1
|
Hauer C, Blomberg R, Sompel K, Magin CM, Tennis MA. Hydrogel-embedded precision-cut lung slices support ex vivo culture of in vivo -induced premalignant lung lesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591698. [PMID: 38746166 PMCID: PMC11092434 DOI: 10.1101/2024.04.29.591698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Lung cancer is the leading cause of global cancer death and prevention strategies are key to reducing mortality. Medical prevention may have a larger impact than treatment on mortality by targeting high-risk populations and reducing their lung cancer risk. Premalignant lesions (PMLs) that can be intercepted by prevention agents are difficult to study in humans but easily accessible in murine preclinical carcinogenesis studies. Precision-cut lung slices (PCLS) are underutilized as an ex vivo model for lung cancer studies due to limited culture time. Embedding PCLS within bioengineered hydrogels extends PCLS viability and functionality for up to six weeks. Here, we embedded PCLS generated from urethane-induced murine PMLs in cell-degradable and non-degradable hydrogels to study viability and activity of the tissues over six weeks. PMLs in hydrogel-embedded PCLS maintained viability, gene expression, and proliferation. Treatment of hydrogel-embedded PCLS containing urethane-induced PMLs with iloprost, a known lung cancer prevention agent, recapitulated in vivo gene expression and activity. These studies also showed that iloprost reduced proliferation and PML size in hydrogel-embedded PCLS, with some differences based on hydrogel formulation and suggested that hydrogel-embedded PCLS models may support long-term culture of in vivo generated PMLs to improve preclinical studies of lung cancer and prevention agents.
Collapse
|
2
|
Tennis MA, Smith AJ, Dwyer-Nield LD, Keith RL. Intranasal iloprost prevents tumors in a murine lung carcinogenesis model. Cancer Prev Res (Phila) 2021; 15:11-16. [PMID: 34556494 DOI: 10.1158/1940-6207.capr-21-0086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/12/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Lung cancer chemoprevention with the prostacyclin analogue iloprost is the most promising approach to date for intercepting progression of premalignant lung lesions in former smokers. Previous pre-clinical studies of iloprost used oral delivery, but a study modeling delivery directly to the target organ was needed. In vivo and in vitro studies have identified gene expression changes following iloprost treatment, including increased E-cadherin and PPAR𝛄 and decreased COX2 and Vimentin. We used tumor counts and gene expression to demonstrate the effectiveness of intranasal delivery of iloprost in a murine model of premalignant adenomas. Intranasal delivery of iloprost reduced adenoma multiplicity14 weeks after urethane exposure in FVB mice compared to untreated urethane controls. Intranasal iloprost reversed urethane-induced gene expression changes in tumors and whole lung. These results correspond to previous studies of oral iloprost and in vitro treatment of human bronchial epithelial cells. This study demonstrates that intranasal delivery of iloprost in a mouse model of lung premalignant lesions is effective chemoprevention. This will be an essential tool for exploring mechanisms and outcomes of iloprost chemoprevention, along with supporting ongoing clinical trials of inhaled iloprost chemoprevention.
Collapse
Affiliation(s)
- Meredith A Tennis
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus
| | - Alex J Smith
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus
| | | | - Robert L Keith
- Medicine/Division of Pulmonary Sciences, Eastern Colorado Veterans Affairs Medical Center
| |
Collapse
|
3
|
Huang LS, Kotha SR, Avasarala S, VanScoyk M, Winn RA, Pennathur A, Yashaswini PS, Bandela M, Salgia R, Tyurina YY, Kagan VE, Zhu X, Reddy SP, Sudhadevi T, Punathil-Kannan PK, Harijith A, Ramchandran R, Bikkavilli RK, Natarajan V. Lysocardiolipin acyltransferase regulates NSCLC cell proliferation and migration by modulating mitochondrial dynamics. J Biol Chem 2020; 295:13393-13406. [PMID: 32732285 DOI: 10.1074/jbc.ra120.012680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Lysocardiolipin acyltransferase (LYCAT), a cardiolipin (CL)-remodeling enzyme, is crucial for maintaining normal mitochondrial function and vascular development. Despite the well-characterized role for LYCAT in the regulation of mitochondrial dynamics, its involvement in lung cancer, if any, remains incompletely understood. In this study, in silico analysis of TCGA lung cancer data sets revealed a significant increase in LYCAT expression, which was later corroborated in human lung cancer tissues and immortalized lung cancer cell lines via indirect immunofluorescence and immunoblotting, respectively. Stable knockdown of LYCAT in NSCLC cell lines not only reduced CL and increased monolyso-CL levels but also reduced in vivo tumor growth, as determined by xenograft studies in athymic nude mice. Furthermore, blocking LYCAT activity using a LYCAT mimetic peptide attenuated cell migration, suggesting a novel role for LYCAT activity in promoting NSCLC. Mechanistically, the pro-proliferative effects of LYCAT were mediated by an increase in mitochondrial fusion and a G1/S cell cycle transition, both of which are linked to increased cell proliferation. Taken together, these results demonstrate a novel role for LYCAT in promoting NSCLC and suggest that targeting LYCAT expression or activity in NSCLC may provide new avenues for the therapeutic treatment of lung cancer.
Collapse
Affiliation(s)
- Long Shuang Huang
- Department of Pharmacology, University of Illinois, Chicago, Illinois, USA
| | - Sainath R Kotha
- Department of Pharmacology, University of Illinois, Chicago, Illinois, USA
| | | | - Michelle VanScoyk
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Robert A Winn
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Arjun Pennathur
- Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | - Mounica Bandela
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Ravi Salgia
- Beckman Research Institute, City of Hope, Los Angeles, California, USA
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Chemistry, Pharmacology, and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Laboratory of Navigational Redox Lipidomics, I. M. Sechenov Moscow State Medical University, Moscow, Russia
| | - Xiangdong Zhu
- Center for Cardiovascular Research and Department of Emergency Medicine, University of Illinois, Chicago, Illinois, USA
| | - Sekhar P Reddy
- Department of Pediatrics, University of Illinois, Chicago, Illinois, USA
| | - Tara Sudhadevi
- Department of Pediatrics, University of Illinois, Chicago, Illinois, USA
| | | | - Anantha Harijith
- Department of Pediatrics, University of Illinois, Chicago, Illinois, USA
| | | | | | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, Illinois, USA; Department of Medicine, University of Illinois, Chicago, Illinois, USA.
| |
Collapse
|
4
|
Avasarala S, Wu PY, Khan SQ, Yanlin S, Van Scoyk M, Bao J, Di Lorenzo A, David O, Bedford MT, Gupta V, Winn RA, Bikkavilli RK. PRMT6 Promotes Lung Tumor Progression via the Alternate Activation of Tumor-Associated Macrophages. Mol Cancer Res 2020; 18:166-178. [PMID: 31619507 PMCID: PMC6942249 DOI: 10.1158/1541-7786.mcr-19-0204] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/29/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022]
Abstract
Increased expression of protein arginine methyl transferase 6 (PRMT6) correlates with worse prognosis in lung cancer cases. To interrogate the in vivo functions of PRMT6 in lung cancer, we developed a tamoxifen-inducible lung-targeted PRMT6 gain-of-function mouse model, which mimics PRMT6 amplification events in human lung tumors. Lung-targeted overexpression of PRMT6 accelerated cell proliferation de novo and potentiated chemical carcinogen (urethane)-induced lung tumor growth. To explore the molecular mechanism/s by which PRMT6 promotes lung tumor growth, we used proteomics-based approaches and identified interleukin-enhancer binding protein 2 (ILF2) as a novel PRMT6-associated protein. Furthermore, by using a series of in vitro gain-of-function and loss-of-function experiments, we defined a new role for the PRMT6-ILF2 signaling axis in alternate activation of tumor-associated macrophages (TAM). Interestingly, we have also identified macrophage migration inhibitory factor, which has recently been shown to regulate alternate activation of TAMs, as an important downstream target of PRMT6-ILF2 signaling. Collectively, our findings reveal a previously unidentified noncatalytic role for PRMT6 in potentiating lung tumor progression via the alternate activation of TAMs. IMPLICATIONS: This is the first study to demonstrate an in vivo role for PRMT6 in lung tumor progression via the alternate activation of TAMs.
Collapse
Affiliation(s)
- Sreedevi Avasarala
- Medicine/Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Pei-Ying Wu
- Medicine/Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Samia Q Khan
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Su Yanlin
- Medicine/Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Michelle Van Scoyk
- Medicine/Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jianqiang Bao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Alessandra Di Lorenzo
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Odile David
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Vineet Gupta
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Robert A Winn
- Medicine/Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- University of Illinois Cancer Center, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| | - Rama Kamesh Bikkavilli
- Medicine/Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.
- University of Illinois Cancer Center, Chicago, Illinois
| |
Collapse
|
5
|
Abstract
Bioactive lipids are essential components of human cells and tissues. As discussed in this review, the cancer lipidome is diverse and malleable, with the ability to promote or inhibit cancer pathogenesis. Targeting lipids within the tumor and surrounding microenvironment may be a novel therapeutic approach for treating cancer patients. Additionally, the emergence of a novel super-family of lipid mediators termed specialized pro-resolving mediators (SPMs) has revealed a new role for bioactive lipid mediators in the resolution of inflammation in cancer biology. The role of SPMs in cancer holds great promise in our understanding of cancer pathogenesis and can ultimately be used in future cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Megan L Sulciner
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Allison Gartung
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Molly M Gilligan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Charles N Serhan
- Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Song JM, Anandharaj A, Upadhyaya P, Kirtane AR, Kim JH, Hong KH, Panyam J, Kassie F. Honokiol suppresses lung tumorigenesis by targeting EGFR and its downstream effectors. Oncotarget 2018; 7:57752-57769. [PMID: 27458163 PMCID: PMC5295387 DOI: 10.18632/oncotarget.10759] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/10/2016] [Indexed: 01/09/2023] Open
Abstract
Since epidermal growth factor receptor (EGFR) is commonly deregulated in pre-malignant lung epithelium, targeting EGFR may arrest the development of lung cancer. Here, we showed that honokiol (2.5–7.5 μM), a bioactive compound of Magnolia officinalis, differentially suppressed proliferation (up to 93%) and induced apoptosis (up to 61%) of EGFR overexpressing tumorigenic bronchial cells and these effects were paralleled by downregulation of phospho-EGFR, phospho-Akt, phospho-STAT3 and cell cycle-related proteins as early as 6–12 h post-treatment. Autocrine secretion of EGF sensitized 1170 cells to the effects of honokiol. Molecular docking studies indicated that honokiol binds to the tyrosine kinase domain of EGFR although it was less efficient than erlotinib. However, the anti-proliferative and pro-apoptotic activities of honokiol were stronger than those of erlotinib. Upon combinatory treatment, honokiol sensitized bronchial cells and erlotinib resistant H1650 and H1975 cells to erlotinib. Furthermore, in a mouse lung tumor bioassay, intranasal instillation of liposomal honokiol (5 mg/kg) for 14 weeks reduced the size and multiplicity (49%) of lung tumors and the level of total- and phospho-EGFR, phospho-Akt and phospho-STAT3. Overall, our results indicate that honokiol is a promising candidate to suppress the development and even progression of lung tumors driven by EGFR deregulation.
Collapse
Affiliation(s)
- Jung Min Song
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ameya R Kirtane
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jong-Hyuk Kim
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | - Kwon Ho Hong
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Jayanth Panyam
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Fekadu Kassie
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
7
|
Martin LJ, Smith SB, Khoutorsky A, Magnussen CA, Samoshkin A, Sorge RE, Cho C, Yosefpour N, Sivaselvachandran S, Tohyama S, Cole T, Khuong TM, Mir E, Gibson DG, Wieskopf JS, Sotocinal SG, Austin JS, Meloto CB, Gitt JH, Gkogkas C, Sonenberg N, Greenspan JD, Fillingim RB, Ohrbach R, Slade GD, Knott C, Dubner R, Nackley AG, Ribeiro-da-Silva A, Neely GG, Maixner W, Zaykin DV, Mogil JS, Diatchenko L. Epiregulin and EGFR interactions are involved in pain processing. J Clin Invest 2017; 127:3353-3366. [PMID: 28783046 DOI: 10.1172/jci87406] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/27/2017] [Indexed: 12/27/2022] Open
Abstract
The EGFR belongs to the well-studied ErbB family of receptor tyrosine kinases. EGFR is activated by numerous endogenous ligands that promote cellular growth, proliferation, and tissue regeneration. In the present study, we have demonstrated a role for EGFR and its natural ligand, epiregulin (EREG), in pain processing. We show that inhibition of EGFR with clinically available compounds strongly reduced nocifensive behavior in mouse models of inflammatory and chronic pain. EREG-mediated activation of EGFR enhanced nociception through a mechanism involving the PI3K/AKT/mTOR pathway and matrix metalloproteinase-9. Moreover, EREG application potentiated capsaicin-induced calcium influx in a subset of sensory neurons. Both the EGFR and EREG genes displayed a genetic association with the development of chronic pain in several clinical cohorts of temporomandibular disorder. Thus, EGFR and EREG may be suitable therapeutic targets for persistent pain conditions.
Collapse
Affiliation(s)
- Loren J Martin
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada.,Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Shad B Smith
- Center for Neurosensory Disorders, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Arkady Khoutorsky
- Department of Biochemistry and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Claire A Magnussen
- Department of Pharmacology and Therapeutics and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Alexander Samoshkin
- Department of Anesthesia, Faculty of Dentistry and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Robert E Sorge
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Chulmin Cho
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Noosha Yosefpour
- Department of Pharmacology and Therapeutics and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | | | - Sarasa Tohyama
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Tiffany Cole
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Thang M Khuong
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Ellen Mir
- Center for Neurosensory Disorders, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dustin G Gibson
- Center for Neurosensory Disorders, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jeffrey S Wieskopf
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Susana G Sotocinal
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Jean Sebastien Austin
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Carolina B Meloto
- Department of Anesthesia, Faculty of Dentistry and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Joseph H Gitt
- Center for Neurosensory Disorders, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Christos Gkogkas
- Department of Biochemistry and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Nahum Sonenberg
- Department of Biochemistry and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Joel D Greenspan
- Department of Neural and Pain Sciences and Brotman Facial Pain Center, University of Maryland Dental School, Baltimore, Maryland, USA
| | - Roger B Fillingim
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, Florida, USA
| | - Richard Ohrbach
- Department of Oral Diagnostic Services, University at Buffalo, Buffalo, New York, USA
| | - Gary D Slade
- Department of Dental Ecology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Charles Knott
- Battelle Memorial Institute, Durham, North Carolina, USA
| | - Ronald Dubner
- Department of Neural and Pain Sciences and Brotman Facial Pain Center, University of Maryland Dental School, Baltimore, Maryland, USA
| | - Andrea G Nackley
- Center for Neurosensory Disorders, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - G Gregory Neely
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - William Maixner
- Center for Neurosensory Disorders, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dmitri V Zaykin
- National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Jeffrey S Mogil
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Luda Diatchenko
- Department of Anesthesia, Faculty of Dentistry and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Association of Nrf2 with airway pathogenesis: lessons learned from genetic mouse models. Arch Toxicol 2015; 89:1931-57. [PMID: 26194645 DOI: 10.1007/s00204-015-1557-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/17/2015] [Indexed: 01/11/2023]
Abstract
Nrf2 is a key transcription factor for antioxidant response element (ARE)-bearing genes involved in diverse host defense functions including redox balance, cell cycle, immunity, mitochondrial biogenesis, energy metabolism, and carcinogenesis. Nrf2 in the airways is particularly essential as the respiratory system continuously interfaces with environmental stress. Since Nrf2 was determined to be a susceptibility gene for a model of acute lung injury, its protective capacity in the airways has been demonstrated in experimental models of human disorders using Nrf2 mutant mice which were susceptible to supplemental respiratory therapy (e.g., hyperoxia, mechanical ventilation), cigarette smoke, allergens, virus, environmental pollutants, and fibrotic agents compared to wild-type littermates. Recent studies also determined that Nrf2 is indispensable in developmental lung injury. While association studies with genetic NRF2 polymorphisms supported a protective role for murine Nrf2 in oxidative airway diseases, somatic NRF2 mutations enhanced NRF2-ARE responses, and were favorable for lung carcinogenesis and chemoresistance. Bioinformatic tools have elucidated direct Nrf2 targets as well as Nrf2-interacting networks. Moreover, potent Nrf2-ARE agonists protected oxidant-induced lung phenotypes in model systems, suggesting a therapeutic or preventive intervention. Further investigations on Nrf2 should yield greater understanding of its contribution to normal and pathophysiological function in the airways.
Collapse
|
9
|
Wnt7a is a novel inducer of β-catenin-independent tumor-suppressive cellular senescence in lung cancer. Oncogene 2015; 34:5317-28. [PMID: 25728679 PMCID: PMC4558401 DOI: 10.1038/onc.2015.2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/18/2014] [Accepted: 10/14/2014] [Indexed: 12/14/2022]
Abstract
Cellular senescence is an initial barrier for carcinogenesis. However, the signaling mechanisms that trigger cellular senescence are incompletely understood, particularly in vivo. Here we identify Wnt7a as a novel upstream inducer of cellular senescence. In two different mouse strains (C57Bl/6J and FVB/NJ), we show that the loss of Wnt7a is a major contributing factor for increased lung tumorigenesis owing to reduced cellular senescence, and not reduced apoptosis, or autophagy. Wnt7a-null mice under de novo conditions and in both the strains display E-cadherin-to-N-cadherin switch, reduced expression of cellular senescence markers and reduced expression of senescence-associated secretory phenotype, indicating a genetic predisposition of these mice to increased carcinogen-induced lung tumorigenesis. Interestingly, Wnt7a induced an alternate senescence pathway, which was independent of β-catenin, and distinct from that of classical oncogene-induced senescence mediated by the well-known p16INK4a and p19ARF pathways. Mechanistically, Wnt7a induced cellular senescence via inactivation of S-phase kinase-associated protein 2, an important alternate regulator of cellular senescence. Additionally, we identified Iloprost, a prostacyclin analog, which initiates downstream signaling cascades similar to that of Wnt7a, as a novel inducer of cellular senescence, presenting potential future clinical translational strategies. Thus pro-senescence therapies using either Wnt7a or its mimic, Iloprost, might represent a new class of therapeutic treatments for lung cancer.
Collapse
|
10
|
Sechler M, Cizmic AD, Avasarala S, Van Scoyk M, Brzezinski C, Kelley N, Bikkavilli RK, Winn RA. Non-small-cell lung cancer: molecular targeted therapy and personalized medicine - drug resistance, mechanisms, and strategies. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2013; 6:25-36. [PMID: 23690695 PMCID: PMC3656464 DOI: 10.2147/pgpm.s26058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Targeted therapies for cancer bring the hope of specific treatment, providing high efficacy and in some cases lower toxicity than conventional treatment. Although targeted therapeutics have helped immensely in the treatment of several cancers, like chronic myelogenous leukemia, colon cancer, and breast cancer, the benefit of these agents in the treatment of lung cancer remains limited, in part due to the development of drug resistance. In this review, we discuss the mechanisms of drug resistance and the current strategies used to treat lung cancer. A better understanding of these drug-resistance mechanisms could potentially benefit from the development of a more robust personalized medicine approach for the treatment of lung cancer.
Collapse
Affiliation(s)
- Marybeth Sechler
- Division of Pulmonary Sciences and Critical Care, University of Colorado, Aurora, CO, USA ; Program in Cancer Biology, University of Colorado, Aurora, CO, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Bioactivity and bioavailability of ginsenosides are dependent on the glycosidase activities of the A/J mouse intestinal microbiome defined by pyrosequencing. Pharm Res 2012; 30:836-46. [PMID: 23254888 DOI: 10.1007/s11095-012-0925-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 11/05/2012] [Indexed: 12/24/2022]
Abstract
PURPOSE To investigate the ability of bacteria in the intestinal microbiome to convert naturally occurring primary ginsenosides in red ginseng extract to active secondary ginsenosides. METHODS Anti-proliferative ginsenoside activity was tested using mouse lung cancer LM1 cells. Permeabilities were evaluated in Caco-2 cell monolayers. Systemic exposure of secondary ginsenosides was determined in A/J mice. 16S rRNA gene pyrosequencing was used to determine membership and abundance of bacteria in intestinal microbiome. RESULTS Secondary ginsenoside C-K exhibited higher anti-proliferative activity and permeability than primary ginsenosides. Significant amounts of secondary ginsenosides (F2 and C-K) were found in blood of A/J mice following oral administration of primary ginsenoside Rb1. Because mammalian cells did not hydrolyze ginsenoside, we determined the ability of bacteria to hydrolyze ginsenosides and found that Rb1 underwent stepwise hydrolysis to Rd, F2, and then C-K. Formation of F2 from Rd was the rate-limiting step in the biotransformation of Rb1 to C-K. CONCLUSION Conversion to F2 is the rate-limiting step in bioactivation of primary ginsenosides by A/J mouse intestinal microbiome, whose characterization reveals the presence of certain bacterial families capable of enabling the formation of F2 and C-K in vivo.
Collapse
|
12
|
Karoor V, Le M, Merrick D, Fagan KA, Dempsey EC, Miller YE. Alveolar hypoxia promotes murine lung tumor growth through a VEGFR-2/EGFR-dependent mechanism. Cancer Prev Res (Phila) 2012; 5:1061-71. [PMID: 22700853 DOI: 10.1158/1940-6207.capr-12-0069-t] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Patients with chronic obstructive pulmonary disease (COPD) are at an increased risk for the development of lung cancer, the mechanisms for which are incompletely understood. We hypothesized that the hypoxic pulmonary microenvironment present in COPD would augment lung carcinogenesis. Mice were subjected to chemical carcinogenesis protocols and placed in either hypoxia or normoxia. Mice exposed to chronic hypoxia developed tumors with increased volume compared with normoxic controls. Both lungs and tumors from hypoxic mice showed a preferential stabilization of HIF-2α and increased expression of VEGF-A, FGF2, and their receptors as well as other survival, proliferation, and angiogenic signaling pathways regulated by HIF-2α. We showed that tumors arising in hypoxic animals have increased sensitivity to VEGFR-2/EGFR inhibition, as chemoprevention with vandetanib showed markedly increased activity in hypoxic mice. These studies showed that lung tumors arising in a hypoxic microenvironment express increased growth, angiogenic, and survival signaling that could contribute to the increased lung cancer risk in COPD. Furthermore, the differential sensitivity of tumors arising in hypoxia to VEGFR-2/EGFR inhibition suggests that the altered signaling present in tumors arising in hypoxic lung might be therapeutically exploited in patients with underlying COPD.
Collapse
Affiliation(s)
- Vijaya Karoor
- Department of Medicine, University of Colorado Denver, Denver, CO, USA
| | | | | | | | | | | |
Collapse
|
13
|
Epigenetic deregulation of the COX pathway in cancer. Prog Lipid Res 2012; 51:301-13. [PMID: 22580191 DOI: 10.1016/j.plipres.2012.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/08/2012] [Accepted: 02/08/2012] [Indexed: 01/12/2023]
Abstract
Inflammation is a major cause of cancer and may condition its progression. The deregulation of the cyclooxygenase (COX) pathway is implicated in several pathophysiological processes, including inflammation and cancer. Although, its targeting with nonsteroidal antiinflammatory drugs (NSAIDs) and COX-2 selective inhibitors has been investigated for years with promising results at both preventive and therapeutic levels, undesirable side effects and the limited understanding of the regulation and functionalities of the COX pathway compromise a more extensive application of these drugs. Epigenetics is bringing additional levels of complexity to the understanding of basic biological and pathological processes. The deregulation of signaling and biosynthetic pathways by epigenetic mechanisms may account for new molecular targets in cancer therapeutics. Genes of the COX pathway are seldom mutated in neoplastic cells, but a large proportion of them show aberrant expression in different types of cancer. A growing body of evidence indicates that epigenetic alterations play a critical role in the deregulation of the genes of the COX pathway. This review summarizes the current knowledge on the contribution of epigenetic processes to the deregulation of the COX pathway in cancer, getting insights into how these alterations may be relevant for the clinical management of patients.
Collapse
|
14
|
Abstract
Cancer initiation and progression are multistep events that require cell proliferation, migration, extravasation to the blood or lymphatic vessels, arrest to the metastatic site, and ultimately secondary growth. Tumor cell functions at both primary or secondary sites are controlled by many different factors, including growth factors and their receptors, chemokines, nuclear receptors, cell-cell interactions, cell-matrix interactions, as well as oxygenated metabolites of arachidonic acid. The observation that cyclooxygenases and lipoxygenases and their arachidonic acid-derived eicosanoid products (prostanoids and HETEs) are expressed and produced by tumor cells, together with the finding that these enzymes can regulate cell growth, survival, migration, and invasion, has prompted investigators to analyze the roles of these enzymes in cancer progression. In this review, we focus on the contribution of cyclooxygenase- and lipoxygenase-derived eicosanoids to tumor cell function in vitro and in vivo and discuss hope and tribulations of targeting these enzymes for cancer prevention and treatment.
Collapse
Affiliation(s)
- Claus Schneider
- Department of Pharmacology, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | | |
Collapse
|