1
|
Wanjala G, Pius LO, Strausz P, Kusza S. Leveraging Agri-advocacy to promote animal genetic diversity for climate change mitigation: Kenya and Tanzania perspective. Heliyon 2024; 10:e40851. [PMID: 39691193 PMCID: PMC11650267 DOI: 10.1016/j.heliyon.2024.e40851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
The role that genetic diversity in animal genetic resources (AnGR) plays in mitigating the effects of climate change on the global protein supply is of the utmost significance. East Africa historically played a pivotal role in the dispersal of domesticated livestock species across the African continent. At present, it maintains a substantial contribution to worldwide biodiversity as a result of its reservoir of a diverse array of AnGR, characterized by genetic and species diversity. A considerable reduction in the genetic diversity of AnGR has been documented in numerous studies, giving rise to concerns regarding the sustainability of animal protein supply in the face of climate change. The objective of this article is to outline prospective roles that advocacy and management organizations specializing in AnGRs may undertake to aid in the conservation of AnGR genetic diversity in East Africa. Moreover, it provides a prospective framework and structure for advocacy that extends from the farmers, to the higher-level (regional farmers association). We believe that advocating for the promotion of genetic diversity at the regional level will have a significant impact at the national and further at global scale.
Collapse
Affiliation(s)
- George Wanjala
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen Egyetem Tér 1., Hungary
- Doctoral School of Animal Science, University of Debrecen, 4032 Debrecen Böszörményi út 138., Hungary
- Livestock Production, Bungoma County, Box, 437-50200, Bungoma, Kenya
- Institute of Animal Sciences and Wildlife Management, University of Szeged, H-6800, Hódmezővásárhely, Andrássy út 15., Hungary
| | - Lenox Omondi Pius
- Animal Breeding and Genetics Resource Section, Tanzania Livestock Research Institute (TALIRI), P.O. Box 834, Dodoma, 41207, Tanzania
| | - Péter Strausz
- Corvinus University of Budapest, Institute of Strategy and Management, Department of Management, 1093, Budapest, Fővám Tér 8., Hungary
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen Egyetem Tér 1., Hungary
| |
Collapse
|
2
|
Mohammadi H, Khaltabadi Farahani AH, Moradi MH, Moradi-Shahrbabak H, Gholizadeh M, Najafi A, Tolone M, D’Alessandro E. Genome-Wide Scan for Selective Sweeps Reveals Novel Loci Associated with Prolificacy in Iranian Sheep Breeds in Comparison with Highly Prolific Exotic Breed. Animals (Basel) 2024; 14:3245. [PMID: 39595298 PMCID: PMC11591336 DOI: 10.3390/ani14223245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Domestication and selection significantly changed phenotypic traits in modern domestic animals. To identify the genomic regions associated with prolificacy in this study, 837 ewes from three Iranian indigenous sheep breeds, consisting of Baluchi, Lori-Bakhtiari, and Zandi uniparous breeds, and one Greek highly prolific dairy sheep, namely Chios, were genotyped using OvineSNP50K arrays. Statistical tests were then performed using different and complementary methods based on either site frequency (FST) and haplotype (hapFLK) between populations, followed by a pathway analysis of the genes contained in the selected regions. The results revealed that for the top 0.01 percentile of the obtained FST values, 16 genomic regions on chromosomes 2, 3, 4, 7, 8, 9, 13, 14, 16, 18, 19, and 20, and for hapFLK values, 3 regions located on chromosomes 3, 7, and 13, were under selection. A bioinformatic analysis of these genomic regions showed that these loci overlapped with potential candidate genes associated with prolificacy in sheep including GNAQ, COL5A2, COL3A1, HECW1, FBN1, COMMD3, RYR1, CCL28, SERPINA14, and HSPA2. These regions also overlapped with some quantitative trait loci (QTLs) linked to prolificacy traits, milk yield, and body weight. These findings suggest that future research could further link these genomic regions to prolificacy traits in sheep.
Collapse
Affiliation(s)
- Hossein Mohammadi
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran; (A.H.K.F.); (M.H.M.)
| | - Amir Hossein Khaltabadi Farahani
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran; (A.H.K.F.); (M.H.M.)
| | - Mohammad Hossein Moradi
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran; (A.H.K.F.); (M.H.M.)
| | - Hossein Moradi-Shahrbabak
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 31587-11167, Iran;
| | - Mohsen Gholizadeh
- Department of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari 4818166996, Iran;
| | - Abouzar Najafi
- Departments of Animal and Poultry Science, College of Aburaihan, University of Tehran, Pakdasht 33916-53755, Iran;
| | - Marco Tolone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres, 98166 Messina, Italy;
| | - Enrico D’Alessandro
- Department of Veterinary Sciences, University of Messina, Viale G. Palatucci, 98168 Messina, Italy
| |
Collapse
|
3
|
Argun Karsli B, Demir E, Bilginer U, Dogru H, Karsli T, Kaya S. Genome-wide discovery of selection signatures in four Anatolian sheep breeds revealed by ddRADseq. Sci Rep 2024; 14:20518. [PMID: 39227733 PMCID: PMC11371811 DOI: 10.1038/s41598-024-71617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024] Open
Abstract
High-density genomic data analyzed by accurate statistical methods are of potential to enlighten past breeding practices such as selection by unraveling fixed regions. In this study, four native Turkish sheep breeds (80 samples) were genotyped via 296.097 single nucleotide polymorphisms (SNPs) detected by double-digest restriction site-associated DNA (ddRADseq) library preparation combined with the Illumina HiSeq X Ten instrument in order to identify genes under selection pressure. A total of 32, 136, 133, and 119 protein-coding genes were detected under selection pressure by runs of homozygosity (ROH), integrated haplotype score (iHS), the ratio of extended haplotype homozygosity (Rsb), and fixation index (FST) approaches, respectively. Of these, a total of 129 genes were identified by at least two statistical models which overlapped with a total of 52 quantitative trait loci (QTL)-associated SNPs, known to be related to fiber diameter, milk content, body weight, carcass traits, some blood parameters, and entropion. A total of six genes under selection pressure were validated by three statistical approaches five of which are of potential to be integrated into animal breeding since they were associated with wool fiber diameter (ZNF208B), behaviors related to neurocognitive development (CBX1 and NFE2L1), adaptation to high-altitude (SDK1), and anxiety causing internal stress (GSG1L). The sixth gene (COPZ1) turned out to play an important role in coping with different types of cancer in mammals. In particular, ROH analysis uncovered significant findings that the Güney Karaman (GKR) had experienced different selection practices than the Akkaraman (AKR) breed. Moreover, some genes specifically under selection in the GKR breed turned out to be associated with olfaction (OR6K6, OR6N1, OR6N2, and OR4C16), survival during the gestation period (PRR15L), and heat stress (CDK5RAP9). The results of this study imply that GKR may become genetically different from the AKR breed at the genome level due to most probably experiencing different adaptation processes occurring in raised climatic conditions. These differences should be conserved to face future challenges, while other native Turkish sheep breeds could be monitored via genome-wide high-density SNP data to obtain deeper knowledge about the effects of natural selection.
Collapse
Affiliation(s)
- Bahar Argun Karsli
- Department of Agricultural Biotechnology, Faculty of Agriculture, Eskişehir Osmangazi University, Eskişehir, 26160, Türkiye.
| | - Eymen Demir
- Department of Animal Science, Faculty of Agriculture, Akdeniz University, Antalya, 07070, Türkiye
| | - Umit Bilginer
- Department of Animal Science, Faculty of Agriculture, Akdeniz University, Antalya, 07070, Türkiye
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Huriye Dogru
- Department of Medical Services and Techniques, Vocational School of Burdur Health Services, Burdur Mehmet Akif Ersoy University, Burdur, 15100, Türkiye
| | - Taki Karsli
- Institution Department of Animal Science, Faculty of Agriculture, Eskisehir Osmangazi University, Eskisehir, 26160, Türkiye
| | - Sarp Kaya
- Department of Medical Services and Techniques, Vocational School of Burdur Health Services, Burdur Mehmet Akif Ersoy University, Burdur, 15100, Türkiye
| |
Collapse
|
4
|
Pereira AA, Daher LCC, Freitas CS, Monteiro SDN, Araújo JC, de Sousa MAP, Miranda ADS, Rodrigues TCGDC, da Silva JAR, de Lima ACS, Silva AGME, Lourenço-Júnior JDB. Performance, carcass characteristics and non-carcass components of Santa Ines and crossbred (Santa Ines x Dorper) lambs finished in different confinement strategies. PLoS One 2023; 18:e0293819. [PMID: 37943781 PMCID: PMC10635475 DOI: 10.1371/journal.pone.0293819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Genetic group, age at entry into confinement and at slaughter, are characteristics that have an important influence on lamb performance and carcass. The aim of this study was to evaluate the performance, carcass characteristics and non-carcass components from different genetic groups (Santa Inês and ½ Dorper x ½ Santa Inês) sheep, submitted to different feedlot entry and exit strategies. Were used 72 lambs males and castrated; 36 Santa Inês (SI) and 36 crossbred (Dorper x Santa Inês-DSI), with 6 months of average initial age. The groups were established in a completely randomized experimental design, in a 2x3x4 factorial arrangement, from the combination of genetic groups (GG), body weight at the beginning of confinement (WBC) and length of stay in confinement (LSC). The body weight classes at the beginning of confinement were: light (25 kg), intermediate (28 kg) and heavy (31 kg), for Santa Inês and crossbreeds, respectively. Slaughters were carried out every 28 days of confinement, in four LSC: 0, 28, 56 and 84 days. The GG did not influence performance, carcass and non-carcass component traits of lambs (p > 0.05). There was an effect of the WBC on the weights: final (FW), metabolic (MW), body at slaughter (BWS), empty body (EBW), hot carcass (HCY) and cold (CCW), loin, shoulder, leg musculature; loin eye area (LEA) and loin fat (p < 0.05). There was also an effect on LSC, for FW, average daily weight gain (ADG), MW, weight and yield of body components, weight of cuts and tissue ratio components of cuts (p < 0.05). In non-carcass components, effect on full and empty weight of: omasum, rumen-reticulum, small intestine; empty large intestine, liver and kidneys, paws and skin, and perirenal, pelvic and inguinal fat (p < 0.05). Interaction double effect on the tissue muscle/fat:bone ratio (MF:B) and for the full omasal component (p < 0.05). And triple interaction effect for ADG, full omasum and perirenal fat (p < 0.05). Weight at the beginning of confinement and confinement time are the characteristics that most influence performance, quantitative characteristics of carcass and non-carcass components. Regardless of the genetic group and age class, the animals reach the same weight after 84 days of confinement. Thus, the confinement of heavier lambs (31 kg) can be a profitable alternative, as they presented the highest weights for the most commercially valued cuts (shank and loin). The confinement strategy must adapt to market situations.
Collapse
Affiliation(s)
| | | | | | | | - Jonas Carneiro Araújo
- Department of Animal Science, Federal Rural University of Amazonia, Belém, Pará, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Astuti PK, Ilie DE, Gavojdian D, Wanjala G, Badaoui B, Ohran H, Pasic-Juhas E, Bagi Z, Jávor A, Kusza S. Validation of SNP markers for thermotolerance adaptation in Ovis aries adapted to different climatic regions using KASP-PCR technique. Sci Rep 2022; 12:22348. [PMID: 36572697 PMCID: PMC9792578 DOI: 10.1038/s41598-022-26909-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
A study on 51 SNPs belonging to 29 genes related to heat stress was carried out in 720 sheep from 17 different breeds adapted to different climates from Hungary, Bosnia and Herzegovina, Morocco and Romania, using Kompetitive Allele-Specific Polymerase Chain Reaction. Genotype frequency and the Hardy-Weinberg equilibrium were calculated, followed by a clustering using the Principal Component Analysis. We analyzed the polymorphisms in the following genes analyzed: HSPA12A, HSP90AA1, IL33, DIO2, BTNL2, CSN2, ABCG1, CSN1S1, GHR, HSPA8, STAT3, and HCRT. We emphasized on HSPA12A and HSPA8 genes as they were successfully genotyped in all studied flocks in which genotype frequency patterns were identified. Contrary to previous findings, the A allele for HSPA8 SNP was not observed in the heat tolerant breeds, being found exclusively in cold-tolerant breeds. The principal component analysis could not clearly differentiate the breeds, while plot concentration was slightly varied among the three groups, with HSP90AA1 and IL33 SNPs' loading values significantly contributing to PC1 and PC2. We confirmed previous works that the HSPA12A, HSPA8, HSP90AA1 and IL33 SNPs are potential candidate markers for thermotolerance adaptation in sheep. This research contributes to the genetic variability of SNPs for thermotolerance adaptability in sheep.
Collapse
Affiliation(s)
- Putri Kusuma Astuti
- Centre of Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Animal Science, University of Debrecen, Debrecen, 4032, Hungary
| | | | - Dinu Gavojdian
- Research and Development Institute for Bovine Balotesti, 077015, Balotesti, Ilfov, Romania
| | - George Wanjala
- Centre of Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Animal Science, University of Debrecen, Debrecen, 4032, Hungary
| | - Bouabid Badaoui
- Mohammed V University in Rabat, Morocco and African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - Husein Ohran
- Department of Physiology, University of Sarajevo, Veterinary Faculty, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Eva Pasic-Juhas
- Department of Physiology, University of Sarajevo, Veterinary Faculty, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Zoltán Bagi
- Centre of Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary
| | - András Jávor
- Centre of Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary
| | - Szilvia Kusza
- Centre of Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
6
|
Wanjala G, Kusuma Astuti P, Bagi Z, Kichamu N, Strausz P, Kusza S. A review on the potential effects of environmental and economic factors on sheep genetic diversity: Consequences of climate change. Saudi J Biol Sci 2022; 30:103505. [DOI: 10.1016/j.sjbs.2022.103505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/17/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
|
7
|
McManus CM, Lucci CM, Maranhão AQ, Pimentel D, Pimentel F, Rezende Paiva S. Response to heat stress for small ruminants: Physiological and genetic aspects. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|