1
|
Oh HJ, Imam-Aliagan AB, Kim YB, Kim HJ, Izaguirre IA, Sung CK, Yim H. Clinical applications of circulating biomarkers in non-small cell lung cancer. Front Cell Dev Biol 2024; 12:1449232. [PMID: 39239557 PMCID: PMC11375801 DOI: 10.3389/fcell.2024.1449232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Despite recent advances in cancer diagnostics and treatment, the mortality associated with lung cancer is still the highest in the world. Late-stage diagnosis, often accompanied by metastasis, is a major contributor to the high mortality rates, emphasizing the urgent need for reliable and readily accessible diagnostic tools that can detect biomarkers unique to lung cancer. Circulating factors, such as circulating tumor DNA and extracellular vesicles, from liquid biopsy have been recognized as diagnostic or prognostic markers in lung cancer. Numerous clinical studies are currently underway to investigate the potential of circulating tumor DNA, circulating tumor RNA, exosomes, and exosomal microRNA within the context of lung cancer. Those clinical studies aim to address the poor diagnostics and limited treatment options for lung cancer, with the ultimate goal of developing clinical markers and personalized therapies. In this review, we discuss the roles of each circulating factor, its current research status, and ongoing clinical studies of circulating factors in non-small cell lung cancer. Additionally, we discuss the circulating factors specifically found in lung cancer stem cells and examine approved diagnostic assays designed to detect circulating biomarkers in lung cancer patients.
Collapse
Affiliation(s)
- Hyun-Ji Oh
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Abdulhamid B Imam-Aliagan
- Department of Biological and Health Sciences, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Yeo-Bin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Hyun-Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Issac A Izaguirre
- Department of Biological and Health Sciences, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Chang K Sung
- Department of Biological and Health Sciences, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Zhang N, Li Y, Zhang H, Dong Y, Zhang C, Du W, Long C, Xing X, Li K, Liu Z, Chen X, Zhang L, Xu F, Fu Y, Tan J, She B, Che N. Performance of SHOX2 and RASSF1A methylation assay in supernatants and matched cell pellets for the diagnosis of malignant pleural effusion. Clin Chim Acta 2024; 553:117699. [PMID: 38072300 DOI: 10.1016/j.cca.2023.117699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND It is difficult to distinguish between malignant pleural effusion (MPE) and benign pleural effusion (BPE). The purpose of this study was to determine the best specimen type by evaluating the DNA methylation status of SHOX2 and RASSF1A in 3 matched PE components. METHODS In total, 94 patients were enrolled, including 45 MPE, 35 BPE, and 14 undefined PE (UPE) with malignancies. PE samples were processed into supernatants, fresh-cell pellets, and formalin-fixed and paraffin-embedded (FFPE) cell blocks, respectively. A quantitative real-time PCR was used to detect the methylation status of SHOX2 and RASSF1A. RESULTS SHOX2 and RASSF1A methylation levels were significantly higher in the 3 MPE sample types than those of BPE (P < 0.05). The area under the curve using cell-free DNA (cf-DNA) was the highest. The detection sensitivity of SHOX2 and RASSF1A in fresh-cell DNA, cf-DNA and FFPE cell-block were 71.1% (32/45), 97.8% (44/45) and 66.7% (28/42), respectively, with specificities of 97.1% (34/35), 94.3% (33/35), and 96.9% (31/32). Notably, a combination of the cytological analysis and cf-DNA methylation assay showed an increase in positivity rate from 75.6% to 100%. CONCLUSIONS The SHOX2 and RASSF1A methylation assay using cf-DNA, the primary recommended specimen type, can excellently increase the diagnostic sensitivity of MPE. A combination of methylation assay with cytological analysis can be used for auxiliary diagnosis of PE.
Collapse
Affiliation(s)
- Nana Zhang
- Department of Pathology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Yongmeng Li
- Department of Pathology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Haoran Zhang
- Biobank of Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Yujie Dong
- Department of Pathology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Chen Zhang
- Department of Pathology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Weili Du
- Department of Pathology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Chaolian Long
- Department of Pathology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Xuya Xing
- Department of Pathology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Kun Li
- Department of Pathology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Zichen Liu
- Department of Pathology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Xuejing Chen
- Department of Pathology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Lili Zhang
- Department of Pathology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Fudong Xu
- Department of Pathology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Yuhong Fu
- Department of Pathology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Jing Tan
- Department of Pathology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Bin She
- Academic Development, Tellgen Corporation, Shanghai, China
| | - Nanying Che
- Department of Pathology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China; Biobank of Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
| |
Collapse
|
3
|
Hua H, Zhou Y, Li W, Zhang J, Deng Y, Khoo BL. Microfluidics-based patient-derived disease detection tool for deep learning-assisted precision medicine. BIOMICROFLUIDICS 2024; 18:014101. [PMID: 38223546 PMCID: PMC10787641 DOI: 10.1063/5.0172146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
Cancer spatial and temporal heterogeneity fuels resistance to therapies. To realize the routine assessment of cancer prognosis and treatment, we demonstrate the development of an Intelligent Disease Detection Tool (IDDT), a microfluidic-based tumor model integrated with deep learning-assisted algorithmic analysis. IDDT was clinically validated with liquid blood biopsy samples (n = 71) from patients with various types of cancers (e.g., breast, gastric, and lung cancer) and healthy donors, requiring low sample volume (∼200 μl) and a high-throughput 3D tumor culturing system (∼300 tumor clusters). To support automated algorithmic analysis, intelligent decision-making, and precise segmentation, we designed and developed an integrative deep neural network, which includes Mask Region-Based Convolutional Neural Network (Mask R-CNN), vision transformer, and Segment Anything Model (SAM). Our approach significantly reduces the manual labeling time by up to 90% with a high mean Intersection Over Union (mIoU) of 0.902 and immediate results (<2 s per image) for clinical cohort classification. The IDDT can accurately stratify healthy donors (n = 12) and cancer patients (n = 55) within their respective treatment cycle and cancer stage, resulting in high precision (∼99.3%) and high sensitivity (∼98%). We envision that our patient-centric IDDT provides an intelligent, label-free, and cost-effective approach to help clinicians make precise medical decisions and tailor treatment strategies for each patient.
Collapse
Affiliation(s)
| | - Yunlan Zhou
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | | | - Jing Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Yanlin Deng
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Bee Luan Khoo
- Authors to whom correspondence should be addressed:; ; and
| |
Collapse
|
4
|
Bibikova M, Fan J. Liquid biopsy for early detection of lung cancer. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:200-206. [PMID: 39171286 PMCID: PMC11332910 DOI: 10.1016/j.pccm.2023.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 08/23/2024]
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Early cancer detection plays an important role in improving treatment success and patient prognosis. In the past decade, liquid biopsy became an important tool for cancer diagnosis, as well as for treatment selection and response monitoring. Liquid biopsy is a broad term that defines a non-invasive test done on a sample of blood or other body fluid to look for cancer cells or other analytes that can include DNA, RNA, or other molecules released by tumor cells. Liquid biopsies mainly include circulating tumor DNA, circulating RNA, microRNA, proteins, circulating tumor cells, exosomes, and tumor-educated platelets. This review summarizes the progress and clinical application potential of liquid biopsy for early detection of lung cancer.
Collapse
Affiliation(s)
- Marina Bibikova
- AnchorDx, Inc., 46305 Landing Parkway, Fremont, CA 94538, USA
| | - Jianbing Fan
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
5
|
Xie J, Hu B, Gong Y, He S, Lin J, Huang Q, Cheng J. A comparative study on ctDNA and tumor DNA mutations in lung cancer and benign cases with a high number of CTCs and CTECs. J Transl Med 2023; 21:873. [PMID: 38041139 PMCID: PMC10691057 DOI: 10.1186/s12967-023-04746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Liquid biopsy provides a non-invasive approach that enables detecting circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) using blood specimens and theoretically benefits early finding primary tumor or monitoring treatment response as well as tumor recurrence. Despite many studies on these novel biomarkers, their clinical relevance remains controversial. This study aims to investigate the correlation between ctDNA, CTCs, and circulating tumor-derived endothelial cells (CTECs) while also evaluating whether mutation profiling in ctDNA is consistent with that in tumor tissue from lung cancer patients. These findings will help the evaluation and utilization of these approaches in clinical practice. METHODS 104 participants (49 with lung cancer and 31 with benign lesions) underwent CTCs and CTECs detection using integrating subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH) strategy. The circulating cell-free DNA (cfDNA) concentration was measured and the mutational profiles of ctDNA were examined by Roche AVENIO ctDNA Expanded Kit (targeted total of 77 genes) by next generation sequencing (NGS) in 28 patients (20 with lung cancer and 8 with benign lesions) with highest numbers of CTCs and CTECs. Mutation validation in matched tumor tissue DNA was then performed in 9 patients with ctDNA mutations using a customized xGen pan-solid tumor kit (targeted total of 474 genes) by NGS. RESULTS The sensitivity and specificity of total number of CTCs and CTECs for the diagnosis of NSCLC were 67.3% and 77.6% [AUC (95%CI): 0.815 (0.722-0.907)], 83.9% and 77.4% [AUC (95%CI): 0.739 (0.618-0.860)]. The concentration of cfDNA in plasma was statistically correlated with the size of the primary tumor (r = 0.430, P = 0.022) and CYFRA 21-1 (r = 0.411, P = 0.041), but not with the numbers of CTCs and CTECs. In this study, mutations were found to be poorly consistent between ctDNA and tumor DNA (tDNA) in patients, even when numerous CTCs and CTECs were present. CONCLUSION Detection of CTCs and CTECs could be the potential adjunct tool for the early finding of lung cancer. The cfDNA levels are associated with the tumor burden, rather than the CTCs or CTECs counts. Moreover, the poorly consistent mutations between ctDNA and tDNA require further exploration.
Collapse
Affiliation(s)
- Jianzhu Xie
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binjie Hu
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Gong
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sijia He
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Lin
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Huang
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jin Cheng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Batool SM, Yekula A, Khanna P, Hsia T, Gamblin AS, Ekanayake E, Escobedo AK, You DG, Castro CM, Im H, Kilic T, Garlin MA, Skog J, Dinulescu DM, Dudley J, Agrawal N, Cheng J, Abtin F, Aberle DR, Chia D, Elashoff D, Grognan T, Krysan K, Oh SS, Strom C, Tu M, Wei F, Xian RR, Skates SJ, Zhang DY, Trinh T, Watson M, Aft R, Rawal S, Agarwal A, Kesmodel SB, Yang C, Shen C, Hochberg FH, Wong DTW, Patel AA, Papadopoulos N, Bettegowda C, Cote RJ, Srivastava S, Lee H, Carter BS, Balaj L. The Liquid Biopsy Consortium: Challenges and opportunities for early cancer detection and monitoring. Cell Rep Med 2023; 4:101198. [PMID: 37716353 PMCID: PMC10591039 DOI: 10.1016/j.xcrm.2023.101198] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 12/01/2022] [Accepted: 08/22/2023] [Indexed: 09/18/2023]
Abstract
The emerging field of liquid biopsy stands at the forefront of novel diagnostic strategies for cancer and other diseases. Liquid biopsy allows minimally invasive molecular characterization of cancers for diagnosis, patient stratification to therapy, and longitudinal monitoring. Liquid biopsy strategies include detection and monitoring of circulating tumor cells, cell-free DNA, and extracellular vesicles. In this review, we address the current understanding and the role of existing liquid-biopsy-based modalities in cancer diagnostics and monitoring. We specifically focus on the technical and clinical challenges associated with liquid biopsy and biomarker development being addressed by the Liquid Biopsy Consortium, established through the National Cancer Institute. The Liquid Biopsy Consortium has developed new methods/assays and validated existing methods/technologies to capture and characterize tumor-derived circulating cargo, as well as addressed existing challenges and provided recommendations for advancing biomarker assays.
Collapse
Affiliation(s)
| | - Anudeep Yekula
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Prerna Khanna
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tiffaney Hsia
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Austin S Gamblin
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emil Ekanayake
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana K Escobedo
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dong Gil You
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cesar M Castro
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hyungsoon Im
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tugba Kilic
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Johan Skog
- Exosome Diagnostics Inc., Waltham, MA, USA
| | | | - Jonathan Dudley
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Jordan Cheng
- University of California Los Angeles, Los Angeles, CA, USA
| | | | | | - David Chia
- University of California Los Angeles, Los Angeles, CA, USA
| | - David Elashoff
- University of California Los Angeles, Los Angeles, CA, USA
| | | | | | - Scott S Oh
- University of California Los Angeles, Los Angeles, CA, USA
| | - Charles Strom
- University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Tu
- Liquid Diagnostics LLC., Los Angeles, CA, USA
| | - Fang Wei
- University of California Los Angeles, Los Angeles, CA, USA
| | - Rena R Xian
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven J Skates
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Thi Trinh
- Yale University School of Medicine, New Haven, CT, USA
| | - Mark Watson
- Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca Aft
- Washington University School of Medicine, St. Louis, MO, USA
| | - Siddarth Rawal
- Washington University School of Medicine, St. Louis, MO, USA; Circulogix Inc., St. Louis, MO, USA
| | | | | | | | - Cheng Shen
- California Institute of Technology, Pasadena, CA, USA
| | | | - David T W Wong
- University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | | - Richard J Cote
- Washington University School of Medicine, St. Louis, MO, USA; Circulogix Inc., St. Louis, MO, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Hakho Lee
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bob S Carter
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Leonora Balaj
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Heft Neal ME, Walline HM, Haring CT. Circulating Tumor DNA in Human Papillomavirus-Mediated Oropharynx Cancer: Leveraging Early Data to Inform Future Directions. Cancer J 2023; 29:215-219. [PMID: 37471611 DOI: 10.1097/ppo.0000000000000670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
ABSTRACT Circulating tumor DNA (ctDNA) has become an area of intense study in many solid malignancies including head and neck cancer. This is of particular interest for human papillomavirus-mediated oropharyngeal squamous cell carcinoma as this cohort of patients has excellent survival and is undergoing current clinical trials aimed at treatment de-escalation. Recent studies have demonstrated the prognostic implications of pretreatment ctDNA and the utility of monitoring ctDNA during and posttreatment; however, there is a need for a more critical understanding of ctDNA as it is beginning to be incorporated into clinical trials. This review discusses the current state of ctDNA in oropharynx cancer focusing on ctDNA kinetics and minimal residual disease detection and ends with a discussion of future applications.
Collapse
Affiliation(s)
| | - Heather M Walline
- From the Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI
| | - Catherine T Haring
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH
| |
Collapse
|
8
|
Bertoli E, De Carlo E, Basile D, Zara D, Stanzione B, Schiappacassi M, Del Conte A, Spina M, Bearz A. Liquid Biopsy in NSCLC: An Investigation with Multiple Clinical Implications. Int J Mol Sci 2023; 24:10803. [PMID: 37445976 DOI: 10.3390/ijms241310803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Tissue biopsy is essential for NSCLC diagnosis and treatment management. Over the past decades, liquid biopsy has proven to be a powerful tool in clinical oncology, isolating tumor-derived entities from the blood. Liquid biopsy permits several advantages over tissue biopsy: it is non-invasive, and it should provide a better view of tumor heterogeneity, gene alterations, and clonal evolution. Consequentially, liquid biopsy has gained attention as a cancer biomarker tool, with growing clinical applications in NSCLC. In the era of precision medicine based on molecular typing, non-invasive genotyping methods became increasingly important due to the great number of oncogene drivers and the small tissue specimen often available. In our work, we comprehensively reviewed established and emerging applications of liquid biopsy in NSCLC. We made an excursus on laboratory analysis methods and the applications of liquid biopsy either in early or metastatic NSCLC disease settings. We deeply reviewed current data and future perspectives regarding screening, minimal residual disease, micrometastasis detection, and their implication in adjuvant and neoadjuvant therapy management. Moreover, we reviewed liquid biopsy diagnostic utility in the absence of tissue biopsy and its role in monitoring treatment response and emerging resistance in metastatic NSCLC treated with target therapy and immuno-therapy.
Collapse
Affiliation(s)
- Elisa Bertoli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Elisa De Carlo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Debora Basile
- Department of Medical Oncology, San Giovanni Di Dio Hospital, 88900 Crotone, Italy
| | - Diego Zara
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Brigida Stanzione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Monica Schiappacassi
- Molecular Oncology Unit, (OMMPPT) Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Alessandro Del Conte
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Michele Spina
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Alessandra Bearz
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| |
Collapse
|
9
|
Fleischhacker M, Arslan E, Reinicke D, Eisenmann S, Theil G, Kollmeier J, Schäper C, Grah C, Klawonn F, Holdenrieder S, Schmidt B. Cell-Free Methylated PTGER4 and SHOX2 Plasma DNA as a Biomarker for Therapy Monitoring and Prognosis in Advanced Stage NSCLC Patients. Diagnostics (Basel) 2023; 13:2131. [PMID: 37443525 DOI: 10.3390/diagnostics13132131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Notwithstanding some improvement in the earlier detection of patients with lung cancer, most of them still present with a late-stage disease at the time of diagnosis. Next to the most frequently utilized factors affecting the prognosis of lung cancer patients (stage, performance, and age), the recent application of biomarkers obtained by liquid profiling has gained more acceptance. In our study, we aimed to answer these questions: (i) Is the quantification of free-circulating methylated PTGER4 and SHOX2 plasma DNA a useful method for therapy monitoring, and is this also possible for patients treated with different therapy regimens? (ii) Is this approach possible when blood-drawing tubes, which allow for a delayed processing of blood samples, are utilized? Baseline values for mPTGER4 and mSHOX2 do not allow for clear discrimination between different response groups. In contrast, the combination of the methylation values for both genes shows a clear difference between responders vs. non-responders at the time of re-staging. Furthermore, blood drawing into tubes stabilizing the sample allows researchers more flexibility.
Collapse
Affiliation(s)
- Michael Fleischhacker
- Klinik für Innere Medizin-Schwerpunkt Pneumologie und Schlafmedizin, DRK Kliniken Berlin/Mitte, 13359 Berlin, Germany
| | - Erkan Arslan
- Lungenarztpraxis Berlin-Reinickendorf, 13403 Berlin, Germany
| | - Dana Reinicke
- Department für Innere Medizin, Universitätsklinikum Halle/Saale, 06120 Halle (Saale), Germany
| | - Stefan Eisenmann
- Department für Innere Medizin, Universitätsklinikum Halle/Saale, 06120 Halle (Saale), Germany
| | - Gerit Theil
- Department für Innere Medizin, Universitätsklinikum Halle/Saale, 06120 Halle (Saale), Germany
| | - Jens Kollmeier
- Lungenklinik Heckeshorn, Helios Klinikum Emil von Behring, 14165 Berlin, Germany
| | - Christoph Schäper
- Klinik und Poliklinik für Innere Medizin B, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
| | - Christian Grah
- Gemeinschaftskrankenhaus Havelhöhe, Pneumologie und Lungenkrebszentrum, 14089 Berlin, Germany
| | - Frank Klawonn
- Department of Computer Science, Ostfalia University, 38302 Wolfenbüttel, Germany
- Biostatistics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, 80636 Munich, Germany
| | - Bernd Schmidt
- Klinik für Innere Medizin-Schwerpunkt Pneumologie und Schlafmedizin, DRK Kliniken Berlin/Mitte, 13359 Berlin, Germany
| |
Collapse
|
10
|
Di Sario G, Rossella V, Famulari ES, Maurizio A, Lazarevic D, Giannese F, Felici C. Enhancing clinical potential of liquid biopsy through a multi-omic approach: A systematic review. Front Genet 2023; 14:1152470. [PMID: 37077538 PMCID: PMC10109350 DOI: 10.3389/fgene.2023.1152470] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
In the last years, liquid biopsy gained increasing clinical relevance for detecting and monitoring several cancer types, being minimally invasive, highly informative and replicable over time. This revolutionary approach can be complementary and may, in the future, replace tissue biopsy, which is still considered the gold standard for cancer diagnosis. "Classical" tissue biopsy is invasive, often cannot provide sufficient bioptic material for advanced screening, and can provide isolated information about disease evolution and heterogeneity. Recent literature highlighted how liquid biopsy is informative of proteomic, genomic, epigenetic, and metabolic alterations. These biomarkers can be detected and investigated using single-omic and, recently, in combination through multi-omic approaches. This review will provide an overview of the most suitable techniques to thoroughly characterize tumor biomarkers and their potential clinical applications, highlighting the importance of an integrated multi-omic, multi-analyte approach. Personalized medical investigations will soon allow patients to receive predictable prognostic evaluations, early disease diagnosis, and subsequent ad hoc treatments.
Collapse
|
11
|
Pourasghariazar M, Zarredar H, Asadi M, Caner A, Akhgari A, Valizadeh H, Bornehdeli S, Hashemzadeh S, Raeisi M. Comparative evaluation of ZMYND-8 and RARβ2 genes promoters’ methylation changes in tumor and tumor margin tissues of patients with lung cancer. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-023-00399-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Abstract
Background
Lung cancer remains one of the most lethal carcinomas worldwide because of its late diagnosis. One of the DNA modifications is methylation, one of the primary alterations of tumor development, consisting of fascinating indicators for cancer diagnosis. This study investigated ZMYND-8 and RARβ2 gene methylation in NSCLC as a new epigenetic tool.
Methods
First, to find out the potential diagnostic capability of ZMYND-8 and RARβ2 genes methylation, we entirely surfed DNA methylation microarrays from the Cancer Genome Atlas (TCGA) data of NSCLC samples. Additionally, we took advantage of using q-MSP in several pieces comprising NSCLC tumors and neighboring normal tissues; ZMYND-8 and RARβ2 genes methylation grades were acquired.
Results
Our finding displayed significant hypomethylation of ZMYND-8 and hypermethylation of RARβ2 in NSCLC samples compared to neighboring standard specimens, which significantly correlated with the clinical stage of malignancy. In addition, the incredible precision of ZMYND-8 and RARβ2 methylations as reliable cancer diagnosis indicators in NSCLC was confirmed, drawing the ROC curve analysis with an AUC value of 0.751 and 0.8676, respectively, for ZMYND-8 and RARβ2. Additional studies of other dominant cancer entities in TCGA displayed that RARβ2’s higher methylation degree and ZMYND-8 lower methylation degree are prevalent changes in tumor evolution which could be possibly considered as a potential diagnostic biomarkers for lung cancer.
Conclusion
Based on this study, ZMYND-8 and RARβ2 methylation are reliable biomarkers for lung cancer.
Collapse
|
12
|
Wang M, Cai J, Chen J, Liu J, Geng X, Yu X, Yang J. PCR Techniques and Their Clinical Applications. POLYMERASE CHAIN REACTION [WORKING TITLE] 2023. [DOI: 10.5772/intechopen.110220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Kary B. Mullis developed a revolutionary method name polymerase chain reaction (PCR) in 1983, which can synthesize new strand of DNA complementary to the template strand of DNA and produce billions of copies of a DNA fragment only in few hours. Denaturation, annealing, and extension are the three primary steps involved in the PCR process, which generally requires thermocyclers, DNA template, a pair of primers, Taq polymerase, nucleotides, buffers, etc. With the development of PCR, from traditional PCR, quantitative PCR, to next digital PCR, PCR has become a powerful tool in life sciences and medicine. Applications of PCR techniques for infectious diseases include specific or broad-spectrum pathogen detection, assessment and surveillance of emerging infections, early detection of biological threat agents, and antimicrobial resistance analysis. Applications of PCR techniques for genetic diseases include prenatal diagnosis and screening of neonatal genetic diseases. Applications of PCR techniques for cancer research include tumor-related gene detection. This chapter aimed to discuss about the different types of PCR techniques, including traditional PCR, quantitative PCR, digital PCR, etc., and their applications for rapid detection, mutation screen or diagnosis in infectious diseases, inherited diseases, cancer, and other diseases.
Collapse
|
13
|
Li P, Liu S, Du L, Mohseni G, Zhang Y, Wang C. Liquid biopsies based on DNA methylation as biomarkers for the detection and prognosis of lung cancer. Clin Epigenetics 2022; 14:118. [PMID: 36153611 PMCID: PMC9509651 DOI: 10.1186/s13148-022-01337-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/16/2022] [Indexed: 11/27/2022] Open
Abstract
Lung cancer (LC) is the main cause of cancer-related mortality. Most LC patients are diagnosed in an advanced stage when the symptoms are obvious, and the prognosis is quite poor. Although low-dose computed tomography (LDCT) is a routine clinical examination for early detection of LC, the false-positive rate is over 90%. As one of the intensely studied epigenetic modifications, DNA methylation plays a key role in various diseases, including cancer and other diseases. Hypermethylation in tumor suppressor genes or hypomethylation in oncogenes is an important event in tumorigenesis. Remarkably, DNA methylation usually occurs in the very early stage of malignant tumors. Thus, DNA methylation analysis may provide some useful information about the early detection of LC. In recent years, liquid biopsy has developed rapidly. Liquid biopsy can detect and monitor both primary and metastatic malignant tumors and can reflect tumor heterogeneity. Moreover, it is a minimally invasive procedure, and it causes less pain for patients. This review summarized various liquid biopsies based on DNA methylation for LC. At first, we briefly discussed some emerging technologies for DNA methylation analysis. Subsequently, we outlined cell-free DNA (cfDNA), sputum, bronchoalveolar lavage fluid, bronchial aspirates, and bronchial washings DNA methylation-based liquid biopsy for the early detection of LC. Finally, the prognostic value of DNA methylation in cfDNA and sputum and the diagnostic value of other DNA methylation-based liquid biopsies for LC were also analyzed.
Collapse
|
14
|
Zhang G, Wang Z, Song P, Zhan X. DNA and histone modifications as potent diagnostic and therapeutic targets to advance non-small cell lung cancer management from the perspective of 3P medicine. EPMA J 2022; 13:649-669. [PMID: 36505890 PMCID: PMC9727004 DOI: 10.1007/s13167-022-00300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Lung cancer has a very high mortality in females and males. Most (~ 85%) of lung cancers are non-small cell lung cancers (NSCLC). When lung cancer is diagnosed, most of them have either local or distant metastasis, with a poor prognosis. In order to achieve better outcomes, it is imperative to identify the molecular signature based on genetic and epigenetic variations for different NSCLC subgroups. We hypothesize that DNA and histone modifications play significant roles in the framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine). Epigenetics has a significant impact on tumorigenicity, tumor heterogeneity, and tumor resistance to chemotherapy, targeted therapy, and immunotherapy. An increasing interest is that epigenomic regulation is recognized as a potential treatment option for NSCLC. Most attention has been paid to the epigenetic alteration patterns of DNA and histones. This article aims to review the roles DNA and histone modifications play in tumorigenesis, early detection and diagnosis, and advancements and therapies of NSCLC, and also explore the connection between DNA and histone modifications and PPPM, which may provide an important contribution to improve the prognosis of NSCLC. We found that the success of targeting DNA and histone modifications is limited in the clinic, and how to combine the therapies to improve patient outcomes is necessary in further studies, especially for predictive diagnostics, targeted prevention, and personalization of medical services in the 3P medicine approach. It is concluded that DNA and histone modifications are potent diagnostic and therapeutic targets to advance non-small cell lung cancer management from the perspective of 3P medicine.
Collapse
Affiliation(s)
- Guodong Zhang
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Zhengdan Wang
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Pingping Song
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
15
|
Non-Invasive Biomarkers for Early Lung Cancer Detection. Cancers (Basel) 2022; 14:cancers14235782. [PMID: 36497263 PMCID: PMC9739091 DOI: 10.3390/cancers14235782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022] Open
Abstract
Worldwide, lung cancer (LC) is the most common cause of cancer death, and any delay in the detection of new and relapsed disease serves as a major factor for a significant proportion of LC morbidity and mortality. Though invasive methods such as tissue biopsy are considered the gold standard for diagnosis and disease monitoring, they have several limitations. Therefore, there is an urgent need to identify and validate non-invasive biomarkers for the early diagnosis, prognosis, and treatment of lung cancer for improved patient management. Despite recent progress in the identification of non-invasive biomarkers, currently, there is a shortage of reliable and accessible biomarkers demonstrating high sensitivity and specificity for LC detection. In this review, we aim to cover the latest developments in the field, including the utility of biomarkers that are currently used in LC screening and diagnosis. We comment on their limitations and summarise the findings and developmental stages of potential molecular contenders such as microRNAs, circulating tumour DNA, and methylation markers. Furthermore, we summarise research challenges in the development of biomarkers used for screening purposes and the potential clinical applications of newly discovered biomarkers.
Collapse
|
16
|
Abbasian MH, Ardekani AM, Sobhani N, Roudi R. The Role of Genomics and Proteomics in Lung Cancer Early Detection and Treatment. Cancers (Basel) 2022; 14:5144. [PMID: 36291929 PMCID: PMC9600051 DOI: 10.3390/cancers14205144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 08/17/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, with non-small-cell lung cancer (NSCLC) being the primary type. Unfortunately, it is often diagnosed at advanced stages, when therapy leaves patients with a dismal prognosis. Despite the advances in genomics and proteomics in the past decade, leading to progress in developing tools for early diagnosis, targeted therapies have shown promising results; however, the 5-year survival of NSCLC patients is only about 15%. Low-dose computed tomography or chest X-ray are the main types of screening tools. Lung cancer patients without specific, actionable mutations are currently treated with conventional therapies, such as platinum-based chemotherapy; however, resistances and relapses often occur in these patients. More noninvasive, inexpensive, and safer diagnostic methods based on novel biomarkers for NSCLC are of paramount importance. In the current review, we summarize genomic and proteomic biomarkers utilized for the early detection and treatment of NSCLC. We further discuss future opportunities to improve biomarkers for early detection and the effective treatment of NSCLC.
Collapse
Affiliation(s)
- Mohammad Hadi Abbasian
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 1497716316, Iran
| | - Ali M. Ardekani
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 1497716316, Iran
| | - Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Raheleh Roudi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Palanca-Ballester C, Hervas D, Villalba M, Valdes-Sanchez T, Garcia D, Alcoriza-Balaguer MI, Benet M, Martinez-Tomas R, Briones-Gomez A, Galbis-Caravajal J, Calvo A, Juan O, Lahoz A, Cases E, Sandoval J. Translation of a tissue epigenetic signature to circulating free DNA suggests BCAT1 as a potential noninvasive diagnostic biomarker for lung cancer. Clin Epigenetics 2022; 14:116. [PMID: 36123616 PMCID: PMC9487112 DOI: 10.1186/s13148-022-01334-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022] Open
Abstract
Lung cancer patients are diagnosed at late stages when curative treatments are no longer possible; thus, molecular biomarkers for noninvasive detection are urgently needed. In this sense, we previously identified and validated an epigenetic 4-gene signature that yielded a high diagnostic performance in tissue and invasive pulmonary fluids. We analyzed DNA methylation levels using the ultrasensitive digital droplet PCR in noninvasive samples in a cohort of 83 patients. We demonstrated that BCAT1 is the candidate that achieves high diagnostic efficacy in circulating DNA derived from plasma (area under the curve: 0.85). Impact of potentially confounding variables was also explored.
Collapse
Affiliation(s)
- Cora Palanca-Ballester
- Biomarkers and Precision Medicine Unit, Health Research Institute La Fe, Av. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - David Hervas
- Department of Applied Statistics and Operational Research and Quality, Universitat Politècnica de València, Valencia, Spain
| | - Maria Villalba
- CIBERONC, ISCIII, 28029, Madrid, Spain.,IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA) and Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | | | - Diana Garcia
- Epigenomics Unit, Health Research Institute La Fe, Valencia, Spain
| | - Maria Isabel Alcoriza-Balaguer
- Biomarkers and Precision Medicine Unit, Health Research Institute La Fe, Av. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Marta Benet
- Biomarkers and Precision Medicine Unit, Health Research Institute La Fe, Av. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | | | | | | | - Alfonso Calvo
- CIBERONC, ISCIII, 28029, Madrid, Spain.,IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA) and Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Oscar Juan
- Biomarkers and Precision Medicine Unit, Health Research Institute La Fe, Av. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Agustin Lahoz
- Biomarkers and Precision Medicine Unit, Health Research Institute La Fe, Av. Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Enrique Cases
- Pneumology Service, University Hospital La Fe, Valencia, Spain
| | - Juan Sandoval
- Biomarkers and Precision Medicine Unit, Health Research Institute La Fe, Av. Fernando Abril Martorell, 106, 46026, Valencia, Spain. .,Epigenomics Unit, Health Research Institute La Fe, Valencia, Spain.
| |
Collapse
|
18
|
Tamkovich S, Tupikin A, Kozyakov A, Laktionov P. Size and Methylation Index of Cell-Free and Cell-Surface-Bound DNA in Blood of Breast Cancer Patients in the Contest of Liquid Biopsy. Int J Mol Sci 2022; 23:ijms23168919. [PMID: 36012175 PMCID: PMC9408721 DOI: 10.3390/ijms23168919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Aberrantly methylated circulating DNA (cirDNA) has proven to be a good cancer marker, but its detection is limited by low concentrations, fragmentation, and insufficiency. Since the methylated cirDNA was shown to be more stable in circulation than the unmethylated one and was shown to bind with the blood cell surface, we studied the concentration, representation, and fragmentation of tumor-derived methylated DNA in cell-free and cell-surface-associated DNA. We found that long DNA fragments (more than 10 kb) are mainly associated with the surface of blood cells. However, in plasma short DNA fragments (100–1000 bp) were also found along with long DNA fragments. Isolation of short fragments after separation of cirDNA in 6% PAGE followed by quantitative PCR (L1 element) has shown that short DNA fragments in healthy females represent 22% versus 0.5–4.4% in breast cancer patients. The methylated form of the RARβ2 gene was detected only in long DNA fragments by Real-time TaqMan PCR of bisulfite-converted DNA. The methylation index of cirDNA from healthy women was estimated at 0%, 9%, and 7% in plasma, PBS-EDTA, and trypsin eluates from the surface of blood cells, respectively. The methylation index of breast cancer patients’ DNA was found to be 33%, 15%, and 61% in the same fractions confirming the overrepresentation of methylated DNA in csbDNA.
Collapse
Affiliation(s)
- Svetlana Tamkovich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Clinical Biochemistry, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Novosibirsk 630090, Russia
- Correspondence:
| | - Alexey Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anton Kozyakov
- Department of Mammology, Novosibirsk Regional Clinical Oncological Dispensary, Novosibirsk 630108, Russia
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
19
|
Paschidis K, Zougros A, Chatziandreou I, Tsikalakis S, Korkolopoulou P, Kavantzas N, Saetta AA. Methylation analysis of APC, AXIN2, DACT1, RASSF1A and MGMT gene promoters in Non-Small Cell Lung Cancer. Pathol Res Pract 2022; 234:153899. [DOI: 10.1016/j.prp.2022.153899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
|
20
|
Hoang PH, Landi MT. DNA Methylation in Lung Cancer: Mechanisms and Associations with Histological Subtypes, Molecular Alterations, and Major Epidemiological Factors. Cancers (Basel) 2022; 14:cancers14040961. [PMID: 35205708 PMCID: PMC8870477 DOI: 10.3390/cancers14040961] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/14/2021] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Lung cancer is the major leading cause of cancer-related mortality worldwide. Multiple epigenetic factors-in particular, DNA methylation-have been associated with the development of lung cancer. In this review, we summarize the current knowledge on DNA methylation alterations in lung tumorigenesis, as well as their associations with different histological subtypes, common cancer driver gene mutations (e.g., KRAS, EGFR, and TP53), and major epidemiological risk factors (e.g., sex, smoking status, race/ethnicity). Understanding the mechanisms of DNA methylation regulation and their associations with various risk factors can provide further insights into carcinogenesis, and create future avenues for prevention and personalized treatments. In addition, we also highlight outstanding questions regarding DNA methylation in lung cancer to be elucidated in future studies.
Collapse
|
21
|
Herath S, Sadeghi Rad H, Radfar P, Ladwa R, Warkiani M, O’Byrne K, Kulasinghe A. The Role of Circulating Biomarkers in Lung Cancer. Front Oncol 2022; 11:801269. [PMID: 35127511 PMCID: PMC8813755 DOI: 10.3389/fonc.2021.801269] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the leading cause of cancer morbidity and mortality worldwide and early diagnosis is crucial for the management and treatment of this disease. Non-invasive means of determining tumour information is an appealing diagnostic approach for lung cancers as often accessing and removing tumour tissue can be a limiting factor. In recent years, liquid biopsies have been developed to explore potential circulating tumour biomarkers which are considered reliable surrogates for understanding tumour biology in a non-invasive manner. Most common components assessed in liquid biopsy include circulating tumour cells (CTCs), cell-free DNA (cfDNA), circulating tumour DNA (ctDNA), microRNA and exosomes. This review explores the clinical use of circulating tumour biomarkers found in liquid biopsy for screening, early diagnosis and prognostication of lung cancer patients.
Collapse
|
22
|
Liang R, Li X, Li W, Zhu X, Li C. DNA methylation in lung cancer patients: Opening a "window of life" under precision medicine. Biomed Pharmacother 2021; 144:112202. [PMID: 34654591 DOI: 10.1016/j.biopha.2021.112202] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
DNA methylation is a work of adding a methyl group to the 5th carbon atom of cytosine in DNA sequence under the catalysis of DNA methyltransferase (DNMT) to produce 5-methyl cytosine. Some current studies have elucidated the mechanism of lung cancer occurrence and causes of lung cancer progression and metastasis from the perspective of DNA methylation. Moreover, many studies have shown that smoking can change the methylation status of some gene loci, leading to the occurrence of lung cancer, especially central lung cancer. This review mainly introduces the role of DNA methylation in the pathogenesis, early diagnosis and screening, progression and metastasis, treatment, and prognosis of lung cancer, as well as the latest progress. We point out that methylation markers, sample tests, and methylation detection limit the clinical application of DNA methylation. If the liquid biopsy is to become the main force in lung cancer diagnosis, it must make efficient use of limited samples and improve the sensitivity and specificity of the tests. In addition, we also put forward our views on the future development direction of DNA methylation.
Collapse
Affiliation(s)
- Runzhang Liang
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou 310053, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524023, China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Weiquan Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524023, China
| | - Xiao Zhu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou 310053, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524023, China.
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin 14195, Germany.
| |
Collapse
|
23
|
Zeng D, Wang C, Mu C, Su M, Mao J, Huang J, Xu J, Shao L, Li B, Li H, Li B, Zhao J, Jiang J. Cell-free DNA from bronchoalveolar lavage fluid (BALF): a new liquid biopsy medium for identifying lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1080. [PMID: 34422992 PMCID: PMC8339831 DOI: 10.21037/atm-21-2579] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022]
Abstract
Background Differentiating malignant lung tumors from benign pulmonary nodules is a great challenge. While the analysis of bronchoalveolar lavage fluid (BALF) is used for diagnosing infections and interstitial lung diseases, there is limited evidence to support its use for lung cancer diagnosis. This study aimed to interrogate the potential of using BALF cell-free DNA (cfDNA) to discriminate malignant lesions from benign nodules. Methods Fifty-three patients with solid pulmonary nodules (≤2 cm) were prospectively enrolled, including 21 confirmed with benign disease and 32 with malignant tumors. Mutations were profiled for 30 tumor tissues and 40 BALFs. Paired BALFs and plasma from 48 patients underwent DNA methylation profiling. A methylome-based classification model was developed for BALF and plasma separately. Results Among the 30 patients with paired tissues and BALFs, 96.7% and 70% had alterations detected from their tissues (79 alterations) and BALFs (53 alterations), respectively. Using tissues as references, BALFs revealed 14 new alterations and missed 41. BALF mutation displayed a sensitivity of 71%, specificity of 77.8%, and accuracy of 72.5% in detecting lung cancer. BALF methylation achieved an accuracy of 81.3%, with both sensitivity and specificity being 81%. Plasma methylation showed a 66.7% sensitivity, 71.4% specificity, and 68.8% accuracy. BALF methylation also demonstrated 82.4% sensitivity in stage I patients. Parallel bronchoscopy, lavage cytology, and bronchial brushing demonstrated an inferior sensitivity of 23%, 3.1%, and 9.7%, respectively, compared with BALF methylation and mutation (P<0.0001). Conclusions BALF cfDNA can serve as a liquid biopsy media for both mutation and methylation profiling, demonstrating better sensitivities in distinguishing small malignant tumors from benign nodules than conventional methods. Keywords Lung cancer diagnosis; pulmonary nodule; bronchoalveolar lavage fluid (BALF); methylation; genomic mutation
Collapse
Affiliation(s)
- Daxiong Zeng
- Department of Respiratory Medicine, Dusu Lake Hospital to Soochow University, Suzhou, China.,Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cangguo Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chuanyong Mu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meiqin Su
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingyu Mao
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianan Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayue Xu
- Burning Rock Biotech, Guangzhou, China
| | - Lin Shao
- Burning Rock Biotech, Guangzhou, China
| | - Bing Li
- Burning Rock Biotech, Guangzhou, China
| | - Haiyan Li
- Burning Rock Biotech, Guangzhou, China
| | - Bingsi Li
- Burning Rock Biotech, Guangzhou, China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Junhong Jiang
- Department of Respiratory Medicine, Dusu Lake Hospital to Soochow University, Suzhou, China.,Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
24
|
Raos D, Ulamec M, Katusic Bojanac A, Bulic-Jakus F, Jezek D, Sincic N. Epigenetically inactivated RASSF1A as a tumor biomarker. Bosn J Basic Med Sci 2021; 21:386-397. [PMID: 33175673 PMCID: PMC8292865 DOI: 10.17305/bjbms.2020.5219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022] Open
Abstract
RASSF1A, one of the eight isoforms of the RASSF1 gene, is a tumor suppressor gene that influences tumor initiation and development. In cancer, RASSF1A is frequently inactivated by mutations, loss of heterozygosity, and, most commonly, by promoter hypermethylation. Epigenetic inactivation of RASSF1A was detected in various cancer types and led to significant interest; current research on RASSF1A promoter methylation focuses on its roles as an epigenetic tumor biomarker. Typically, researchers analyzed genomic DNA (gDNA) to measure the amount of RASSF1A promoter methylation. Cell-free DNA (cfDNA) from liquid biopsies is a recent development showing promise as an early cancer diagnostic tool using biomarkers, such as RASSF1A. This review discusses the evidence on aberrantly methylated RASSF1A in gDNA and cfDNA from different cancer types and its utility for early cancer diagnosis, prognosis, and surveillance. We compared methylation frequencies of RASSF1A in gDNA and cfDNA in various cancer types. The weaknesses and strengths of these analyses are discussed. In conclusion, although the importance of RASSSF1A methylation to cancer has been established and is included in several diagnostic panels, its diagnostic utility is still experimental.
Collapse
Affiliation(s)
- Dora Raos
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia; Scientific Group for Research on Epigenetic Biomarkers, University of Zagreb School of Medicine, Zagreb, Croatia; Scientific Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Monika Ulamec
- Scientific Group for Research on Epigenetic Biomarkers, University of Zagreb School of Medicine, Zagreb, Croatia; Scientific Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia; Department of Pathology, University of Zagreb School of Dental Medicine and School of Medicine, Zagreb, Croatia
| | - Ana Katusic Bojanac
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia; Scientific Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Floriana Bulic-Jakus
- University of Zagreb School of Medicine, Department of Medical Biology, Zagreb, Croatia
| | - Davor Jezek
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nino Sincic
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia; Scientific Group for Research on Epigenetic Biomarkers, University of Zagreb School of Medicine, Zagreb, Croatia; Scientific Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
25
|
Palanca-Ballester C, Rodriguez-Casanova A, Torres S, Calabuig-Fariñas S, Exposito F, Serrano D, Redin E, Valencia K, Jantus-Lewintre E, Diaz-Lagares A, Montuenga L, Sandoval J, Calvo A. Cancer Epigenetic Biomarkers in Liquid Biopsy for High Incidence Malignancies. Cancers (Basel) 2021; 13:cancers13123016. [PMID: 34208598 PMCID: PMC8233712 DOI: 10.3390/cancers13123016] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Early alterations in cancer include the deregulation of epigenetic events such as changes in DNA methylation and abnormal levels of non-coding (nc)RNAs. Although these changes can be identified in tumors, alternative sources of samples may offer advantages over tissue biopsies. Because tumors shed DNA, RNA, and proteins, biological fluids containing these molecules can accurately reflect alterations found in cancer cells, not only coming from the primary tumor, but also from metastasis and from the tumor microenvironment (TME). Depending on the type of cancer, biological fluids encompass blood, urine, cerebrospinal fluid, and saliva, among others. Such samples are named with the general term "liquid biopsy" (LB). With the advent of ultrasensitive technologies during the last decade, the identification of actionable genetic alterations (i.e., mutations) in LB is a common practice to decide whether or not targeted therapy should be applied. Likewise, the analysis of global or specific epigenetic alterations may also be important as biomarkers for diagnosis, prognosis, and even for cancer drug response. Several commercial kits that assess the DNA promoter methylation of single genes or gene sets are available, with some of them being tested as biomarkers for diagnosis in clinical trials. From the tumors with highest incidence, we can stress the relevance of DNA methylation changes in the following genes found in LB: SHOX2 (for lung cancer); RASSF1A, RARB2, and GSTP1 (for lung, breast, genitourinary and colon cancers); and SEPT9 (for colon cancer). Moreover, multi-cancer high-throughput methylation-based tests are now commercially available. Increased levels of the microRNA miR21 and several miRNA- and long ncRNA-signatures can also be indicative biomarkers in LB. Therefore, epigenetic biomarkers are attractive and may have a clinical value in cancer. Nonetheless, validation, standardization, and demonstration of an added value over the common clinical practice are issues needed to be addressed in the transfer of this knowledge from "bench to bedside".
Collapse
Affiliation(s)
- Cora Palanca-Ballester
- Biomarkers and Precision Medicine (UBMP) and Epigenomics Unit, IIS, La Fe, 46026 Valencia, Spain;
| | - Aitor Rodriguez-Casanova
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (A.R.-C.); (A.D.-L.)
- Roche-CHUS Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Susana Torres
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014 Valencia, Spain
| | - Silvia Calabuig-Fariñas
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Pathology, Universitat de València, 46010 Valencia, Spain
| | - Francisco Exposito
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Diego Serrano
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Esther Redin
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Karmele Valencia
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - Eloisa Jantus-Lewintre
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Biotechnology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (A.R.-C.); (A.D.-L.)
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
| | - Luis Montuenga
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Juan Sandoval
- Biomarkers and Precision Medicine (UBMP) and Epigenomics Unit, IIS, La Fe, 46026 Valencia, Spain;
- Correspondence: (J.S.); (A.C.)
| | - Alfonso Calvo
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Correspondence: (J.S.); (A.C.)
| |
Collapse
|
26
|
Freitas C, Sousa C, Machado F, Serino M, Santos V, Cruz-Martins N, Teixeira A, Cunha A, Pereira T, Oliveira HP, Costa JL, Hespanhol V. The Role of Liquid Biopsy in Early Diagnosis of Lung Cancer. Front Oncol 2021; 11:634316. [PMID: 33937034 PMCID: PMC8085425 DOI: 10.3389/fonc.2021.634316] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Liquid biopsy is an emerging technology with a potential role in the screening and early detection of lung cancer. Several liquid biopsy-derived biomarkers have been identified and are currently under ongoing investigation. In this article, we review the available data on the use of circulating biomarkers for the early detection of lung cancer, focusing on the circulating tumor cells, circulating cell-free DNA, circulating micro-RNAs, tumor-derived exosomes, and tumor-educated platelets, providing an overview of future potential applicability in the clinical practice. While several biomarkers have shown exciting results, diagnostic performance and clinical applicability is still limited. The combination of different biomarkers, as well as their combination with other diagnostic tools show great promise, although further research is still required to define and validate the role of liquid biopsies in clinical practice.
Collapse
Affiliation(s)
- Cláudia Freitas
- Department of Pulmonology, Centro Hospitalar e Universitário São João, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Catarina Sousa
- Department of Pulmonology, Centro Hospitalar e Universitário São João, Porto, Portugal
| | - Francisco Machado
- Department of Pulmonology, Centro Hospitalar e Universitário São João, Porto, Portugal
| | - Mariana Serino
- Department of Pulmonology, Centro Hospitalar e Universitário São João, Porto, Portugal
| | - Vanessa Santos
- Department of Pulmonology, Centro Hospitalar e Universitário São João, Porto, Portugal
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Armando Teixeira
- Institute for Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Faculty of Engineering, University of Porto, Porto, Portugal
| | - António Cunha
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
- Department of Engineering, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Tania Pereira
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
| | - Hélder P. Oliveira
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - José Luís Costa
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Venceslau Hespanhol
- Department of Pulmonology, Centro Hospitalar e Universitário São João, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| |
Collapse
|
27
|
Farooq M, Herman JG. Noninvasive Diagnostics for Early Detection of Lung Cancer: Challenges and Potential with a Focus on Changes in DNA Methylation. Cancer Epidemiol Biomarkers Prev 2020; 29:2416-2422. [PMID: 33148791 DOI: 10.1158/1055-9965.epi-20-0704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/20/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
Lung cancer remains the leading cause of cancer deaths in the United States and the world. Early detection of this disease can reduce mortality, as demonstrated for low-dose computed tomography (LDCT) screening. However, there remains a need for improvements in lung cancer detection to complement LDCT screening and to increase adoption of screening. Molecular changes in the tumor, and the patient's response to the presence of the tumor, have been examined as potential biomarkers for diagnosing lung cancer. There are significant challenges to developing an effective biomarker with sufficient sensitivity and specificity for the early detection of lung cancer, particularly the detection of circulating tumor DNA, which is present in very small quantities. We will review approaches to develop biomarkers for the early detection of lung cancer, with special consideration to detection of rare tumor events, focus on the use of DNA methylation-based detection in plasma and sputum, and discuss the promise and challenges of lung cancer early detection. Plasma-based detection of lung cancer DNA methylation may provide a simple cost-effective method for the early detection of lung cancer.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Maria Farooq
- Department of Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - James G Herman
- Department of Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
- UPMC Hillman Comprehensive Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
28
|
Constâncio V, Nunes SP, Henrique R, Jerónimo C. DNA Methylation-Based Testing in Liquid Biopsies as Detection and Prognostic Biomarkers for the Four Major Cancer Types. Cells 2020; 9:E624. [PMID: 32150897 PMCID: PMC7140532 DOI: 10.3390/cells9030624] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
Lung, breast, colorectal, and prostate cancers are the most incident worldwide. Optimal population-based cancer screening methods remain an unmet need, since cancer detection at early stages increases the prospects of successful and curative treatment, leading to a lower incidence of recurrences. Moreover, the current parameters for cancer patients' stratification have been associated with divergent outcomes. Therefore, new biomarkers that could aid in cancer detection and prognosis, preferably detected by minimally invasive methods are of major importance. Aberrant DNA methylation is an early event in cancer development and may be detected in circulating cell-free DNA (ccfDNA), constituting a valuable cancer biomarker. Furthermore, DNA methylation is a stable alteration that can be easily and rapidly quantified by methylation-specific PCR methods. Thus, the main goal of this review is to provide an overview of the most important studies that report methylation biomarkers for the detection and prognosis of the four major cancers after a critical analysis of the available literature. DNA methylation-based biomarkers show promise for cancer detection and management, with some studies describing a "PanCancer" detection approach for the simultaneous detection of several cancer types. Nonetheless, DNA methylation biomarkers still lack large-scale validation, precluding implementation in clinical practice.
Collapse
Affiliation(s)
- Vera Constâncio
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (S.P.N.); (R.H.)
- Master in Oncology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Sandra P. Nunes
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (S.P.N.); (R.H.)
| | - Rui Henrique
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (S.P.N.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar–University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (S.P.N.); (R.H.)
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar–University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| |
Collapse
|
29
|
Nandi K, Verma R, Dawar R, Goswami B. Cell free DNA: revolution in molecular diagnostics - the journey so far. Horm Mol Biol Clin Investig 2020; 41:/j/hmbci.ahead-of-print/hmbci-2019-0012/hmbci-2019-0012.xml. [PMID: 32083442 DOI: 10.1515/hmbci-2019-0012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022]
Abstract
Cell free DNA (cf-DNA) refers to all non -ncapsulated DNA present in the blood stream which may originate from apoptotic cells as a part of the physiological cell turnover, or from cancer cells or fetal cells. Recent studies have highlighted the utility of cfDNA analysis for genetic profiling of cancer, non-invasive prenatal testing besides many other clinical applications. In our review we discuss the sources of cfDNA in the body, the techniques most commonly being used for its isolation and analysis, the applications of cfDNA testing and the associated pros-cons. We conclude that for prenatal testing, cfDNA analysis provides an effective, non-invasive and safer alternative to traditional amniocentesis and chorionic villus sampling tests. Also, in cancer patients, cfDNA analysis is useful for genetic profiling and follow-up during treatment. However, standardization of methods of isolation and analysis has become crucial for the success of widespread use of cfDNA analysis.
Collapse
Affiliation(s)
- Kajal Nandi
- Department of Biochemistry, HIMSR, Mehrauli, New Delhi, India
| | - Rashmi Verma
- Department of Biochemistry, Maulana Azad Medical College, New Delhi 110002, India
| | - Rajni Dawar
- Department of Biochemistry, Vardhaman Mahavir Medical College, New Delhi 110029, India
| | - Binita Goswami
- Department of Biochemistry, Maulana Azad Medical College, New Delhi 110002, India
| |
Collapse
|
30
|
Khatami F, Larijani B, Heshmat R, Nasiri S, Haddadi-Aghdam M, Teimoori-Toolabi L, Tavangar SM. Hypermethylated RASSF1 and SLC5A8 promoters alongside BRAF V600E mutation as biomarkers for papillary thyroid carcinoma. J Cell Physiol 2020; 235:6954-6968. [PMID: 32017063 DOI: 10.1002/jcp.29591] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Circulating cell-free DNA (cfDNA) has been considered as a diagnostic source to track genetic and epigenetic alterations in cancer. We aimed to study mutation in addition to the methylation status in the promoter regions of RASSF1 and SLC5A8 genes in tissues and circulating free DNA samples of patients affected with papillary thyroid carcinoma (PTC) and thyroid nodules as controls. BRAFV600E mutation was studied by ARMS-scorpion real-time polymerase chain reaction method in 57 PTC and 45 thyroid nodule cases. Methylation status of RASSF1 and SLC5A8 promoter regions was analyzed by methylation-specific high-resolution melting curve analysis. BRAFV600E mutation was found in 39 (68.4%) out of 57 PTC tissue samples, while in 33 (49.1%) cases of cfDNA, this mutation was detected. The frequency of BRAFV600E mutation in cfDNA was significantly different between metastatic and nonmetastatic PTC cases (22 of 33 PTC cases vs. 5 of 34 thyroid nodule samples). Methylation levels of three promoter regions of SLC5A8 and proximal promoter region of RASSF1 was significantly different between PTC and thyroid nodule cases in both cfDNA and tissue DNA. In addition, the methylation status of these two genes in tissue DNA was reflected in methylation status observed in cfDNA. This study confirmed that BRAFV600E mutation is better for discrimination between papillary thyroid carcinoma and thyroid nodules. On the other hand, hypermethylation in the more proximal promoter regions to RASSF1 and SLC5A8 genes showed higher sensitivity and more acceptable specificity for this discrimination.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirzad Nasiri
- Departments of Surgery, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Haddadi-Aghdam
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed M Tavangar
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Bin Y, Ding Y, Xiao W, Liao A. RASSF1A: A promising target for the diagnosis and treatment of cancer. Clin Chim Acta 2020; 504:98-108. [PMID: 31981586 DOI: 10.1016/j.cca.2020.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
The Ras association domain family 1 isoform A (RASSF1A), a tumor suppressor, regulates several tumor-related signaling pathways and interferes with diverse cellular processes. RASSF1A is frequently demonstrated to be inactivated by hypermethylation in numerous types of solid cancers. It is also associated with lymph node metastasis, vascular invasion, and chemo-resistance. Therefore, reactivation of RASSF1A may be a viable strategy to block tumor progress and reverse drug resistance. In this review, we have summarized the clinical value of RASSF1A for screening, staging, and therapeutic management of human malignancies. We also highlighted the potential mechanism of RASSF1A in chemo-resistance, which may help identify novel drugs in the future.
Collapse
Affiliation(s)
- Yuling Bin
- Digestive System Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Yong Ding
- Department of Vascular Surgery, Zhongshan Hospital, Institue of Vascular Surgery, Fudan University, Shanghai 200032, China
| | - Weisheng Xiao
- Digestive System Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Aijun Liao
- Digestive System Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
32
|
Constâncio V, Nunes SP, Moreira-Barbosa C, Freitas R, Oliveira J, Pousa I, Oliveira J, Soares M, Dias CG, Dias T, Antunes L, Henrique R, Jerónimo C. Early detection of the major male cancer types in blood-based liquid biopsies using a DNA methylation panel. Clin Epigenetics 2019; 11:175. [PMID: 31791387 PMCID: PMC6889617 DOI: 10.1186/s13148-019-0779-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/13/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Lung (LC), prostate (PCa) and colorectal (CRC) cancers are the most incident in males worldwide. Despite recent advances, optimal population-based cancer screening methods remain an unmet need. Due to its early onset, cancer specificity and accessibility in body fluids, aberrant DNA promoter methylation might be a valuable minimally invasive tool for early cancer detection. Herein, we aimed to develop a minimally invasive methylation-based test for simultaneous early detection of LC, PCa and CRC in males, using liquid biopsies. RESULTS Circulating cell-free DNA was extracted from 102 LC, 121 PCa and 100 CRC patients and 136 asymptomatic donors' plasma samples. Sodium-bisulfite modification and whole-genome amplification was performed. Promoter methylation levels of APCme, FOXA1me, GSTP1me, HOXD3me, RARβ2me, RASSF1Ame, SEPT9me and SOX17me were assessed by multiplex quantitative methylation-specific PCR. SEPT9me and SOX17me were the only biomarkers shared by all three cancer types, although they detected CRC with limited sensitivity. A "PanCancer" panel (FOXA1me, RARβ2me and RASSF1Ame) detected LC and PCa with 64% sensitivity and 70% specificity, complemented with "CancerType" panel (GSTP1me and SOX17me) which discriminated between LC and PCa with 93% specificity, but with modest sensitivity. Moreover, a HOXD3me and RASSF1Ame panel discriminated small cell lung carcinoma from non-small cell lung carcinoma with 75% sensitivity, 88% specificity, 6.5 LR+ and 0.28 LR-. An APCme and RASSF1Ame panel independently predicted disease-specific mortality in LC patients. CONCLUSIONS We concluded that a DNA methylation-based test in liquid biopsies might enable minimally invasive screening of LC and PCa, improving patient compliance and reducing healthcare costs. Moreover, it might assist in LC subtyping and prognostication.
Collapse
Affiliation(s)
- Vera Constâncio
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Master in Oncology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Sandra P Nunes
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Catarina Moreira-Barbosa
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rui Freitas
- Urology Clinic, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Jorge Oliveira
- Urology Clinic, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Inês Pousa
- Lung Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Júlio Oliveira
- Lung Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Marta Soares
- Lung Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Carlos Gonçalves Dias
- Digestive Tract Pathology Clinic and Surgical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Teresa Dias
- Digestive Tract Pathology Clinic and Surgical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Luís Antunes
- Department of Epidemiology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal.
| |
Collapse
|
33
|
Tan X, Zhang S, Gao H, He W, Xu M, Wu Q, Ni X, Jiang H. Hypermethylation of the PTTG1IP promoter leads to low expression in early-stage non-small cell lung cancer. Oncol Lett 2019; 18:1278-1286. [PMID: 31423188 PMCID: PMC6607221 DOI: 10.3892/ol.2019.10400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 04/15/2019] [Indexed: 12/25/2022] Open
Abstract
Despite the clinical requirement for early diagnosis, the early events in lung cancer and their mechanisms are not fully understood. Pituitary tumor transforming gene 1 binding factor (PTTG1IP) is a tumor-associated gene; however, to the best of our knowledge, its association with lung cancer has not been reported. The present study analyzed PTTG1IP expression in early-stage non-small cell lung cancer (NSCLC) samples and investigated its epigenetic regulatory mechanisms. The results revealed that the mRNA level of PTTG1IP in NSCLC tissues was significantly downregulated by 43% compared with that in adjacent tissues. In addition, overexpression of this gene significantly inhibited cell proliferation. According to data from The Cancer Genome Atlas, a significant negative correlation was identified between the PTTG1IP gene methylation level and expression level in lung adenocarcinoma and lung squamous cell carcinoma cases. Reduced representation bisulfite sequencing (RRBS) analysis of six paired early-stage NSCLC tissue samples indicated that the CpG island shore of the PTTG1IP promoter is hypermethylated in lung cancer tissues, which was further validated in 12 paired early-stage NSCLC samples via bisulfite amplicon sequencing. Following treatment with 5-aza-2′-deoxycytidine to reduce DNA methylation in the promoter region, the PTTG1IP mRNA level increased, indicating that the PTTG1IP promoter DNA methylation level negatively regulates PTTG1IP transcription. In conclusion, in early-stage NSCLC, the PTTG1IP gene is regulated by DNA methylation in its promoter region, which may participate in the development and progression of lung cancer.
Collapse
Affiliation(s)
- Xiaoming Tan
- Department of Respiratory Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Sufen Zhang
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, P.R. China
| | - Huifang Gao
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, P.R. China
| | - Wanhong He
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, P.R. China
| | - Minjie Xu
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, P.R. China
| | - Qihan Wu
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, P.R. China
| | - Xiaohua Ni
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, P.R. China
| | - Handong Jiang
- Department of Respiratory Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| |
Collapse
|
34
|
Revelo AE, Martin A, Velasquez R, Kulandaisamy PC, Bustamante J, Keshishyan S, Otterson G. Liquid biopsy for lung cancers: an update on recent developments. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:349. [PMID: 31516895 DOI: 10.21037/atm.2019.03.28] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Liquid biopsy in lung cancer is evolving as an important added tool for screening, early detection, monitoring, and even prognostication of lung cancer. Guidelines and expert recommendations for its use in practice are available and there are specific scenarios in which liquid biopsy is actively being adopted. Several biomarkers, from which important tumor genomic information is obtained, are currently the subject of ongoing investigation. In this review, we summarize the available data on each specific biomarker and provide an overview on how they play a role in current clinical practice.
Collapse
Affiliation(s)
- Alberto E Revelo
- Division of Pulmonary, Critical Care and Sleep Medicine, Interventional Pulmonology Section, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Alvaro Martin
- Division of Pulmonary, Critical Care and Sleep Medicine, Westchester Medical Center, Valhalla, NY, USA
| | - Ricardo Velasquez
- Division of Pulmonary, Critical Care and Sleep Medicine, Westchester Medical Center, Valhalla, NY, USA
| | - Prarthna Chandar Kulandaisamy
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jean Bustamante
- Division of Medical Oncology, Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Sevak Keshishyan
- Division of Pulmonary, Critical Care and Sleep Medicine, Beebe Medical Center, Lewes, Delaware, USA
| | - Gregory Otterson
- Division of Medical Oncology, Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
35
|
Cervena K, Vodicka P, Vymetalkova V. Diagnostic and prognostic impact of cell-free DNA in human cancers: Systematic review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:100-129. [DOI: 10.1016/j.mrrev.2019.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
|
36
|
Chen K, Kang G, Zhao H, Zhang K, Zhang J, Yang F, Wang J. Liquid biopsy in newly diagnosed patients with locoregional (I-IIIA) non-small cell lung cancer. Expert Rev Mol Diagn 2019; 19:419-427. [PMID: 30905203 DOI: 10.1080/14737159.2019.1599717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Liquid biopsy is a promising method for the management of lung cancer, but previous studies focused mainly on patients with advanced-stage disease. As the methodology has progressed for the detection of circulating tumor DNA (ctDNA) and its aberrant methylation, researchers are gradually investigating the utility of liquid biopsy in early-stage patients. As a result, liquid biopsy has shown its potential for the application in patients with early- and locally advanced-stage non-small cell lung cancer (NSCLC). Areas covered: This review summarizes the utility of liquid biopsy in NSCLC and provide an outlook for future development. We focus on the role of ctDNA and its aberrant methylation in patients with stage IA to stageⅢA NSCLC, in the field of early detection and screening, perioperative management, and postoperative surveillance. Expert opinion: Liquid biopsy has shown the potential for clinical application of early-stage patients but has not been routinely applied yet. The utilization of liquid biopsy will be promoted by improved detection methods and data from well-designed clinical trials. With the development of precision medicine, liquid biopsy will likely play an increasingly important clinical role.
Collapse
Affiliation(s)
- Kezhong Chen
- a Department of Thoracic Surgery , Peking University People's Hospital , Beijing , P.R. China
| | - Guannan Kang
- a Department of Thoracic Surgery , Peking University People's Hospital , Beijing , P.R. China
| | - Heng Zhao
- a Department of Thoracic Surgery , Peking University People's Hospital , Beijing , P.R. China
| | - Kai Zhang
- a Department of Thoracic Surgery , Peking University People's Hospital , Beijing , P.R. China
| | - Jian Zhang
- a Department of Thoracic Surgery , Peking University People's Hospital , Beijing , P.R. China
| | - Fan Yang
- a Department of Thoracic Surgery , Peking University People's Hospital , Beijing , P.R. China
| | - Jun Wang
- a Department of Thoracic Surgery , Peking University People's Hospital , Beijing , P.R. China
| |
Collapse
|
37
|
Li L, Fu K, Zhou W, Snyder M. Applying circulating tumor DNA methylation in the diagnosis of lung cancer. PRECISION CLINICAL MEDICINE 2019; 2:45-56. [PMID: 35694699 PMCID: PMC8985769 DOI: 10.1093/pcmedi/pbz003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/17/2019] [Accepted: 03/14/2019] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Low dose computed tomography (LDCT) is commonly used for disease screening, with identified candidate cancerous regions further diagnosed using tissue biopsy. However, existing techniques are all invasive and unavoidably cause multiple complications. In contrast, liquid biopsy is a noninvasive, ideal surrogate for tissue biopsy that can identify circulating tumor DNA (ctDNA) containing tumorigenic signatures. It has been successfully implemented to assist treatment decisions and disease outcome prediction. ctDNA methylation, a type of lipid biopsy that profiles critical epigenetic alterations occurring during carcinogenesis, has gained increasing attention. Indeed, aberrant ctDNA methylation occurs at early stages in lung malignancy and therefore can be used as an alternative for the early diagnosis of lung cancer. In this review, we give a brief synopsis of the biological basis and detecting techniques of ctDNA methylation. We then summarize the latest progress in use of ctDNA methylation as a diagnosis biomarker. Lastly, we discuss the major issues that limit application of ctDNA methylation in the clinic, and propose possible solutions to enhance its usage.
Collapse
Affiliation(s)
- Lei Li
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, USA
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, 37 Guoxuexiang, Chengdu, China
| | - Kai Fu
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, USA
| | - Wenyu Zhou
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, USA
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, USA
| |
Collapse
|
38
|
Lu JJ, Yuan Z. Application of DNA methylation in early diagnosis and treatment of pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2019; 27:13-19. [DOI: 10.11569/wcjd.v27.i1.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most malignant gastrointestinal tumors, characterized by a poor prognosis. Most of the patients have an advanced disease at the time of diagnosis and lose the opportunity of radical surgery, resulting in a 5-year survival rate of less than 5%. Circulating tumor DNA, whose concentration in plasma of patients with pancreatic adenocarcinoma is higher than that in health controls, carries specific gene mutation and aberrant DNA methylation. Epigenetic change is one of the important characteristics of cell carcinogenesis. DNA methylation is an early event in tumorigenesis, which is more helpful for early diagnosis than gene mutation and can be observed in each stage of PC. Therefore, the detection of aberrant DNA methylation in the promoter region in patients with PC may be a non-invasive method for early cancer detection, predicting prognosis, and monitoring recurrence. In the present review, we discuss the recent advances in the study of DNA methylation in the early diagnosis of PC, and the potential application value in the treatment of PC.
Collapse
Affiliation(s)
- Jia-Jun Lu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhou Yuan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
39
|
|
40
|
Andersen RF. Tumor-specific methylations in circulating cell-free DNA as clinically applicable markers with potential to substitute mutational analyses. Expert Rev Mol Diagn 2018; 18:1011-1019. [DOI: 10.1080/14737159.2018.1545576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Epigenetic predictive biomarkers for response or outcome to platinum-based chemotherapy in non-small cell lung cancer, current state-of-art. THE PHARMACOGENOMICS JOURNAL 2018; 19:5-14. [PMID: 30190521 DOI: 10.1038/s41397-018-0029-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/27/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022]
Abstract
Platinum-based chemotherapy is commonly used to treat non-small cell lung cancer (NSCLC). However, its efficacy is limited and no molecular biomarkers that predict response are available. In this review, we summarize current knowledge concerning potential epigenetic predictive markers for platinum-based chemotherapy response in NSCLC. A systematic search of PubMed and ClinicalTrials.gov using keywords "non-small cell lung cancer" combined with "chemotherapy predictive biomarkers", "chemotherapy epigenetics biomarkers", "chemotherapy microRNA biomarkers", "chemotherapy DNA methylation" and "chemotherapy miRNA biomarkers" revealed 1740 articles from PubMed and 36 clinical trials. Finally, 22 papers and no trials fulfilled the review criteria. Among miRNA, combination of miR-1290, miR-196b and miR-135a in tumor tissue, and miR-21, miR-25, miR27b, and miR-326 in plasma were predictive for response to platinum-based chemotherapy in advanced NSCLC. RASSF1A methylation measured in tumor or blood was predictive for response to neoadjuvant chemotherapy. These biomarkers remain experimental and none have been tested in a prospective trial.
Collapse
|
42
|
Santarpia M, Liguori A, D'Aveni A, Karachaliou N, Gonzalez-Cao M, Daffinà MG, Lazzari C, Altavilla G, Rosell R. Liquid biopsy for lung cancer early detection. J Thorac Dis 2018; 10:S882-S897. [PMID: 29780635 DOI: 10.21037/jtd.2018.03.81] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecularly targeted therapies and immune checkpoint inhibitors have markedly improved the therapeutic management of advanced lung cancer. However, it still remains the leading cause of cancer-related mortality worldwide, with disease stage at diagnosis representing the main prognostic factor. Detection of lung cancer at an earlier stage of disease, potentially susceptible of curative resection, can be critical to improve patients survival. Low-dose computed tomography (LDCT) screening of high-risk patients has been demonstrated to reduce mortality from lung cancer, but can be also associated with high false-positive rate, thus often resulting in unnecessary interventions for patients. Novel sensitive and specific biomarkers for identification of high-risk subjects and early detection that can be used alternatively and/or complement current routine diagnostic procedures are needed. Liquid biopsy has recently demonstrated its clinical usefulness in advanced NSCLC as a surrogate of tissue biopsy for noninvasive assessment of specific genomic alterations, thereby providing prognostic and predictive information. Different biosources from liquid biopsy, including cell free circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), exosomes and tumor-educated platelets (TEPs), have also been widely investigated for their potential role in lung cancer diagnosis. This review will provide an overview on the circulating biomarkers being evaluated for lung cancer detection, mainly focusing on results from most recent studies, the techniques developed to perform their assessment in blood and other biologic fluids and challenges in their clinical applications.
Collapse
Affiliation(s)
- Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology of Adult and Evolutive Age "G. Barresi", University of Messina, Messina, Italy
| | - Alessia Liguori
- Medical Oncology Unit, Department of Human Pathology of Adult and Evolutive Age "G. Barresi", University of Messina, Messina, Italy
| | - Alessandro D'Aveni
- Medical Oncology Unit, Department of Human Pathology of Adult and Evolutive Age "G. Barresi", University of Messina, Messina, Italy
| | - Niki Karachaliou
- Institute of Oncology Rosell (IOR), University Hospital Sagrat Cor, Barcelona, Spain
| | - Maria Gonzalez-Cao
- Department of Oncology, Institute of Oncology Rosell (IOR), Quirón-Dexeus University Institute, Barcelona, Spain
| | - Maria Grazia Daffinà
- Medical Oncology Unit, Department of Human Pathology of Adult and Evolutive Age "G. Barresi", University of Messina, Messina, Italy
| | - Chiara Lazzari
- Department of Oncology, Division of Experimental Medicine, IRCCS San Raffaele, Milan, Italy
| | - Giuseppe Altavilla
- Medical Oncology Unit, Department of Human Pathology of Adult and Evolutive Age "G. Barresi", University of Messina, Messina, Italy
| | - Rafael Rosell
- Cancer Biology and Precision Medicine Program, Germans Trias i Pujol University Hospital, Badalona, Spain.,Catalan Institute of Oncology, Germans Trias i Pujol University Hospital, Badalona, Spain
| |
Collapse
|
43
|
Ko J, Baldassano SN, Loh PL, Kording K, Litt B, Issadore D. Machine learning to detect signatures of disease in liquid biopsies - a user's guide. LAB ON A CHIP 2018; 18:395-405. [PMID: 29192299 PMCID: PMC5955608 DOI: 10.1039/c7lc00955k] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
New technologies that measure sparse molecular biomarkers from easily accessible bodily fluids (e.g. blood, urine, and saliva) are revolutionizing disease diagnostics and precision medicine. Microchip devices can measure more disease biomarkers with better sensitivity and specificity each year, but clinical interpretation of these biomarkers remains a challenge. Single biomarkers in 'liquid biopsy' often cannot accurately predict the state of a disease due to heterogeneity in phenotype and disease expression across individuals. To address this challenge, investigators are combining multiplexed measurements of different biomarkers that together define robust signatures for specific disease states. Machine learning is a useful tool to automatically discover and detect these signatures, especially as new technologies output increasing quantities of molecular data. In this paper, we review the state of the field of machine learning applied to molecular diagnostics and provide practical guidance to use this tool effectively and to avoid common pitfalls.
Collapse
Affiliation(s)
- Jina Ko
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Mari-Alexandre J, Diaz-Lagares A, Villalba M, Juan O, Crujeiras AB, Calvo A, Sandoval J. Translating cancer epigenomics into the clinic: focus on lung cancer. Transl Res 2017. [PMID: 28644958 DOI: 10.1016/j.trsl.2017.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetic deregulation is increasingly being recognized as a hallmark of cancer. Recent studies have identified many new epigenetic biomarkers, some of which are being introduced into clinical practice for diagnosis, molecular classification, prognosis or prediction of response to therapies. O-6-methylguanine-DNA methyltransferase gene is the most clinically advanced epigenetic biomarker as it predicts the response to temozolomide and carmustine in gliomas. Therefore, epigenomics may represent a novel and promising tool for precision medicine, and in particular, the detection of epigenomic biomarkers in liquid biopsies will be of great interest for monitoring diseases in patients. Of particular relevance is the identification of epigenetic biomarkers in lung cancer, one of the most prevalent and deadly types of cancer. DNA methylation of SHOX2 and RASSF1A could be used as diagnostic markers to differentiate between normal and tumor samples. MicroRNA and long noncoding RNA signatures associated with lung cancer development or tobacco smoke have also been identified. In addition to the field of biomarkers, therapeutic approaches using DNA methylation and histone deacetylation inhibitors are being tested in clinical trials for several cancer types. Moreover, new DNA editing techniques based on zinc finger and CRISPR/Cas9 technologies allow specific modification of aberrant methylation found in oncogenes or tumor suppressor genes. We envision that epigenomics will translate into the clinical field and will have an impact on lung cancer diagnosis/prognosis and treatment.
Collapse
Affiliation(s)
- Josep Mari-Alexandre
- Unit of Inherited Cardiovascular Diseases, Sudden Death and Mechanisms of Disease, Health Research Institute La Fe, Valencia, Spain
| | - Angel Diaz-Lagares
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS), CIBERONC, Santiago de Compostela, Spain
| | - Maria Villalba
- Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Navarra, Spain; CIBERONC, IDISNA and Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Navarra, Spain
| | - Oscar Juan
- Biomarkers and Precision Medicine Unit. Health Research Institute La Fe, Valencia, Spain
| | - Ana B Crujeiras
- Laboratory of Molecular and Cellular Endocrinology, Health Research Institute of Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Madrid, Spain.
| | - Alfonso Calvo
- Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Navarra, Spain; CIBERONC, IDISNA and Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Navarra, Spain.
| | - Juan Sandoval
- Biomarkers and Precision Medicine Unit. Health Research Institute La Fe, Valencia, Spain.
| |
Collapse
|
45
|
Tang Y, Qiao G, Xu E, Xuan Y, Liao M, Yin G. Biomarkers for early diagnosis, prognosis, prediction, and recurrence monitoring of non-small cell lung cancer. Onco Targets Ther 2017; 10:4527-4534. [PMID: 28979144 PMCID: PMC5602468 DOI: 10.2147/ott.s142149] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite advances in the management of non-small cell lung cancer, it remains to be the leading cause of cancer-related deaths worldwide primarily because of diagnosis at a late stage with an overall 5-year survival rate of 17%. A reduction in mortality was achieved by low-dose computed tomography screening of high-risk patients. However, the benefit was later challenged by the high false positive rate, resulting in unnecessary follow-ups, thus entailing a burden on both the health care system and the individual. The diagnostic dilemma imposed by imaging modalities has created a need for the development of biomarkers capable of differentiating benign nodules from malignant ones. In the past decade, with the advancements in high-throughput profiling technologies, a huge amount of work has been done to derive biomarkers to supplement clinical diagnosis. However, only a few of them have efficient sensitivity and specificity to be utilized in clinical settings. Therefore, there is an urgent need for the development of sensitive and specific means to detect and diagnose lung cancers at an early stage, when curative interventions are still possible. Due to the invasiveness of tissue biopsies and inability to capture tumor heterogeneity, nowadays enormous efforts have been invested in the development of technologies and biomarkers that enable sensitive and cost-effective testing using substrates that can be obtained in a noninvasive manner. This review, primarily focusing on liquid biopsy, summarizes all documented potential biomarkers for diagnosis, monitoring recurrence treatment response.
Collapse
Affiliation(s)
- Yong Tang
- Southern Medical University, Guangzhou, Guangdong Province, China.,Department of Thoracic Surgery, General Hospital of Guangzhou Military Command of PLA, Yuexiu District, Guangzhou City, Guangdong Province, China
| | - Guibin Qiao
- Southern Medical University, Guangzhou, Guangdong Province, China.,Department of Thoracic Surgery, General Hospital of Guangzhou Military Command of PLA, Yuexiu District, Guangzhou City, Guangdong Province, China
| | - Enwu Xu
- Department of Thoracic Surgery, General Hospital of Guangzhou Military Command of PLA, Yuexiu District, Guangzhou City, Guangdong Province, China
| | - Yiwen Xuan
- Department of Thoracic Surgery, General Hospital of Guangzhou Military Command of PLA, Yuexiu District, Guangzhou City, Guangdong Province, China
| | - Ming Liao
- Department of Thoracic Surgery, General Hospital of Guangzhou Military Command of PLA, Yuexiu District, Guangzhou City, Guangdong Province, China
| | - Guilin Yin
- Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
46
|
Ponomaryova AA, Cherdyntseva NV, Bondar AA, Dobrodeev AY, Zavyalov AA, Tuzikov SA, Vlassov VV, Choinzonov EL, Laktionov PP, Rykova EY. Dynamics of LINE-1 retrotransposon methylation levels in circulating DNA from lung cancer patients undergoing antitumor therapy. Mol Biol 2017. [DOI: 10.1134/s0026893317040148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Calapre L, Warburton L, Millward M, Ziman M, Gray ES. Circulating tumour DNA (ctDNA) as a liquid biopsy for melanoma. Cancer Lett 2017; 404:62-69. [PMID: 28687355 DOI: 10.1016/j.canlet.2017.06.030] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 01/10/2023]
Abstract
Circulating tumour DNA (ctDNA) has emerged as a promising blood-based biomarker for monitoring disease status of patients with advanced cancers. In melanoma, ctDNA has been shown to have clinical value as an alternative tumour source for the detection clinically targetable mutations for the assessment of response to therapy. This review provides a critical summary of the evidence that gives credence to the utility of ctDNA as a biomarker for monitoring of disease status in advanced melanoma and the steps required for its implementation into clinical settings.
Collapse
Affiliation(s)
- Leslie Calapre
- School of Medical Science, Edith Cowan University, Joondalup, WA, Australia.
| | - Lydia Warburton
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Michael Millward
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia; School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Mel Ziman
- School of Medical Science, Edith Cowan University, Joondalup, WA, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA, Australia
| | - Elin S Gray
- School of Medical Science, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
48
|
Coyle KM, Boudreau JE, Marcato P. Genetic Mutations and Epigenetic Modifications: Driving Cancer and Informing Precision Medicine. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9620870. [PMID: 28685150 PMCID: PMC5480027 DOI: 10.1155/2017/9620870] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/06/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022]
Abstract
Cancer treatment is undergoing a significant revolution from "one-size-fits-all" cytotoxic therapies to tailored approaches that precisely target molecular alterations. Precision strategies for drug development and patient stratification, based on the molecular features of tumors, are the next logical step in a long history of approaches to cancer therapy. In this review, we discuss the history of cancer treatment from generic natural extracts and radical surgical procedures to site-specific and combinatorial treatment regimens, which have incrementally improved patient outcomes. We discuss the related contributions of genetics and epigenetics to cancer progression and the response to targeted therapies and identify challenges and opportunities for the success of precision medicine. The identification of patients who will benefit from targeted therapies is more complex than simply identifying patients whose tumors harbour the targeted aberration, and intratumoral heterogeneity makes it difficult to determine if a precision therapy is successful during treatment. This heterogeneity enables tumors to develop resistance to targeted approaches; therefore, the rational combination of therapeutic agents will limit the threat of acquired resistance to therapeutic success. By incorporating the view of malignant transformation modulated by networks of genetic and epigenetic interactions, molecular strategies will enable precision medicine for effective treatment across cancer subtypes.
Collapse
Affiliation(s)
| | - Jeanette E. Boudreau
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
49
|
Rykova E, Sizikov A, Roggenbuck D, Antonenko O, Bryzgalov L, Morozkin E, Skvortsova K, Vlassov V, Laktionov P, Kozlov V. Circulating DNA in rheumatoid arthritis: pathological changes and association with clinically used serological markers. Arthritis Res Ther 2017; 19:85. [PMID: 28464939 PMCID: PMC5414163 DOI: 10.1186/s13075-017-1295-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/07/2017] [Indexed: 12/15/2022] Open
Abstract
Background Early diagnosis of rheumatoid arthritis (RA) is crucial to providing effective therapy and often hampered by unspecific clinical manifestations. Elevated levels of extracellular circulating DNA (cirDNA) in patients with autoimmune disease were found to be associated with etiopathogenesis. To our knowledge, this is the first study to investigate the putative diagnostic use of cirDNA in RA and its association with disease activity. Methods Blood samples were taken from 63 healthy subjects (HS) and 74 patients with RA. cirDNA was extracted from plasma and cell surface-bound cirDNA fractions (csbDNA). cirDNA concentration was measured by quantitative real-time polymerase chain reaction. Rheumatoid factor was analyzed by immunonephelometry, whereas C-reactive protein and anticitrullinated protein/peptide antibodies (ACPA) were detected by enzyme-linked immunosorbent assay. Results Plasma cirDNA was significantly elevated in patients with RA compared with HS (12.0 versus 8.4 ng/ml, p < 0.01). In contrast, nuclear csbDNA (n-csbDNA) was significantly decreased (24.0 versus 50.8 ng/ml, p < 0.01), whereas mitochondrial csbDNA (m-csbDNA) was elevated (1.44 × 106 copies/ml versus 0.58 × 106 copies/ml, p < 0.05) in RA. The combination of csbDNA (mitochondrial + nuclear) with ACPA reveals the best positive/negative likelihood ratios (LRs) for the discrimination RA from HS (LR+ 61.00, LR− 0.03) in contrast to ACPA (LR+ 9.00, LR− 0.19) or csbDNA (LR+ 8.00, LR− 0.18) alone. Conclusions Nuclear and mitochondrial cirDNA levels in plasma and on the surface of blood cells are modulated in RA. Combination of cirDNA values with ACPA can improve the serological diagnosis of RA. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1295-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Rykova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia.,Novosibirsk State Technical University, Novosibirsk, Russia
| | - Aleksey Sizikov
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology", Novosibirsk, Russia
| | - Dirk Roggenbuck
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Oksana Antonenko
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.
| | | | - Evgeniy Morozkin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia.,Academician E. N. Meshalkin, Novosibirsk Research Institute of Circulation Pathology, Novosibirsk, Russia
| | - Kseniya Skvortsova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia.,Academician E. N. Meshalkin, Novosibirsk Research Institute of Circulation Pathology, Novosibirsk, Russia
| | - Vladimir Kozlov
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology", Novosibirsk, Russia
| |
Collapse
|
50
|
Tomasetti M, Amati M, Neuzil J, Santarelli L. Circulating epigenetic biomarkers in lung malignancies: From early diagnosis to therapy. Lung Cancer 2017; 107:65-72. [DOI: 10.1016/j.lungcan.2016.05.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/20/2016] [Accepted: 05/29/2016] [Indexed: 12/18/2022]
|