, QLD, 4067, Australia
| | - P.K. Thornton
- CGIAR Research Programme on Climate Change, Agriculture and Food Security (CCAFS), ILRI, Nairobi, Kenya
| | - M. Herrero
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, St Lucia, QLD, 4067, Australia
| |
Collapse
|