1
|
Mazaheri M, Radahmadi M, Sharifi MR. Effects of chronic empathic stress on synaptic efficacy, as well as short-term and long-term plasticity at the Schaffer collateral/commissural- CA1 synapses in the dorsal hippocampus of rats. Metab Brain Dis 2024; 40:54. [PMID: 39636524 DOI: 10.1007/s11011-024-01487-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Empathy, the ability to comprehend and share others' emotional states, impacts brain functions. This in vivo electrophysiological study explored the influence of chronic empathic stress on synaptic efficacy, as well as short-term and long-term plasticity at the Schaffer collateral/Commissural - CA1 synapses in the dorsal hippocampus of rats, in situations of social equality and inequality. Forty-eight male rats were randomized into six groups: control, pseudo-observer, pseudo-demonstrator, observer, demonstrator, and co-demonstrator (Co, Pse-Ob, Pse-De, Ob, De, Co-De) groups. Stress induction (2h/day, 21 days) was performed in situations of equality and inequality. Serum corticosterone levels, slope, amplitude, and area under the curve (AUC) of field excitatory postsynaptic potentials (fEPSPs) were assessed in the hippocampal CA1 area using input-output (I/O) functions, paired-pulse (PP) responses with different interpulse intervals (IPIs), and long-term potentiation (LTP) after high-frequency stimulation (HFS). The fEPSP slope, amplitude, and AUC significantly decreased in all stress groups, especially in the De and Pse-De groups. These parameters were significantly increased in the Co-De and Ob groups compared to the De group. Notably, the corticosterone levels strongly confirmed the electrophysiological findings. Chronic empathic stress could disrupt synaptic efficacy and plasticity in the CA1 area. Empathic stress, involving the presence of cagemates in situations of social equality and inequality, can modify long-term plasticity and serum corticosterone levels in demonstrators and co-demonstrators. Under empathic stress related to situations of inequality, freely moving observers may influence the demonstrators' stress experience. Therefore, the presence of a conspecific in the social inequality conditions had significant suppressive effects on long-term plasticity, while conversely, under equality conditions, long-term plasticity was favorably improved through social buffering.
Collapse
Affiliation(s)
- Mohammad Mazaheri
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Reza Sharifi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Xue B, Ma YY, Zhu JY, Mu Y, Li YH, Shen F, Liang J, Zhang JJ. Chronic social comparison elicits depression- and anxiety-like behaviors and alterations in brain-derived neurotrophic factor expression in male rats. Anim Cogn 2023; 26:1505-1519. [PMID: 37302101 DOI: 10.1007/s10071-023-01798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
Social comparison is a fundamental human characteristic; however, long-term social comparison may induce psychological stress and can lead to depression and anxiety. Recent studies have shown that nonhuman primates compare themselves with others; however, no studies have investigated whether social comparisons exist among rodents. In the present study, we established a rat model of social comparison. This model was subsequently used to examine the effects of the differential environment of a partner on depression- and anxiety-like behaviors in male rats, as well as to assess the changes in serum, medial prefrontal cortex (mPFC), and dorsal hippocampus brain-derived neurotrophic factor (BDNF) levels induced by long-term social comparison. Compared to rats whose partners were exposed to the same environment, rats whose partners were exposed to two combined enriched environmental stimuli for 14 days showed significantly decreased social novelty preference and sucrose consumption. No anxiety-like behaviors were observed. Rats whose partners were exposed to one enriched environment for 31 days showed significantly increased immobility time in the forced swimming test, and significantly decreased time spent in the center area in the open-field test. Further, rats whose partners were exposed to one enriched environment for 31 days showed lower BDNF levels in the mPFC and dorsal hippocampus, but not following partner exposure for 14 days. These results suggest that social comparisons exist in rats and can induce psychosocial stress and other negative affect. This model will not only provide the possibility to reveal the neurobiological basis of the emotional impact of social comparison, but could also be used to confirm the conservative evolutionary characteristics of social comparison as a behavioral attribute.
Collapse
Affiliation(s)
- Bing Xue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yin-Yan Ma
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jie-Ying Zhu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Mu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Hui Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Shen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Jun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Watanabe S. Infrared thermography for non-invasive measurement of social inequality aversion in rodents and potential usefulness for future animal-friendly studies. Front Behav Neurosci 2023; 17:1131427. [PMID: 36950066 PMCID: PMC10025391 DOI: 10.3389/fnbeh.2023.1131427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
Infrared thermography is a method that detects thermal radiation energy and can measure the body surface temperature of animals from a distance. While rectal temperature has traditionally been used to measure animals' core temperature, thermal imaging can avoid the stress and potential rise of body temperature deriving from handling of the animals. Additionally, being non-invasive and contactless, thermal imaging allows free movement of the animals. The validity of this technique as a psychophysiological method has been proven in a series of stress-induced hyperthermia (SIH) studies of mice under social inequality conditions. Restraint in a holder elicits SIH in mice. A restrained mouse surrounded by freely moving cage mates displays increased SIH suggesting that social inequality enhances the stress. Social inequality can be examined also in unrestrained mice, in particular through unequal distribution of food. In this protocol, a food-deprived mouse is given a small piece of cheese, while its cage mate is given a large piece of cheese. This inequity causes SIH, suggesting social inequality aversion in mice. Thus, social inequality in different situations similarly increased SIH. Importantly, in future studies infrared thermography could also be used to evaluate emotional arousal states different from stress (for example to assess reactivity to rewards or in social and sexual preference tests). Moreover, the technique could be used to investigate also cognitive arousal induced by novelty. Indeed, infrared thermography could be a particularly useful tool for animal-friendly studies of cognition and emotion in rodents.
Collapse
|
4
|
Palacios C, Plaza J, Abecia JA. A High Cattle-Grazing Density Alters Circadian Rhythmicity of Temperature, Heart Rate, and Activity as Measured by Implantable Bio-Loggers. Front Physiol 2021; 12:707222. [PMID: 34483961 PMCID: PMC8414586 DOI: 10.3389/fphys.2021.707222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Six cows managed under extensive grazing conditions were used to study the effect of moving the animals to a higher grazing density on the circadian rhythms of temperature (T), heart rate (HR), and activity (ACT), which were recorded by implantable bio-loggers. Cows were maintained at a density of 1.5 livestock units per hectare (LSUs/ha; low density, LD) until they were moved to a grazing area at 128 LSUs/ha (high density, HD). Animals were implanted subcutaneously with a T, HR, and ACT bio-logger, which was programmed to record data at 5-min intervals. For each animal, cosinor rhythmometry (the study of circadian rhythms by fitting a sine wave to a time series) was applied to the data recorded over 5 days in LD and HD. Mean Midline Estimating Statistic of Rhythm (MESOR; the average value around which the variable oscillates), amplitude (difference between the peak and the mean value of a wave), and acrophase (timing of peak activity) were calculated and evaluated statistically. Differences between mean day and nighttime values, and mean LD and HD values were calculated. Cows presented cosinor curves that fit a 24-h rhythm (p < 0.001) in T, HR, and ACT at both densities. MESOR (T: 37.98 vs. 38.02°C; HR: 69.12 vs. 65.91 bpm; ACT: 49.39 vs. 40.41 mg, for LD and HD, respectively) and amplitude (T: 0.28 vs. 0.28°C; HR: 4.12 vs. 3.14 bpm; ACT: 18.14 vs. 11.28 mg, respectively) did not differ significantly between the two densities; however, significant (p < 0.05) differences between densities occurred in the acrophase of the three variables; specifically, the T acrophase was 2 h later at HD (22:45 h) than LD (20:45 h), and HR (LD: 19:51; HD: 16:49 h) and ACT acrophases 3 and 2 h earlier at HD than LD (LD: 14:47; HD: 12:49 h), respectively. T and ACT differed significantly (p < 0.01) between daytime (mean ± SE; 37.92 ± 0.19°C, 40.39 ± 4.74 mg) and nighttime (38.14 ± 0.17°C, 29.93 ± 5.66 mg). In conclusion, our study suggests that a high animal grazing density might exacerbate the social competence for valuable resources for animals, resulting in shifting the circadian rhythmicity of temperature, heart rate, and activity of the cows, advancing or delaying their acrophases.
Collapse
Affiliation(s)
- Carlos Palacios
- Departamento de Construcción y Agronomía, Facultad de Ciencias Agrarias y Ambientales, Universidad de Salamanca, Salamanca, Spain
| | - Javier Plaza
- Departamento de Construcción y Agronomía, Facultad de Ciencias Agrarias y Ambientales, Universidad de Salamanca, Salamanca, Spain
| | - José-Alfonso Abecia
- Departamento de Producción Animal y Ciencia de los Alimentos, Instituto Universitario de Investigación en Ciencias Ambientales (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
5
|
Physical contact with cage mates modifies stress-induced hyperthermia in mice. LEARNING AND MOTIVATION 2021. [DOI: 10.1016/j.lmot.2020.101692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Feeding Behavior of Mice under Different Food Allocation Regimens. Behav Neurol 2019; 2019:1581304. [PMID: 31871492 PMCID: PMC6913290 DOI: 10.1155/2019/1581304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/16/2019] [Indexed: 11/26/2022] Open
Abstract
Social interaction, a basic survival strategy for many animal species, helps maintain a social environment that has limited conflict. Social dominance has a dramatic effect on motivation. Recent evidence suggests that some primate and nonprimate species display aversive behavior toward food allocation regimens that differ from their peers. Thus, we examined the behaviors displayed by mice under different food allocation regimens. We analyzed changes in food intake using several parameters. In the same food condition, the mice received the same food; in the quality different condition, the mice received different foods; in the quantity different condition, one mouse did not receive food; and in the no food condition, none of the mice received food. To test differences based on food quality, one mouse received normal solid food as a less preferred reward, and the other received chocolate chips as a high-level reward. No behavioral change was observed in comparison to the same food condition. To test differences based on food quantity, one mouse received chocolate chips while the other received nothing. Mice who received nothing spent more time on the other side of the reward throughout the experiment. Interestingly, highly rewarded mice required more time to consume the chocolate chips. Thus, under different food allocation regimens, mice changed their behavior by being more hesitant. Moreover, mice alter food intake behavior according to the social environment. The findings help elucidate potential evolutionary aspects that help maintain social cohesion while providing insights into potential mechanisms underlying socially anxious behavior.
Collapse
|
7
|
Watanabe S. Analysis of inequality aversion in mice using stress-induced hyperthermia. LEARNING AND MOTIVATION 2019. [DOI: 10.1016/j.lmot.2019.101601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Romero T, Konno A, Nagasawa M, Hasegawa T. Oxytocin modulates responses to inequity in dogs. Physiol Behav 2019; 201:104-110. [DOI: 10.1016/j.physbeh.2018.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 01/05/2023]
|
9
|
Douglas HM, Halverstadt BA, Reinhart-Anez P, Webber ES, Cromwell HC. A possible social relative reward effect: Influences of outcome inequity between rats during operant responding. Behav Processes 2018; 157:459-469. [PMID: 29990520 DOI: 10.1016/j.beproc.2018.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/05/2018] [Accepted: 06/29/2018] [Indexed: 01/01/2023]
Abstract
Social interactions/situations have dramatic influences on motivation. Creating animal models examining these influences promotes a better understanding of the psychological and biological underpinnings of social motivation. Rodents are sensitive to social history/experience during associative conditioning and food-sharing tasks. Would reward-oriented operant behavior be sensitive to social influences by showing a negative contrast-like effect when another organism obtains a greater value outcome? We used a side-by-side arrangement of operant response chambers wherein one animal obtained consistently high reward signaled by a discrete cue. The neighboring, experimental rat experienced different combinations of high and low reward trial sequences. Control conditions included distraction from a conspecific in the neighboring chamber (rat distractor) or cue/food dispenser operating without a conspecific (program distractor) in addition to testing subjects alone. Results support an influence of the other animal actively performing the task on the experimental subject's behavior. Primarily, responding was significantly slower for the low reward trials while the neighboring rat was receiving the higher magnitude reward. The lever-press and not food-cup retrieval latency was significantly slower during exposure to a conspecific neighbor performing the operant task. The effect was not obtained in all session sequences and was more pronounced using longer series of consecutive low reward trials. The slowing effect was also obtained with the program-distractor experience in a different trial sequence. These findings suggest a social-induced negative incentive contrast effect in rats possibly mediated by an outcome inequity process that could have key similarities to complex situational-affective effects on motivation involving frustration or jealously.
Collapse
Affiliation(s)
- H M Douglas
- Department of Psychology and John Paul Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, United States
| | - B A Halverstadt
- Department of Psychology and John Paul Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, United States
| | - P Reinhart-Anez
- Department of Psychology and John Paul Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, United States
| | - E S Webber
- Department of Psychology and John Paul Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, United States
| | - H C Cromwell
- Department of Psychology and John Paul Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, United States.
| |
Collapse
|
10
|
SATO YUTARO, KANO FUMIHIRO, HIRATA SATOSHI. Cutting-edge infrared thermography as a new tool to explore animal emotions. ACTA ACUST UNITED AC 2018. [DOI: 10.2502/janip.68.1.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|