1
|
Li Y, Zhang X, Xu Z, Chu X, Hu Z, Ye Z, Li C, Wang Z, Zeng B, Pan J, Zhao Q, Zhou C, Lan Z, Kan G, He G, Xu X, Li W. Simulated weightlessness procedure, head-down bed rest has reversible effects on the metabolism of rhesus macaque. Mol Brain 2024; 17:65. [PMID: 39227961 PMCID: PMC11370317 DOI: 10.1186/s13041-024-01133-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
It is a consensus in the international manned space field that factors such as microgravity during the space flight can cause anxiety, depression and other important brain function abnormalities in astronauts. However, the neural mechanism at the molecular level is still unclear. Due to the limitations of research conditions, studies of biological changes in the primate brain have been comparatively few. We took advantage of -6° head-down bed rest (HDBR), one of the most implemented space analogues on the ground, to investigate the effects of simulated weightlessness on non-human primate brain metabolites. The Rhesus Macaque monkeys in the experiment were divided into three groups: the control group, the 42-day simulated weightlessness group with HDBR, and the recovery group, which had 28 days of free activity in the home cage after the HDBR. Liquid chromatography-mass spectrometry (LC-MS) was used to perform metabolomics analysis on specific brain areas of the monkeys under three experimental conditions. Our results show that simulated weightlessness can cause neurotransmitter imbalances, the amino acid and energy metabolism disorders, and hormone disturbances. But these metabolomics changes are reversible after recovery. Our study suggests that long-term brain damage in space flight might be reversible at the metabolic level. This lays a technical foundation for ensuring brain health and enhancing the brain function in future space studies.
Collapse
Affiliation(s)
- Yuting Li
- Bio-X Institutes (Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Brain Health and Brain Technology Research Center in Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xu Zhang
- Bio-X Institutes (Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Brain Health and Brain Technology Research Center in Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhen Xu
- Bio-X Institutes (Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Brain Health and Brain Technology Research Center in Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xixia Chu
- Bio-X Institutes (Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Brain Health and Brain Technology Research Center in Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiqiang Hu
- Bio-X Institutes (Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Brain Health and Brain Technology Research Center in Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengyang Ye
- Bio-X Institutes (Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Brain Health and Brain Technology Research Center in Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Caiqin Li
- Bio-X Institutes (Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Brain Health and Brain Technology Research Center in Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhenbo Wang
- Bio-X Institutes (Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Brain Health and Brain Technology Research Center in Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Zeng
- National Key Laboratory of Human Factors Engineering, Astronaut Research and Training Center, Beijing, 100094, China
| | - Jingyu Pan
- National Key Laboratory of Human Factors Engineering, Astronaut Research and Training Center, Beijing, 100094, China
| | - Qian Zhao
- Bio-X Institutes (Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Brain Health and Brain Technology Research Center in Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chengbin Zhou
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhaohui Lan
- Bio-X Institutes (Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Brain Health and Brain Technology Research Center in Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guanghan Kan
- National Key Laboratory of Human Factors Engineering, Astronaut Research and Training Center, Beijing, 100094, China
| | - Guang He
- Bio-X Institutes (Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Brain Health and Brain Technology Research Center in Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodan Xu
- National Key Laboratory of Human Factors Engineering, Astronaut Research and Training Center, Beijing, 100094, China.
| | - Weidong Li
- Bio-X Institutes (Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Brain Health and Brain Technology Research Center in Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
- WLA Laboratories, World Laureates Association, Shanghai, 201203, China.
| |
Collapse
|
2
|
Desai RI, Kangas BD, Luc OT, Solakidou E, Smith EC, Dawes MH, Ma X, Makriyannis A, Chatterjee S, Dayeh MA, Muñoz-Jaramillo A, Desai MI, Limoli CL. Complex 33-beam simulated galactic cosmic radiation exposure impacts cognitive function and prefrontal cortex neurotransmitter networks in male mice. Nat Commun 2023; 14:7779. [PMID: 38012180 PMCID: PMC10682413 DOI: 10.1038/s41467-023-42173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/28/2023] [Indexed: 11/29/2023] Open
Abstract
Astronauts will encounter extended exposure to galactic cosmic radiation (GCR) during deep space exploration, which could impair brain function. Here, we report that in male mice, acute or chronic GCR exposure did not modify reward sensitivity but did adversely affect attentional processes and increased reaction times. Potassium (K+)-stimulation in the prefrontal cortex (PFC) elevated dopamine (DA) but abolished temporal DA responsiveness after acute and chronic GCR exposure. Unlike acute GCR, chronic GCR increased levels of all other neurotransmitters, with differences evident between groups after higher K+-stimulation. Correlational and machine learning analysis showed that acute and chronic GCR exposure differentially reorganized the connection strength and causation of DA and other PFC neurotransmitter networks compared to controls which may explain space radiation-induced neurocognitive deficits.
Collapse
Affiliation(s)
- Rajeev I Desai
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA.
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA.
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA.
| | - Brian D Kangas
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA
| | - Oanh T Luc
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA
| | - Eleana Solakidou
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
- Medical School, University of Crete, Heraklion, Greece
| | - Evan C Smith
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Monica H Dawes
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA
| | - Xiaoyu Ma
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | | | - Maher A Dayeh
- Southwest Research Institute, San Antonio, TX, 78238, USA
- University of San Antonio, San Antonio, TX, 78249, USA
| | | | - Mihir I Desai
- Southwest Research Institute, San Antonio, TX, 78238, USA
- University of San Antonio, San Antonio, TX, 78249, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, Orange, CA, 92697, USA
| |
Collapse
|
3
|
Zong B, Wang Y, Wang J, Zhang P, Kan G, Li M, Feng J, Wang Y, Chen X, Jin R, Ge Q. Effects of long-term simulated microgravity on liver metabolism in rhesus macaques. FASEB J 2022; 36:e22536. [PMID: 36070186 DOI: 10.1096/fj.202200544rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 11/11/2022]
Abstract
The liver is an essential multifunctional organ and constantly communicates with nearly all the tissues in the body. Spaceflight or simulated microgravity has a significant impact on the livers of rodent models, including lipid accumulation and inflammatory cell infiltration. Whether similar liver lipotoxicity could occur in humans is not known, even though altered circulating cholesterol profile has been reported in astronauts. Using a 42-day head-down bed rest (HDBR) model in rhesus macaques, the present study investigated whether simulated microgravity alters the liver of non-human primates at the transcriptome and metabolome levels. Its association with stress and intestinal changes was also explored. Compared to the controls, the HDBR monkeys showed mild liver injury, elevated ANGPTL3 level in the plasma, and accumulation of fat vacuoles and inflammatory cells in the liver. Altered transcriptome signatures with up-regulation of genes in lipid metabolisms and down-regulation of genes in innate immune defense were also found in HDBR group-derived liver samples. The metabolic profiling of the liver revealed mildly disturbed fatty acid metabolism in the liver of HDBR monkeys. The intestinal dysbiosis, its associated endotoxemia and changes in the composition of bile acids, and elevated stress hormone in HDBR monkeys may contribute to the altered lipid metabolisms in the liver. These data indicate that liver metabolic functions and gut-liver axis should be closely monitored in prolonged spaceflight to facilitate strategy design to improve and maintain metabolic homeostasis.
Collapse
Affiliation(s)
- Beibei Zong
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yujia Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Jingyi Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Peng Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China
| | - Guanghan Kan
- State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China
| | - Mingyang Li
- Immunology Research Center, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Juan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Yifan Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xiaoping Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China.,National Key Laboratory of Human Factors Engineering, China Astronauts Research and Training Center, Beijing, China
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Qing Ge
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| |
Collapse
|
4
|
Desai RI, Limoli CL, Stark CEL, Stark SM. Impact of spaceflight stressors on behavior and cognition: A molecular, neurochemical, and neurobiological perspective. Neurosci Biobehav Rev 2022; 138:104676. [PMID: 35461987 DOI: 10.1016/j.neubiorev.2022.104676] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/15/2022] [Accepted: 04/18/2022] [Indexed: 11/19/2022]
Abstract
The response of the human body to multiple spaceflight stressors is complex, but mounting evidence implicate risks to CNS functionality as significant, able to threaten metrics of mission success and longer-term behavioral and neurocognitive health. Prolonged exposure to microgravity, sleep disruption, social isolation, fluid shifts, and ionizing radiation have been shown to disrupt mechanisms of homeostasis and neurobiological well-being. The overarching goal of this review is to document the existing evidence of how the major spaceflight stressors, including radiation, microgravity, isolation/confinement, and sleep deprivation, alone or in combination alter molecular, neurochemical, neurobiological, and plasma metabolite/lipid signatures that may be linked to operationally-relevant behavioral and cognitive performance. While certain brain region-specific and/or systemic alterations titrated in part with neurobiological outcome, variations across model systems, study design, and the conspicuous absence of targeted studies implementing combinations of spaceflight stressors, confounded the identification of specific signatures having direct relevance to human activities in space. Summaries are provided for formulating new research directives and more predictive readouts of portending change in neurobiological function.
Collapse
Affiliation(s)
- Rajeev I Desai
- Harvard Medical School, McLean Hospital, Behavioral Biology Program, Belmont, MA 02478, USA.
| | - Charles L Limoli
- Department of Radiation Oncology, University of California Irvine, Medical Sciences I, B146B, Irvine, CA 92697, USA
| | - Craig E L Stark
- Department of Neurobiology of Behavior, University of California Irvine, 1400 Biological Sciences III, Irvine, CA 92697, USA
| | - Shauna M Stark
- Department of Neurobiology of Behavior, University of California Irvine, 1400 Biological Sciences III, Irvine, CA 92697, USA
| |
Collapse
|