1
|
Zhou J, Wang S, Liu M, Li Z. Effect of cryoablation on the spatial transcriptomic landscape of the immune microenvironment in non-small cell lung cancer. J Cancer Res Ther 2024; 20:2141-2147. [PMID: 39792425 DOI: 10.4103/jcrt.jcrt_1887_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/27/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Cryoablation induces antitumor immune responses. Spatial transcriptomic landscape technology has been used to determine the micron-level panoramic transcriptomics of tissue slices in situ. METHODS The effects of cryoablation on the immune microenvironment in non-small cell lung cancer (NSCLC) were explored by comparing the Whole Transcriptome Atlas (WTA) panel of immune cells before and after cryoablation using the spatial transcriptomic landscape. RESULTS The bioinformatics analysis showed that cryoablation significantly affected the WTA of immune cells, particularly genes related to cellular components, biological processes, molecular functions, proliferation and migration, and cytokine-cytokine receptor interaction signaling pathways. CONCLUSIONS The findings of this study suggest that cryoablation significantly impacts the biological functions of immune cells in the tumor microenvironment of NSCLC through multiple mechanisms.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, P.R. China
| | - Shengxi Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, P.R. China
| | - Ming Liu
- Department of Interventional Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, P.R. China
| | - Zhaopei Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, P.R. China
| |
Collapse
|
2
|
Urata S, Yamaguchi S, Nambu A, Sudo K, Nakae S, Yasuda J. The roles of BST-2 in murine B cell development and on virus propagation. Microbiol Immunol 2023; 67:105-113. [PMID: 36604771 DOI: 10.1111/1348-0421.13049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
The bone marrow (BM) stromal cell antigen-2 (BST-2), also known as tetherin, CD317, PDCA-1, or HM1.24, is a membrane protein overexpressed in several types of tumors and may act as a promising target for cancer treatment via antibody-dependent cellular cytotoxicity. BST-2 is also expressed in human BM stromal cells (BMSC), which support B cell development. While the activity of BST-2 as an antiviral factor has been demonstrated, the expression patterns and the role of BST-2 on B-cell development and activation have not been investigated, especially in vivo. In this study, Bst2 knockout (Bst2-/- ) mice were generated to assess the role of BST-2 on B cell development and activation. It was observed that BST-2 was not expressed in BMSC or all B cell progenitors even in wild-type mice and does not play a significant role in B cell development. In addition, the loss of BST-2 had no effect on B cell activation. Furthermore and in contrast to the well-known antiviral role of BST-2, infection of vesicular stomatitis Indiana virus to the BM cells collected from the Bst2-/- mice produced less infectious virus compared with that from the WT mice. These results suggest that murine BST-2 is different from human BST-2 in the expression pattern, physiological function, in vivo, and might possess positive role on VSV replication.
Collapse
Affiliation(s)
- Shuzo Urata
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| | - Sachiko Yamaguchi
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Aya Nambu
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Katsuko Sudo
- Pre-clinical Research Center, Tokyo Medical University, Tokyo, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
3
|
Zhang X, Wang S, Zhu Y, Zhang M, Zhao Y, Yan Z, Wang Q, Li X. Double-edged effects of interferons on the regulation of cancer-immunity cycle. Oncoimmunology 2021; 10:1929005. [PMID: 34262796 PMCID: PMC8253121 DOI: 10.1080/2162402x.2021.1929005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interferons (IFNs) are a large family of pleiotropic cytokines that regulate both innate and adaptive immunity and show anti-cancer effects in various cancer types. Moreover, it was revealed that IFN signaling plays critical roles in the success of cancer therapy strategies, thereby enhancing their therapeutic effects. However, IFNs have minimal or even adverse effects on cancer eradication, and mediate cancer immune escape in some instances. Thus, IFNs have a double-edged effect on the cancer immune response. Recent studies suggest that IFNs regulate each step of the cancer immunity-cycle, consisting of cancer antigen release, presentation of antigens and activation of T cells, trafficking and infiltration of effector T cells into the tumor microenvironment, and recognition and killing of cancer cells, which contributes to our understanding of the mechanisms of IFNs in regulating cancer immunity. In this review, we focus on IFNs and cancer immunity and elaborate on the roles of IFNs in regulating the cancer-immunity cycle.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Stomatology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Pathology, Harbin Medical University, Harbin, China
| | - Song Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yuanyuan Zhu
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Minghui Zhang
- Department of Oncology, Chifeng City Hospital, Chifeng, China
| | - Yan Zhao
- Department of Oncology, Chifeng City Hospital, Chifeng, China
| | - Zhengbin Yan
- Department of Stomatology, the PeopIe's Hospital of Longhua, Shenzhen, China
| | - Qiuxu Wang
- Department of Stomatology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Stomatology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xiaobo Li
- Department of Stomatology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Affiliation(s)
- Noah D Peyser
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, California 94143, USA
| | - Jennifer R Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
5
|
Abe S, Kaneko MK, Tsuchihashi Y, Izumi T, Ogasawara S, Okada N, Sato C, Tobiume M, Otsuka K, Miyamoto L, Tsuchiya K, Kawazoe K, Kato Y, Nishioka Y. Antitumor effect of novel anti-podoplanin antibody NZ-12 against malignant pleural mesothelioma in an orthotopic xenograft model. Cancer Sci 2016; 107:1198-205. [PMID: 27294401 PMCID: PMC5021042 DOI: 10.1111/cas.12985] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 12/29/2022] Open
Abstract
Podoplanin (aggrus) is highly expressed in several types of cancers, including malignant pleural mesothelioma (MPM). Previously, we developed a rat anti-human podoplanin mAb, NZ-1, and a rat-human chimeric anti-human podoplanin antibody, NZ-8, derived from NZ-1, which induced antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity against podoplanin-positive MPM cell lines. In this study, we showed the antitumor effect of NZ-1, NZ-8, and NZ-12, a novel rat-human chimeric anti-human podoplanin antibody derived from NZ-1, in an MPM orthotopic xenograft SCID mouse model. Treatment with NZ-1 and rat NK (CD161a(+) ) cells inhibited the growth of tumors and the production of pleural effusion in NCI-H290/PDPN or NCI-H226 orthotopic xenograft mouse models. NZ-8 and human natural killer (NK) (CD56(+) ) cells also inhibited tumor growth and pleural effusion in MPM orthotopic xenograft mice. Furthermore, NZ-12 induced potent ADCC mediated by human MNC, compared with either NZ-1 or NZ-8. Antitumor effects were observed following treatment with NZ-12 and human NK (CD56(+) ) cells in MPM orthotopic xenograft mice. In addition, combined immunotherapy using the ADCC activity of NZ-12 mediated by human NK (CD56(+) ) cells with pemetrexed, led to enhanced antitumor effects in MPM orthotopic xenograft mice. These results strongly suggest that combination therapy with podoplanin-targeting immunotherapy using both NZ-12 and pemetrexed might provide an efficacious therapeutic strategy for the treatment of MPM.
Collapse
Affiliation(s)
- Shinji Abe
- Department of Clinical Pharmacy Practice Pedagogy, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Department of Respiratory Medicine and Rheumatology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mika Kato Kaneko
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuki Tsuchihashi
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshihiro Izumi
- Department of Clinical Pharmacy Practice Pedagogy, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Satoshi Ogasawara
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoto Okada
- Department of Clinical Pharmacy Practice Pedagogy, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Chiemi Sato
- Department of Clinical Pharmacy Practice Pedagogy, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Makoto Tobiume
- Department of Respiratory Medicine and Rheumatology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kenji Otsuka
- Department of Respiratory Medicine and Rheumatology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Licht Miyamoto
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuyoshi Kawazoe
- Department of Clinical Pharmacy Practice Pedagogy, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yukinari Kato
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| |
Collapse
|
6
|
Mahauad-Fernandez WD, Okeoma CM. The role of BST-2/Tetherin in host protection and disease manifestation. IMMUNITY INFLAMMATION AND DISEASE 2015; 4:4-23. [PMID: 27042298 PMCID: PMC4768070 DOI: 10.1002/iid3.92] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022]
Abstract
Host cells respond to viral infections by activating immune response genes that are not only involved in inflammation, but may also predispose cells to cancerous transformation. One such gene is BST‐2, a type II transmembrane protein with a unique topology that endows it tethering and signaling potential. Through this ability to tether and signal, BST‐2 regulates host response to viral infection either by inhibiting release of nascent viral particles or in some models inhibiting viral dissemination. However, despite its antiviral functions, BST‐2 is involved in disease manifestation, a function linked to the ability of BST‐2 to promote cell‐to‐cell interaction. Therefore, modulating BST‐2 expression and/or activity has the potential to influence course of disease.
Collapse
Affiliation(s)
- Wadie D Mahauad-Fernandez
- Department of MicrobiologyCarver College of MedicineUniversity of IowaIowa CityIA52242USA; Interdisciplinary Program in Molecular and Cellular BiologyUniversity of IowaIowa CityIA52242USA
| | - Chioma M Okeoma
- Department of MicrobiologyCarver College of MedicineUniversity of IowaIowa CityIA52242USA; Interdisciplinary Program in Molecular and Cellular BiologyUniversity of IowaIowa CityIA52242USA
| |
Collapse
|
7
|
Bone marrow stromal antigen 2 (BST-2) DNA is demethylated in breast tumors and breast cancer cells. PLoS One 2015; 10:e0123931. [PMID: 25860442 PMCID: PMC4393144 DOI: 10.1371/journal.pone.0123931] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 03/09/2015] [Indexed: 01/24/2023] Open
Abstract
Background Bone marrow stromal antigen 2 (BST-2) is a known anti-viral gene that has been recently identified to be overexpressed in many cancers, including breast cancer. BST-2 is critical for the invasiveness of breast cancer cells and the formation of metastasis in vivo. Although the regulation of BST-2 in immune cells is unraveling, it is unknown how BST-2 expression is regulated in breast cancer. We hypothesized that meta-analyses of BST-2 gene expression and BST-2 DNA methylation profiles would illuminate mechanisms regulating elevated BST-2 expression in breast tumor tissues and cells. Materials and Methods We performed comprehensive meta-analyses of BST-2 gene expression and BST-2 DNA methylation in The Cancer Genome Atlas (TCGA) and various Gene Expression Omnibus (GEO) datasets. BST-2 expression levels and BST-2 DNA methylation status at specific CpG sites on the BST-2 gene were compared for various breast tumor molecular subtypes and breast cancer cell lines. Results We show that BST-2 gene expression is inversely associated with the methylation status at specific CpG sites in primary breast cancer specimens and breast cancer cell lines. BST-2 demethylation is significantly more prevalent in primary tumors and cancer cells than in normal breast tissues or normal mammary epithelial cells. Demethylation of the BST-2 gene significantly correlates with its mRNA expression. These studies provide the initial evidence that significant differences exist in BST-2 DNA methylation patterns between breast tumors and normal breast tissues, and that BST-2 expression patterns in tumors and cancer cells correlate with hypomethylated BST-2 DNA. Conclusion Our study suggests that the DNA methylation pattern and expression of BST-2 may play a role in disease pathogenesis and could serve as a biomarker for the diagnosis of breast cancer.
Collapse
|
8
|
Ueda K, Ishikawa N, Tatsuguchi A, Saichi N, Fujii R, Nakagawa H. Antibody-coupled monolithic silica microtips for highthroughput molecular profiling of circulating exosomes. Sci Rep 2014; 4:6232. [PMID: 25167841 PMCID: PMC4148700 DOI: 10.1038/srep06232] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/11/2014] [Indexed: 01/19/2023] Open
Abstract
Exosome-mediated signal transportation plays a variety of critical roles in cancer progression and metastasis. From the aspect of cancer diagnosis, circulating exosomes are ideal resources of biomarkers because molecular features of tumor cells are transcribed on them. However, isolating pure exosomes from body fluids is time-consuming and still major challenge to be addressed for comprehensive profiling of exosomal proteins and miRNAs. Here we constructed anti-CD9 antibody-coupled highly porous monolithic silica microtips which allowed automated rapid and reproducible exosome extraction from multiple clinical samples. We applied these tips to explore lung cancer biomarker proteins on exosomes by analyzing 46 serum samples. The mass spectrometric quantification of 1,369 exosomal proteins identified CD91 as a lung adenocarcinoma specific antigen on exosomes, which was further validated with CD9-CD91 exosome sandwich ELISA measuring 212 samples. Our simple device can promote not only biomarker discovery studies but also wide range of omics researches about exosomes.
Collapse
Affiliation(s)
- Koji Ueda
- 1] Division of Biosciences, Functional Proteomics Center, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo, Japan [2] Laboratory for Genome Sequencing Analysis, Center for Integrated Medical Sciences, RIKEN, Tokyo, Japan
| | - Nobuhisa Ishikawa
- Department of Molecular and Internal Medicine, Hiroshima University, Hiroshima, Japan
| | - Ayako Tatsuguchi
- Laboratory for Genome Sequencing Analysis, Center for Integrated Medical Sciences, RIKEN, Tokyo, Japan
| | - Naomi Saichi
- 1] Division of Biosciences, Functional Proteomics Center, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo, Japan [2] Laboratory for Genome Sequencing Analysis, Center for Integrated Medical Sciences, RIKEN, Tokyo, Japan
| | - Risa Fujii
- 1] Division of Biosciences, Functional Proteomics Center, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo, Japan [2] Laboratory for Genome Sequencing Analysis, Center for Integrated Medical Sciences, RIKEN, Tokyo, Japan
| | - Hidewaki Nakagawa
- Laboratory for Genome Sequencing Analysis, Center for Integrated Medical Sciences, RIKEN, Tokyo, Japan
| |
Collapse
|
9
|
Targeted therapy for HM1.24 (CD317) on multiple myeloma cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:965384. [PMID: 25143955 PMCID: PMC4124849 DOI: 10.1155/2014/965384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 07/02/2014] [Indexed: 11/18/2022]
Abstract
Multiple myeloma (MM) still remains an incurable disease, at least because of the existence of cell-adhesion mediated drug-resistant MM cells and/or continuous recruitment of presumed MM cancer stem cell-like cells (CSCs). As a new alternative treatment modality, immunological approaches using monoclonal antibodies (mAbs) and/or cytotoxic T lymphocytes (CTLs) are now attracting much attention as a novel strategy attacking MM cells. We have identified that HM1.24 [also known as bone marrow stromal cell antigen 2 (BST2) or CD317] is overexpressed on not only mature MM cells but also MM CSCs. We then have developed a humanized mAb to HM1.24 and defucosylated version of the mAb to adapt to clinical practice. Moreover, we have successfully induced HM1.24-specific CTLs against MM cells. The combination of these innovative therapeutic modalities may likely exert an anti-MM activity by evading the drug resistance mechanism and eliminating presumed CSCs in MM.
Collapse
|
10
|
Fang KH, Kao HK, Chi LM, Liang Y, Liu SC, Hseuh C, Liao CT, Yen TC, Yu JS, Chang KP. Overexpression of BST2 is associated with nodal metastasis and poorer prognosis in oral cavity cancer. Laryngoscope 2014; 124:E354-60. [PMID: 24706327 DOI: 10.1002/lary.24700] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 03/02/2014] [Accepted: 04/02/2014] [Indexed: 01/11/2023]
Abstract
OBJECTIVES/HYPOTHESIS Bone marrow stromal cell antigen 2 (BST2) was one of the proteins that were found to be related to tumor metastasis in our previous proteomic study. Now we examine its clinical role on the oral cavity squamous cell carcinoma (OSCC). STUDY DESIGN Individual retrospective cohort study and basic research. METHODS Immunohistochemical analysis, Western blotting, and quantitative real-time polymerase chain reaction were used to demonstrate the expression levels of BST2 on 159 OSCC tumors. RNA interference was utilized for cell migration and proliferation study in vitro. RESULTS BST2 expression was significantly higher in OSCC cells of metastatic lymph nodes and primary tumor cells, compared to adjacent normal epithelia. Higher BST2 expression was associated with positive N stage, advanced overall stage, perineural invasion, and tumor depth (P = .049, .015, .021, and .010, respectively). OSCC patients with higher BST2 expression had poorer prognosis for disease-specific and disease-free survival (P = .009 and .001, respectively). Multivariate analyses also demonstrated that higher BST2 expression is an independent prognostic factor of disease-specific and disease-free survival (P = .047 and .013, respectively). In vitro suppression of BST2 expression in OEC-M1 cells showed that BST2 contributes to tumor migration of OSCC cells. CONCLUSIONS The findings in this study indicate that BST2 expression in OSCC tumors is an independent prognostic factor of patient survival and associated with tumor metastasis.
Collapse
Affiliation(s)
- Ku-Hao Fang
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Munder M, Engelhardt M, Knies D, Medenhoff S, Wabnitz G, Luckner-Minden C, Feldmeyer N, Voss RH, Kropf P, Müller I, Conradi R, Samstag Y, Theobald M, Ho AD, Goldschmidt H, Hundemer M. Cytotoxicity of tumor antigen specific human T cells is unimpaired by arginine depletion. PLoS One 2013; 8:e63521. [PMID: 23717444 PMCID: PMC3662698 DOI: 10.1371/journal.pone.0063521] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/02/2013] [Indexed: 12/23/2022] Open
Abstract
Tumor-growth is often associated with the expansion of myeloid derived suppressor cells that lead to local or systemic arginine depletion via the enzyme arginase. It is generally assumed that this arginine deficiency induces a global shut-down of T cell activation with ensuing tumor immune escape. While the impact of arginine depletion on polyclonal T cell proliferation and cytokine secretion is well documented, its influence on chemotaxis, cytotoxicity and antigen specific activation of human T cells has not been demonstrated so far. We show here that chemotaxis and early calcium signaling of human T cells are unimpaired in the absence of arginine. We then analyzed CD8+ T cell activation in a tumor peptide as well as a viral peptide antigen specific system: (i) CD8+ T cells with specificity against the MART-1aa26–35*A27L tumor antigen expanded with in vitro generated dendritic cells, and (ii) clonal CMV pp65aa495–503 specific T cells and T cells retrovirally transduced with a CMV pp65aa495–503 specific T cell receptor were analyzed. Our data demonstrate that human CD8+ T cell antigen specific cytotoxicity and perforin secretion are completely preserved in the absence of arginine, while antigen specific proliferation as well as IFN-γ and granzyme B secretion are severely compromised. These novel results highlight the complexity of antigen specific T cell activation and demonstrate that human T cells can preserve important activation-induced effector functions in the context of arginine deficiency.
Collapse
Affiliation(s)
- Markus Munder
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center Mainz, Mainz, Germany
| | - Melanie Engelhardt
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Diana Knies
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center Mainz, Mainz, Germany
| | - Sergej Medenhoff
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Guido Wabnitz
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Claudia Luckner-Minden
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center Mainz, Mainz, Germany
| | - Nadja Feldmeyer
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Ralf-Holger Voss
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center Mainz, Mainz, Germany
| | - Pascale Kropf
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ingrid Müller
- Department of Medicine, Section of Immunology, Imperial College London, London, United Kingdom
| | - Roland Conradi
- Transfusion Center, University Medical Center Mainz, Mainz, Germany
| | - Yvonne Samstag
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Theobald
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center Mainz, Mainz, Germany
| | - Anthony D. Ho
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Michael Hundemer
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
12
|
Abe S, Morita Y, Kaneko MK, Hanibuchi M, Tsujimoto Y, Goto H, Kakiuchi S, Aono Y, Huang J, Sato S, Kishuku M, Taniguchi Y, Azuma M, Kawazoe K, Sekido Y, Yano S, Akiyama SI, Sone S, Minakuchi K, Kato Y, Nishioka Y. A novel targeting therapy of malignant mesothelioma using anti-podoplanin antibody. THE JOURNAL OF IMMUNOLOGY 2013; 190:6239-49. [PMID: 23690472 DOI: 10.4049/jimmunol.1300448] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Podoplanin (Aggrus), which is a type I transmembrane sialomucin-like glycoprotein, is highly expressed in malignant pleural mesothelioma (MPM). We previously reported the generation of a rat anti-human podoplanin Ab, NZ-1, which inhibited podoplanin-induced platelet aggregation and hematogenous metastasis. In this study, we examined the antitumor effector functions of NZ-1 and NZ-8, a novel rat-human chimeric Ab generated from NZ-1 including Ab-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity against MPM in vitro and in vivo. Immunostaining with NZ-1 showed the expression of podoplanin in 73% (11 out of 15) of MPM cell lines and 92% (33 out of 36) of malignant mesothelioma tissues. NZ-1 could induce potent ADCC against podoplanin-positive MPM cells mediated by rat NK (CD161a(+)) cells, but not murine splenocytes or human mononuclear cells. Treatment with NZ-1 significantly reduced the growth of s.c. established tumors of MPM cells (ACC-MESO-4 or podoplanin-transfected MSTO-211H) in SCID mice, only when NZ-1 was administered with rat NK cells. In in vivo imaging, NZ-1 efficiently accumulated to xenograft of MPM, and its accumulation continued for 3 wk after systemic administration. Furthermore, NZ-8 preferentially recognized podoplanin expressing in MPM, but not in normal tissues. NZ-8 could induce higher ADCC mediated by human NK cells and complement-dependent cytotoxicity as compared with NZ-1. Treatment with NZ-8 and human NK cells significantly inhibited the growth of MPM cells in vivo. These results strongly suggest that targeting therapy to podoplanin with therapeutic Abs (i.e., NZ-8) derived from NZ-1 might be useful as a novel immunotherapy against MPM.
Collapse
Affiliation(s)
- Shinji Abe
- Central Office for Clinical Pharmacy Training, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Arenaviruses have a bisegmented negative-strand RNA genome, which encodes four viral proteins: GP and NP by the S segment and L and Z by the L segment. These four viral proteins possess multiple functions in infection, replication and release of progeny viruses from infected cells. The small RING finger protein, Z protein is a matrix protein that plays a central role in viral assembly and budding. Although all arenaviruses encode Z protein, amino acid sequence alignment showed a huge variety among the species, especially at the C-terminus where the L-domain is located. Recent publications have demonstrated the interactions between viral protein and viral protein, and viral protein and host cellular protein, which facilitate transportation and assembly of viral components to sites of virus egress. This review presents a summary of current knowledge regarding arenavirus assembly and budding, in comparison with other enveloped viruses. We also refer to the restriction of arenavirus production by the antiviral cellular factor, Tetherin/BST-2.
Collapse
|
14
|
Yokoyama T, Enomoto T, Serada S, Morimoto A, Matsuzaki S, Ueda Y, Yoshino K, Fujita M, Kyo S, Iwahori K, Fujimoto M, Kimura T, Naka T. Plasma membrane proteomics identifies bone marrow stromal antigen 2 as a potential therapeutic target in endometrial cancer. Int J Cancer 2012; 132:472-84. [PMID: 22729361 DOI: 10.1002/ijc.27679] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/30/2012] [Indexed: 12/31/2022]
Abstract
This report utilizes a novel proteomic method for discovering potential therapeutic targets in endometrial cancer. We used a biotinylation-based approach for cell-surface protein enrichment combined with isobaric tags for relative and absolute quantitation (iTRAQ) technology using nano liquid chromatography-tandem mass spectrometry analysis to identify specifically overexpressed proteins in endometrial cancer cells compared with normal endometrial cells. We identified a total of 272 proteins, including 11 plasma membrane proteins, whose expression increased more than twofold in at least four of seven endometrial cancer cell lines compared with a normal endometrial cell line. Overexpression of bone marrow stromal antigen 2 (BST2) was detected and the observation was supported by immunohistochemical analysis using clinical samples. The expression of BST2 was more characteristic of 118 endometrial cancer tissues compared with 59 normal endometrial tissues (p < 0.0001). The therapeutic effect of an anti-BST2 antibody was studied both in vitro and in vivo. An anti-BST2 monoclonal antibody showed in vitro cytotoxicity in BST2-positive endometrial cancer cells via antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. In an in vivo xenograft model, anti-BST2 antibody treatment significantly inhibited tumor growth of BST2-positive endometrial cancer cells in an NK cell-dependent manner. The anti-BST2 antibody had a potent antitumor effect against endometrial cancer both in vitro and in vivo, indicating a strong potential for clinical use of anti-BST2 antibody for endometrial cancer treatment. The combination of biotinylation-based enrichment of cell-surface proteins and iTRAQ analysis should be a useful screening method for future discovery of potential therapeutic targets.
Collapse
Affiliation(s)
- Takuhei Yokoyama
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Potent in vitro and in vivo activity of an Fc-engineered humanized anti-HM1.24 antibody against multiple myeloma via augmented effector function. Blood 2012; 119:2074-82. [PMID: 22246035 DOI: 10.1182/blood-2011-06-364521] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
HM1.24, an immunologic target for multiple myeloma (MM) cells, has not been effectively targeted with therapeutic monoclonal antibodies (mAbs). In this study, we investigated in vitro and in vivo anti-MM activities of XmAb5592, a humanized anti-HM1.24 mAb with Fc-domain engineered to significantly enhance FcγR binding and associated immune effector functions. XmAb5592 increased antibody-dependent cellular cytotoxicity (ADCC) several fold relative to the anti-HM1.24 IgG1 analog against both MM cell lines and primary patient myeloma cells. XmAb5592 also augmented antibody dependent cellular phagocytosis (ADCP) by macrophages. Natural killer (NK) cells became more activated by XmAb5592 than the IgG1 analog, evidenced by increased cell surface expression of granzyme B-dependent CD107a and MM cell lysis, even in the presence of bone marrow stromal cells. XmAb5592 potently inhibited tumor growth in mice bearing human MM xenografts via FcγR-dependent mechanisms, and was significantly more effective than the IgG1 analog. Lenalidomide synergistically enhanced in vitro ADCC against MM cells and in vivo tumor inhibition induced by XmAb5592. A single dose of 20 mg/kg XmAb5592 effectively depleted both blood and bone marrow plasma cells in cynomolgus monkeys. These results support clinical development of XmAb5592, both as a monotherapy and in combination with lenalidomide, to improve patient outcome of MM.
Collapse
|
16
|
Antibody-mediated enhancement of HIV-1 and HIV-2 production from BST-2/tetherin-positive cells. J Virol 2011; 85:11981-94. [PMID: 21917971 DOI: 10.1128/jvi.05176-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BST-2/CD317/HM1.24/tetherin is a B-cell antigen overexpressed on the surface of myeloma cell lines and on neoplastic plasma cells of patients with multiple myeloma. Antibodies to BST-2 are in clinical trial for the treatment of multiple myeloma and are considered for the treatment of solid tumors with high BST-2 antigen levels. Functionally, BST-2 restricts the secretion of retroviruses, including human immunodeficiency virus type 1, as well as members of the herpesvirus, filovirus, and arenavirus families, presumably by tethering nascent virions to the cell surface. Here we report that BST-2 antibody treatment facilitates virus release from BST-2(+) cells by interfering with the tethering activity of BST-2. BST-2 antibodies were unable to release already tethered virions and were most effective when added early during virus production. BST-2 antibody treatment did not affect BST-2 dimerization and did not reduce the cell surface expression of BST-2. Interestingly, BST-2 antibody treatment reduced the nonspecific shedding of BST-2 and limited the encapsidation of BST-2 into virions. Finally, flotation analyses indicate that BST-2 antibodies affect the distribution of BST-2 within membrane rafts. Our data suggest that BST-2 antibody treatment may enhance virus release by inducing a redistribution of BST-2 at the cell surface, thus preventing it from accumulating at the sites of virus budding.
Collapse
|
17
|
Andrew A, Strebel K. The interferon-inducible host factor bone marrow stromal antigen 2/tetherin restricts virion release, but is it actually a viral restriction factor? J Interferon Cytokine Res 2010; 31:137-44. [PMID: 21166593 DOI: 10.1089/jir.2010.0108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Viruses face a variety of obstacles when infecting a new host. The past few years have brought exciting new insights into the function of restriction factors, which form part of the host's innate immune system. One of the most recently identified restriction factors is bone marrow stromal antigen 2 (BST-2)/tetherin. BST-2 is an interferon-inducible gene whose expression dramatically reduces the release of viruses from infected cells. This effect of BST-2 is not specific to human immunodeficiency virus but affects a broad range of enveloped viruses. Since the identification of BST-2 as a restriction factor in 2008, much progress has been made in understanding the molecular properties and functional characteristics of this host factor. The goal of this review was to provide an update on our current understanding of the role of BST-2 in regulating virus release and to discuss its role in controlling virus spread during productive infection with special emphasis on human immunodeficiency virus-1.
Collapse
Affiliation(s)
- Amy Andrew
- Laboratory of Molecular Microbiology, Viral Biochemistry Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 90892-0460, USA
| | | |
Collapse
|