1
|
Sadeghi M, Dehnavi S, Sharifat M, Amiri AM, Khodadadi A. Innate immune cells: Key players of orchestra in modulating tumor microenvironment (TME). Heliyon 2024; 10:e27480. [PMID: 38463798 PMCID: PMC10923864 DOI: 10.1016/j.heliyon.2024.e27480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
The tumor microenvironment (TME) with vital role in cancer progression is composed of various cells such as endothelial cells, immune cells, and mesenchymal stem cells. In particular, innate immune cells such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, innate lymphoid cells, γδT lymphocytes, and natural killer cells can either promote or suppress tumor progression when present in the TME. An increase in research on the cross-talk between the TME and innate immune cells will lead to new approaches for anti-tumoral therapeutic interventions. This review primarily focuses on the biology of innate immune cells and their main functions in the TME. In addition, it summarizes several innate immune-based immunotherapies that are currently tested in clinical trials.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moosa Sharifat
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Mohammad Amiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
2
|
Gampa SC, Garimella SV, Pandrangi S. Nano-TRAIL: a promising path to cancer therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:78-102. [PMID: 37065863 PMCID: PMC10099604 DOI: 10.20517/cdr.2022.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/20/2022] [Accepted: 01/04/2023] [Indexed: 04/18/2023]
Abstract
Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand, also called apo-2 ligand (TRAIL/Apo-2L), is a cytokine that triggers apoptosis by binding to TRAIL-R1 (DR4) and TRAIL-R2 (DR5) death receptors. Apoptosis occurs through either the extrinsic or intrinsic pathway. The administration of recombinant human TRAIL (rhTRAIL) or TRAIL-receptor (TRAIL-R) agonists promotes apoptosis preferentially in cancerous cells over normal cells in vitro; this phenomenon has also been observed in clinical studies. The limited efficacy of rhTRAIL in clinical trials could be attributed to drug resistance, short half-life, targeted delivery issues, and off-target toxicities. Nanoparticles are excellent drug and gene delivery systems characterized by improved permeability and retention, increased stability and biocompatibility, and precision targeting. In this review, we discuss resistance mechanisms to TRAIL and methods to overcome TRAIL resistance by using nanoparticle-based formulations developed for the delivery of TRAIL peptides, TRAIL-R agonists, and TRAIL genes to cancer cells. We also discuss combinatorial approaches of chemotherapeutic drugs with TRAIL. These studies demonstrate TRAIL's potential as an anticancer agent.
Collapse
Affiliation(s)
- Siri Chandana Gampa
- Department of Biotechnology, Institute of Science, GITAM (Deemed to be University), Andhra Pradesh 530045, India
| | - Sireesha V. Garimella
- Department of Biotechnology, Institute of Science, GITAM (Deemed to be University), Andhra Pradesh 530045, India
| | - SanthiLatha Pandrangi
- Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Andhra Pradesh 530045, India
| |
Collapse
|
3
|
Targeting TRAIL Death Receptors in Triple-Negative Breast Cancers: Challenges and Strategies for Cancer Therapy. Cells 2022; 11:cells11233717. [PMID: 36496977 PMCID: PMC9739296 DOI: 10.3390/cells11233717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The tumor necrosis factor (TNF) superfamily member TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in cancer cells via death receptor (DR) activation with little toxicity to normal cells or tissues. The selectivity for activating apoptosis in cancer cells confers an ideal therapeutic characteristic to TRAIL, which has led to the development and clinical testing of many DR agonists. However, TRAIL/DR targeting therapies have been widely ineffective in clinical trials of various malignancies for reasons that remain poorly understood. Triple negative breast cancer (TNBC) has the worst prognosis among breast cancers. Targeting the TRAIL DR pathway has shown notable efficacy in a subset of TNBC in preclinical models but again has not shown appreciable activity in clinical trials. In this review, we will discuss the signaling components and mechanisms governing TRAIL pathway activation and clinical trial findings discussed with a focus on TNBC. Challenges and potential solutions for using DR agonists in the clinic are also discussed, including consideration of the pharmacokinetic and pharmacodynamic properties of DR agonists, patient selection by predictive biomarkers, and potential combination therapies. Moreover, recent findings on the impact of TRAIL treatment on the immune response, as well as novel strategies to address those challenges, are discussed.
Collapse
|
4
|
Razeghian E, Suksatan W, Sulaiman Rahman H, Bokov DO, Abdelbasset WK, Hassanzadeh A, Marofi F, Yazdanifar M, Jarahian M. Harnessing TRAIL-Induced Apoptosis Pathway for Cancer Immunotherapy and Associated Challenges. Front Immunol 2021; 12:699746. [PMID: 34489946 PMCID: PMC8417882 DOI: 10.3389/fimmu.2021.699746] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/05/2021] [Indexed: 01/04/2023] Open
Abstract
The immune cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted rapidly evolving attention as a cancer treatment modality because of its competence to selectively eliminate tumor cells without instigating toxicity in vivo. TRAIL has revealed encouraging promise in preclinical reports in animal models as a cancer treatment option; however, the foremost constraint of the TRAIL therapy is the advancement of TRAIL resistance through a myriad of mechanisms in tumor cells. Investigations have documented that improvement of the expression of anti-apoptotic proteins and survival or proliferation involved signaling pathways concurrently suppressing the expression of pro-apoptotic proteins along with down-regulation of expression of TRAILR1 and TRAILR2, also known as death receptor 4 and 5 (DR4/5) are reliable for tumor cells resistance to TRAIL. Therefore, it seems that the development of a therapeutic approach for overcoming TRAIL resistance is of paramount importance. Studies currently have shown that combined treatment with anti-tumor agents, ranging from synthetic agents to natural products, and TRAIL could result in induction of apoptosis in TRAIL-resistant cells. Also, human mesenchymal stem/stromal cells (MSCs) engineered to generate and deliver TRAIL can provide both targeted and continued delivery of this apoptosis-inducing cytokine. Similarly, nanoparticle (NPs)-based TRAIL delivery offers novel platforms to defeat barricades to TRAIL therapeutic delivery. In the current review, we will focus on underlying mechanisms contributed to inducing resistance to TRAIL in tumor cells, and also discuss recent findings concerning the therapeutic efficacy of combined treatment of TRAIL with other antitumor compounds, and also TRAIL-delivery using human MSCs and NPs to overcome tumor cells resistance to TRAIL.
Collapse
Affiliation(s)
- Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Suleimanyah, Suleimanyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Iraq
| | - Dmitry O. Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
5
|
Wang S, Zhu H, Li Y, Ding J, Wang F, Ding L, Wang X, Zhao J, Zhang Y, Yao Y, Zhou T, Li N, Wu A, Yang Z. First-in-human DR5 PET reveals insufficient DR5 expression in patients with gastrointestinal cancer. J Immunother Cancer 2021; 9:jitc-2021-002926. [PMID: 34301815 PMCID: PMC8728342 DOI: 10.1136/jitc-2021-002926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Death receptor 5 (DR5) is a promising therapeutic target for cancer therapy. However, many clinical trials of DR5 agonists failed to show significant therapeutic efficacy in patients with cancer. The study aimed to investigate the feasibility of using 89Zr-CTB006 positron emission tomography (PET) for noninvasive imaging of DR5 expression in preclinical models and patients with gastrointestinal (GI) cancers. METHODS Balb/c, Sp2/0 xenograft and patient-derived tumor xenograft were employed for micro-PET/CT imaging in vivo. In the clinical study, patients with GI cancers planning to undergo surgical operation were enrolled and underwent 18F-FDG and 89Zr-CTB006 PET/CT. The tumor tissues were obtained through surgical operation and DR5 expression levels were confirmed by RNAscope. RESULTS Preclinical studies showed that 89Zr-CTB006 PET could specifically detect DR5 expression levels in vivo. Twenty-one patients, including nine gastric cancers and 12 colorectal cancers, were enrolled. The biodistribution showed high uptake in the liver and spleen and low uptake in the brain, lung and muscle with an acceptable whole-body dosimetry of 0.349 mSv/MBq. Strikingly, the adrenal glands maintained stable high uptake over the entire examination in all patients. The tumor lesions showed different levels of uptake of 89Zr-CTB006 with a mean maximum standardized uptake value (SUVmax) of 6.63±3.29 (range 1.8-13.8). Tumor tissue was obtained from 18 patients, and 89Zr-CTB006 uptake in patients with RNAscope scores of 3-4 was significantly higher than that in patients with scores of 0-2. An SUVmax of 9.3 at 48 hours and 6.3 at 72 hours could be used to discriminate the DR5 expression status of tumors both with a sensitivity and specificity of 100% and 92.9%, respectively. CONCLUSIONS 89Zr-CTB006 PET/CT is capable of detecting DR5 expression in cancer patients and is a promising approach to screen patients with DR5 overexpression.
Collapse
Affiliation(s)
- Shujing Wang
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China
| | - Hua Zhu
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China
| | - Yingjie Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jin Ding
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China
| | - Feng Wang
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China
| | - Lixin Ding
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China
| | - Xinyu Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yan Zhang
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China
| | - Yunfeng Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Tong Zhou
- Department of Cell Biology and Divisions of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nan Li
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China .,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China
| | - Aiwen Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China .,Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhi Yang
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China .,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China
| |
Collapse
|
6
|
Badarni M, Prasad M, Golden A, Bhattacharya B, Levin L, Yegodayev KM, Dimitstein O, Joshua BZ, Cohen L, Khrameeva E, Kong D, Porgador A, Braiman A, Grandis JR, Rotblat B, Elkabets M. IGF2 Mediates Resistance to Isoform-Selective-Inhibitors of the PI3K in HPV Positive Head and Neck Cancer. Cancers (Basel) 2021; 13:cancers13092250. [PMID: 34067117 PMCID: PMC8125641 DOI: 10.3390/cancers13092250] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary In the current study, we delineate the molecular mechanisms of acquisition of resistance to two isoform-selective inhibitors of PI3K (isiPI3K), alpelisib and taselisib, in human papillomavirus positive head and neck cell lines. By comparing RNA sequencing of isiPI3K-sensitive tumor cells and their corresponding isiPI3K-acquired-resistant tumor cells, we found that overexpression of insulin growth factor 2 (IGF2) is associated with the resistance phenotype. We further demonstrated by gain and loss of function studies that IGF2 plays a causative role in limiting the sensitivity of human papillomavirus-positive head and neck cell lines. Moreover, we show that blocking IGF2 stimulation activity, using an inhibitor of the IGF1 receptor (IGF1R), enhances isiPI3K efficacy and displays a synergistic anti-tumor effect in vitro and superior anti-tumor activity ex vivo and in vivo. Abstract Over 50% of human papilloma positive head-and-neck cancer (HNCHPV+) patients harbor genomic-alterations in PIK3CA, leading to hyperactivation of the phosphatidylinositol-4, 5-bisphosphate 3-kinase (PI3K) pathway. Nevertheless, despite PI3K pathway activation in HNCHPV+ tumors, the anti-tumor activities of PI3K pathway inhibitors are moderate, mostly due to the emergence of resistance. Thus, for potent and long-term tumor management, drugs blocking resistance mechanisms should be combined with PI3K inhibitors. Here, we delineate the molecular mechanisms of the acquisition of resistance to two isoform-selective inhibitors of PI3K (isiPI3K), alpelisib (BYL719) and taselisib (GDC0032), in HNCHPV+ cell lines. By comparing the transcriptional landscape of isiPI3K-sensitive tumor cells with that of their corresponding isiPI3K-acquired-resistant tumor cells, we found upregulation of insulin growth factor 2 (IGF2) in the resistant cells. Mechanistically, we show that upon isiPI3K treatment, isiPI3K-sensitive tumor cells upregulate the expression of IGF2 to induce cell proliferation via the activation of the IGF1 receptor (IGF1R). Stimulating tumor cells with recombinant IGF2 limited isiPI3K efficacy and released treated cells from S phase arrest. Knocking-down IGF2 with siRNA, or blocking IGF1R with AEW541, resulted in superior anti-tumor activity of isiPI3K in vitro and ex vivo. In vivo, the combination of isiPI3K and IGF1R inhibitor induced stable disease in mice bearing either tumors generated by the HNCHPV+ UM-SCC47 cell line or HPV+ patient-derived xenografts. These findings indicate that IGF2 and the IGF2/IGF1R pathway may constitute new targets for combination therapies to enhance the efficacy of PI3K inhibitors for the treatment of HNCHPV+.
Collapse
Affiliation(s)
- Mai Badarni
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.B.); (M.P.); (B.B.); (K.M.Y.); (L.C.); (A.P.); (A.B.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
| | - Manu Prasad
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.B.); (M.P.); (B.B.); (K.M.Y.); (L.C.); (A.P.); (A.B.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
| | - Artemiy Golden
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.G.); (E.K.)
| | - Baisali Bhattacharya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.B.); (M.P.); (B.B.); (K.M.Y.); (L.C.); (A.P.); (A.B.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
| | - Liron Levin
- Bioinformatics Core Facility, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ksenia M. Yegodayev
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.B.); (M.P.); (B.B.); (K.M.Y.); (L.C.); (A.P.); (A.B.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
| | - Orr Dimitstein
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
- Department of Otolaryngology—Head and Neck Surgery, Soroka University Medical Center, Beer-Sheva 84105, Israel
| | - Ben-Zion Joshua
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
- Department of Otorhinolaryngology and Head & Neck Surgery, Barzilay Medical Center, Ashkelon 7830604, Israel
| | - Limor Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.B.); (M.P.); (B.B.); (K.M.Y.); (L.C.); (A.P.); (A.B.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
| | - Ekaterina Khrameeva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.G.); (E.K.)
| | - Dexin Kong
- School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin 300070, China;
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.B.); (M.P.); (B.B.); (K.M.Y.); (L.C.); (A.P.); (A.B.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.B.); (M.P.); (B.B.); (K.M.Y.); (L.C.); (A.P.); (A.B.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
| | - Jennifer R. Grandis
- Department of Otolaryngology—Head and Neck Surgery, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Barak Rotblat
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Life Sciences, Faculty of Life Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Correspondence: (B.R.); (M.E.); Tel.: +972-(0)8-6428806 (B.R.); +972-86428846 (M.E.)
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.B.); (M.P.); (B.B.); (K.M.Y.); (L.C.); (A.P.); (A.B.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.D.); (B.-Z.J.)
- Correspondence: (B.R.); (M.E.); Tel.: +972-(0)8-6428806 (B.R.); +972-86428846 (M.E.)
| |
Collapse
|
7
|
Bone Marrow Mesenchymal Stromal Cell-mediated Resistance in Multiple Myeloma Against NK Cells can be Overcome by Introduction of CD38-CAR or TRAIL-variant. Hemasphere 2021; 5:e561. [PMID: 33898931 PMCID: PMC8061681 DOI: 10.1097/hs9.0000000000000561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/19/2021] [Indexed: 01/18/2023] Open
Abstract
We have recently shown the strong negative impact of multiple myeloma (MM)-bone marrow mesenchymal stromal cell (BMMSC) interactions to several immunotherapeutic strategies including conventional T cells, chimeric antigen receptor (CAR) T cells, and daratumumab-redirected NK cells. This BMMSC-mediated immune resistance via the upregulation of antiapoptotic proteins in MM cells was mainly observed for moderately cytotoxic modalities. Here, we set out to assess the hypothesis that this distinct mode of immune evasion can be overcome by improving the overall efficacy of immune effector cells. Using an in vitro model, we aimed to improve the cytotoxic potential of KHYG-1 NK cells toward MM cells by the introduction of a CD38-specific CAR and a DR5-specific, optimized TRAIL-variant. Similar to what have been observed for T cells and moderately lytic CAR T cells, the cytolytic efficacy of unmodified KHYG-1 cells as well as of conventional, DR5-agonistic antibodies were strongly reduced in the presence of BMMSCs. Consistent with our earlier findings, the BMMSCs protected MM cells against KHYG-1 and DR5-agonistic antibodies by inducing resistance mechanisms that were largely abrogated by the small molecule FL118, an inhibitor of multiple antiapoptotic proteins including Survivin, Mcl-1, and XIAP. Importantly, the BMMSC-mediated immune resistance was also significantly diminished by engineering KHYG-1 cells to express the CD38-CAR or the TRAIL-variant. These results emphasize the critical effects of microenvironment-mediated immune resistance on the efficacy of immunotherapy and underscores that this mode of immune escape can be tackled by inhibition of key antiapoptotic molecules or by increasing the overall efficacy of immune killer cells.
Collapse
|
8
|
Zhao C, Wang F, Huang J, Lv Y, Yin F, Liu H, Zheng Q, Li L. The impacts of race and regimens on the efficacy and safety of paclitaxel and platinum combination treatment for patients with advanced non-small cell lung cancer. Eur J Clin Pharmacol 2021; 77:685-695. [PMID: 33779768 DOI: 10.1007/s00228-021-03129-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Paclitaxel-platinum chemotherapy is the first-line treatment for advanced non-small cell lung cancer (NSCLC) patients. This study quantitatively evaluated the factors influencing the efficacy and safety of the paclitaxel-platinum regimen to provide the necessary reference for the development of clinical practice and clinical trials. METHODS A literature search was performed using public databases. The parametric survival function was used to analyze the overall survival (OS) time course of patients treated with the paclitaxel-platinum regimen. The random effects model in the single-arm meta-analysis was used to analyze the objective response rate (ORR) and the incidence of grade 3-4 adverse events (AEs) under the predefined subgroups according to race and the regimen. RESULTS A total of 31 studies consisting of 3365 participants were included in the analysis. Race was the most important determinant of efficacy and safety in the paclitaxel-platinum regimen, with the median survival time and ORR in East Asians and non-East Asians being 12.2 months (95% CI: 10.5-14.4 months) and 37% (95% CI: 32-41%) and 8.4 months (95% CI: 6.5-11.0 months) and 28% (95% CI: 25-32%), respectively. The incidence of grade 3-4 AEs such as leukopenia and neutropenia was about three times higher in East Asians compared to non-East Asians. CONCLUSIONS The efficacy and safety of the paclitaxel-platinum regimen can vary between East Asian and non-East Asian populations and between different treatment schedules. The results of this study can provide a reliable and precise external control for the future evaluation of new treatment options for advanced NSCLC.
Collapse
Affiliation(s)
- Chenyang Zhao
- Center for Drug Clinical Evaluation, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengli Wang
- Center for Drug Clinical Evaluation, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jihan Huang
- Center for Drug Clinical Evaluation, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yinghua Lv
- Center for Drug Clinical Evaluation, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fang Yin
- Center for Drug Clinical Evaluation, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongxia Liu
- Center for Drug Clinical Evaluation, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingshan Zheng
- Center for Drug Clinical Evaluation, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Lujin Li
- Center for Drug Clinical Evaluation, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
9
|
Snajdauf M, Havlova K, Vachtenheim J, Ozaniak A, Lischke R, Bartunkova J, Smrz D, Strizova Z. The TRAIL in the Treatment of Human Cancer: An Update on Clinical Trials. Front Mol Biosci 2021; 8:628332. [PMID: 33791337 PMCID: PMC8006409 DOI: 10.3389/fmolb.2021.628332] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
TRAIL (tumor-necrosis factor related apoptosis-inducing ligand, CD253) and its death receptors TRAIL-R1 and TRAIL-R2 selectively trigger the apoptotic cell death in tumor cells. For that reason, TRAIL has been extensively studied as a target of cancer therapy. In spite of the promising preclinical observations, the TRAIL–based therapies in humans have certain limitations. The two main therapeutic approaches are based on either an administration of TRAIL-receptor (TRAIL-R) agonists or a recombinant TRAIL. These approaches, however, seem to elicit a limited therapeutic efficacy, and only a few drugs have entered the phase II clinical trials. To deliver TRAIL-based therapies with higher anti-tumor potential several novel TRAIL-derivates and modifications have been designed. These novel drugs are, however, mostly preclinical, and many problems continue to be unraveled. We have reviewed the current status of all TRAIL-based monotherapies and combination therapies that have reached phase II and phase III clinical trials in humans. We have also aimed to introduce all novel approaches of TRAIL utilization in cancer treatment and discussed the most promising drugs which are likely to enter clinical trials in humans. To date, different strategies were introduced in order to activate anti-tumor immune responses with the aim of achieving the highest efficacy and minimal toxicity.In this review, we discuss the most promising TRAIL-based clinical trials and their therapeutic strategies.
Collapse
Affiliation(s)
- Martin Snajdauf
- Third Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Klara Havlova
- Department of Urology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Jiri Vachtenheim
- Third Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Andrej Ozaniak
- Third Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Robert Lischke
- Third Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Jirina Bartunkova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Daniel Smrz
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Zuzana Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| |
Collapse
|
10
|
Deng D, Shah K. TRAIL of Hope Meeting Resistance in Cancer. Trends Cancer 2020; 6:989-1001. [PMID: 32718904 PMCID: PMC7688478 DOI: 10.1016/j.trecan.2020.06.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 02/08/2023]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis selectively via its interaction with the death receptors TRAILR1/DR4 and TRAILR2/DR5 in a wide range of cancers, while sparing normal cells. Despite its tremendous potential for cancer therapeutics, the translation of TRAIL into the clinic has been confounded by TRAIL-resistant cancer populations. We discuss different molecular mechanisms underlying TRAIL-mediated apoptosis and resistance to TRAIL. We also discuss the successes and failures of recent preclinical and clinical studies of TRAIL-induced apoptosis, and current attempts to overcome TRAIL resistance, and we provide a perspective for improving the prospects of future clinical implementation.
Collapse
Affiliation(s)
- David Deng
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
11
|
Wang H, Ashton R, Hensel JA, Lee JH, Khattar V, Wang Y, Deshane JS, Ponnazhagan S. RANKL-Targeted Combination Therapy with Osteoprotegerin Variant Devoid of TRAIL Binding Exerts Biphasic Effects on Skeletal Remodeling and Antitumor Immunity. Mol Cancer Ther 2020; 19:2585-2597. [PMID: 33199500 DOI: 10.1158/1535-7163.mct-20-0378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/24/2020] [Accepted: 10/06/2020] [Indexed: 02/01/2023]
Abstract
Complexities in treating breast cancer with bone metastasis are enhanced by a vicious protumorigenic pathology, involving a shift in skeletal homeostasis toward aggressive osteoclast activity and polarization of immune cells supporting tumor growth and immunosuppression. Recent studies signify the role of receptor activator of NF-κB ligand (RANKL) beyond skeletal pathology in breast cancer, including tumor growth and immunosuppression. By using an osteoprotegerin (OPG) variant, which we developed recently through protein engineering to uncouple TNF-related apoptosis-inducing ligand (TRAIL) binding, this study established the potential of a cell-based OPGY49R therapy for both bone damage and immunosuppression in an immunocompetent mouse model of orthotopic and metastatic breast cancers. In combination with agonistic death receptor (DR5) activation, the OPGY49R therapy significantly increased both bone remolding and long-term antitumor immunity, protecting mice from breast cancer relapse and osteolytic pathology. With limitations, cost, and toxicity issues associated with the use of denosumab, bisphosphonates, and chemotherapy for bone metastatic disease, use of OPGY49R combination could offer a viable alternate therapeutic approach.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Reading Ashton
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Jonathan A Hensel
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Joo Hyoung Lee
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Vinayak Khattar
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Yong Wang
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Jessy S Deshane
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | | |
Collapse
|
12
|
Thapa B, Kc R, Uludağ H. TRAIL therapy and prospective developments for cancer treatment. J Control Release 2020; 326:335-349. [PMID: 32682900 DOI: 10.1016/j.jconrel.2020.07.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/01/2020] [Accepted: 07/11/2020] [Indexed: 12/22/2022]
Abstract
Tumor Necrosis Factor (TNF) Related Apoptosis-Inducing Ligand (TRAIL), an immune cytokine of TNF-family, has received much attention in late 1990s as a potential cancer therapeutics due to its selective ability to induce apoptosis in cancer cells. TRAIL binds to cell surface death receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5) and facilitates formation of death-inducing signaling complex (DISC), eventually activating the p53-independent apoptotic cascade. This unique mechanism makes the TRAIL a potential anticancer therapeutic especially for p53-mutated tumors. However, recombinant human TRAIL protein (rhTRAIL) and TRAIL-R agonist monoclonal antibodies (mAb) failed to exert robust anticancer activities due to inherent and/or acquired resistance, poor pharmacokinetics and weak potencies for apoptosis induction. To get TRAIL back on track as a cancer therapeutic, multiple strategies including protein modification, combinatorial approach and TRAIL gene therapy are being extensively explored. These strategies aim to enhance the half-life and bioavailability of TRAIL and synergize with TRAIL action ultimately sensitizing the resistant and non-responsive cells. We summarize emerging strategies for enhanced TRAIL therapy in this review and cover a wide range of recent technologies that will provide impetus to rejuvenate the TRAIL therapeutics in the clinical realm.
Collapse
Affiliation(s)
- Bindu Thapa
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Remant Kc
- Department of Chemical & Material Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada.
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Chemical & Material Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada; Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
13
|
Wong SHM, Kong WY, Fang CM, Loh HS, Chuah LH, Abdullah S, Ngai SC. The TRAIL to cancer therapy: Hindrances and potential solutions. Crit Rev Oncol Hematol 2019; 143:81-94. [PMID: 31561055 DOI: 10.1016/j.critrevonc.2019.08.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
Apoptosis is an ordered and orchestrated cellular process that occurs in physiological and pathological conditions. Resistance to apoptosis is a hallmark of virtually all malignancies. Despite being a cause of pathological conditions, apoptosis could be a promising target in cancer treatment. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of TNF cytokine superfamily. It is a potent anti-cancer agent owing to its specific targeting towards cancerous cells, while sparing normal cells, to induce apoptosis. However, resistance occurs either intrinsically or after multiple treatments which may explain why cancer therapy fails. This review summarizes the apoptotic mechanisms via extrinsic and intrinsic apoptotic pathways, as well as the apoptotic resistance mechanisms. It also reviews the current clinically tested recombinant human TRAIL (rhTRAIL) and TRAIL receptor agonists (TRAs) against TRAIL-Receptors, TRAIL-R1 and TRAIL-R2, in which the outcomes of the clinical trials have not been satisfactory. Finally, this review discusses the current strategies in overcoming resistance to TRAIL-induced apoptosis in pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Sonia How Ming Wong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Wei Yang Kong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Chee-Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Syahril Abdullah
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, 43400 UPM, Malaysia; UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, 43400 UPM, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
14
|
Lim B, Greer Y, Lipkowitz S, Takebe N. Novel Apoptosis-Inducing Agents for the Treatment of Cancer, a New Arsenal in the Toolbox. Cancers (Basel) 2019; 11:cancers11081087. [PMID: 31370269 PMCID: PMC6721450 DOI: 10.3390/cancers11081087] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023] Open
Abstract
Evasion from apoptosis is an important hallmark of cancer cells. Alterations of apoptosis pathways are especially critical as they confer resistance to conventional anti-cancer therapeutics, e.g., chemotherapy, radiotherapy, and targeted therapeutics. Thus, successful induction of apoptosis using novel therapeutics may be a key strategy for preventing recurrence and metastasis. Inhibitors of anti-apoptotic molecules and enhancers of pro-apoptotic molecules are being actively developed for hematologic malignancies and solid tumors in particular over the last decade. However, due to the complicated apoptosis process caused by a multifaceted connection with cross-talk pathways, protein–protein interaction, and diverse resistance mechanisms, drug development within the category has been extremely challenging. Careful design and development of clinical trials incorporating predictive biomarkers along with novel apoptosis-inducing agents based on rational combination strategies are needed to ensure the successful development of these molecules. Here, we review the landscape of currently available direct apoptosis-targeting agents in clinical development for cancer treatment and update the related biomarker advancement to detect and validate the efficacy of apoptosis-targeted therapies, along with strategies to combine them with other agents.
Collapse
Affiliation(s)
- Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Yoshimi Greer
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Naoko Takebe
- Early Clinical Trials Development, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
TRAIL responses are enhanced by nuclear export inhibition in osteosarcoma. Biochem Biophys Res Commun 2019; 517:383-389. [PMID: 31362889 DOI: 10.1016/j.bbrc.2019.07.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 01/10/2023]
Abstract
Tumour necrosis factor-related apoptosis inducing ligand (TRAIL) is a promising anti-tumour agent that induces apoptosis of malignant cells through activation of death receptors. Death receptor agonistic antibodies are in clinical trials as TRAIL-mimetics, however, along with TRAIL monotherapy, there is limited efficacy due to the rapid emergence of TRAIL resistance, or due to existing TRAIL-insensitive disease. TRAIL-sensitisers, which enhance TRAIL activity or overcome TRAIL resistance, may facilitate death receptor agonists as viable anti-tumour strategies. In this study we demonstrate that the nuclear export inhibitor Leptomycin B, is a potent in vitro TRAIL-sensitiser in osteosarcoma cell lines. Leptomycin B works synergistically with both TRAIL and death receptor 5 agonistic antibodies to induce apoptosis in TRAIL sensitive cell lines. Further, Leptomycin B sensitises TRAIL-insensitive cell lines to TRAIL and death receptor agonistic antibody mediated apoptosis. We also confirmed that aldehyde dehydrogenase (ALDH) positive cells are not resistant to the apoptotic effects of TRAIL and Leptomycin B, an important observation since ALDH positive cells can have enhanced tumorigenicity and are implicated in disease recurrence and metastasis. The nuclear export pathway in combination with death receptor agonists, is a potential therapeutic strategy in osteosarcoma and warrants further research on clinically relevant selective inhibitors of nuclear export.
Collapse
|
16
|
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that can initiate the apoptosis pathway by binding to its associated death receptors DR4 and DR5. The activation of the TRAIL pathway in inducing tumor-selective apoptosis leads to the development of TRAIL-based cancer therapies, which include recombinant forms of TRAIL, TRAIL receptor agonists, and other therapeutic agents. Importantly, TRAIL, DR4, and DR5 can all be induced by synthetic and natural agents that activate the TRAIL apoptosis pathway in cancer cells. Thus, understanding the regulation of the TRAIL apoptosis pathway can aid in the development of TRAIL-based therapies for the treatment of human cancer.
Collapse
|
17
|
Hess LM, DeLozier AM, Natanegara F, Wang X, Soldatenkova V, Brnabic A, Able SL, Brown J. First-line treatment of patients with advanced or metastatic squamous non-small cell lung cancer: systematic review and network meta-analysis. J Thorac Dis 2018; 10:6677-6694. [PMID: 30746213 DOI: 10.21037/jtd.2018.11.87] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background The objectives of this systematic review and meta-analysis were to compare the survival, toxicity, and quality of life of patients treated with necitumumab in combination with gemcitabine and cisplatin. These agents were investigated in published randomized controlled trials (RCTs) of patients with squamous non-small cell lung cancer (NSCLC) in the first-line setting. Methods The systematic review was executed on January 27, 2015, and updated on August 21, 2016, using a pre-specified search strategy. Searches were conducted using PubMed, Medline, and EMBASE, with supplemental searches using the Evidence Based Medicine Reviews and ClinicalTrials.gov to identify RCTs published in English from 1995-2016 and reporting at least one of the primary outcomes [overall survival (OS), progression-free survival (PFS), toxicity, or quality of life] in patients who received first-line treatment for advanced or metastatic squamous NSCLC. Study quality and risk of bias were assessed using the Physiotherapy Evidence Database (PEDro) scale and Cochrane risk of bias tool, respectively. A Baysian network meta-analysis was performed on the primary outcomes. Hazard ratios (HRs) were evaluated for the primary analysis; secondary analyses were conducted using median OS data. Planned sensitivity analyses were conducted including reanalysis using a Frequentist approach and limiting analyses to subsets based on clinical and demographic covariates. Results The systematic literature review resulted in identification of 4,016 unique publications; 40 publications (35 unique trials) were eligible for inclusion. Eight studies connected to a common network for the OS analysis using HR data. The majority of studies were not limited to squamous NSCLC, thus analyzable data were limited to a subset of data within the published trials. Carboplatin + S-1 and necitumumab in combination with gemcitabine and cisplatin were associated with lower HRs for OS versus all other comparators. Nine studies connected to the network for the PFS analysis in which necitumumab in combination with gemcitabine and cisplatin was associated with the lowest HR. Data were not available to analyze toxicity or quality of life. Conclusions Although the results suggest that carboplatin + S-1 and necitumumab in combination with gemcitabine and cisplatin may have value in terms of OS versus other comparators, the results should be interpreted with caution due to the limited number of studies (with few focused exclusively on squamous NSCLC) and wide credible intervals.
Collapse
Affiliation(s)
- Lisa M Hess
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | | | - Xiaofei Wang
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | - Alan Brnabic
- Eli Lilly and Company, West Ryde, NSW, Australia
| | | | | |
Collapse
|
18
|
Rulli E, Ghilotti F, Biagioli E, Porcu L, Marabese M, D'Incalci M, Bellocco R, Torri V. Assessment of proportional hazard assumption in aggregate data: a systematic review on statistical methodology in clinical trials using time-to-event endpoint. Br J Cancer 2018; 119:1456-1463. [PMID: 30420618 PMCID: PMC6288087 DOI: 10.1038/s41416-018-0302-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 01/15/2023] Open
Abstract
Background The evaluation of the proportional hazards (PH) assumption in survival analysis is an important issue when Hazard Ratio (HR) is chosen as summary measure. The aim is to assess the appropriateness of statistical methods based on the PH assumption in oncological trials. Methods We selected 58 randomised controlled trials comparing at least two pharmacological treatments with a time-to-event as primary endpoint in advanced non-small-cell lung cancer. Data from Kaplan–Meier curves were used to calculate the relative hazard at each time point and the Restricted Mean Survival Time (RMST). The PH assumption was assessed with a fixed-effect meta-regression. Results In 19% of the trials, there was evidence of non-PH. Comparison of treatments with different mechanisms of action was associated (P = 0.006) with violation of the PH assumption. In all the superiority trials where non-PH was detected, the conclusions using the RMST corresponded to that based on the Cox model, although the magnitude of the effect given by the HR was systematically greater than the one from the RMST ratio. Conclusion As drugs with new mechanisms of action are being increasingly employed, particular attention should be paid on the statistical methods used to compare different types of agents.
Collapse
Affiliation(s)
- Eliana Rulli
- Laboratory of Methodology for Clinical Research, Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| | - Francesca Ghilotti
- Laboratory of Methodology for Clinical Research, Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milano, Italy
| | - Elena Biagioli
- Laboratory of Methodology for Clinical Research, Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Luca Porcu
- Laboratory of Methodology for Clinical Research, Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mirko Marabese
- Laboratory of Molecular Pharmacology, Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Maurizio D'Incalci
- Laboratory of Cancer Pharmacology, Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Rino Bellocco
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milano, Italy.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Valter Torri
- Laboratory of Methodology for Clinical Research, Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
19
|
Tsukita Y, Okazaki T, Ebihara S, Komatsu R, Nihei M, Kobayashi M, Hirano T, Sugiura H, Tamada T, Tanaka N, Sato Y, Yagita H, Ichinose M. Beneficial effects of sunitinib on tumor microenvironment and immunotherapy targeting death receptor5. Oncoimmunology 2018; 8:e1543526. [PMID: 30713805 DOI: 10.1080/2162402x.2018.1543526] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/18/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023] Open
Abstract
Tumor-associated blood vessels and lymphatics are abnormal and dysfunctional. These are hallmarks of the tumor microenvironment, which has an immunosuppressive nature, such as through hypoxia. Treatment with anti-death receptor5 (DR5) monoclonal antibody MD5-1, which induces tumor cell death, is a potent anti-tumor immunotherapy. Generally, MD5-1 induces cell death mainly via antigen presenting cells (APCs) and generates tumor-specific effector T cells. To date, the effects of a simultaneous functional improvement of abnormal blood vessels and lymphatics on the immune microenvironment are largely unknown. A combination therapy using sunitinib, vascular endothelial growth factor (VEGF) and platelet-derived growth factor receptor inhibitor, and MD5-1 substantially inhibited tumor growth. Sunitinib improved pericyte coverage on endothelial cells and the expression levels of regulator of G-protein signaling 5, suggesting blood vessel normalization. Sunitinib also increased lymph flow from tumors to central lymph nodes, suggesting improved lymphatic function. In concordance with improved vasculature functions, sunitinib alleviated the tumor hypoxia, suggesting an improved tumor microenvironment. Indeed, the combination therapy induced strong activation of CD8+ T cells and dendritic cells in draining lymph nodes. The combination therapy reduced the ratio of immune-suppressive T regulatory cells in the tumors and draining lymph nodes. The combination therapy enhanced the numbers and activation of tumor-infiltrating CD8+ T cells. CD4 and/or CD8 depletion, or APC inhibiting experiments showed the contribution of CD8+ T cells and APCs to the combination therapy. These findings suggest that targeting blood vessels and lymphatics may have potential benefits for immunotherapy mediated by CD8+ T cells and APCs.
Collapse
Affiliation(s)
- Yoko Tsukita
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tatsuma Okazaki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.,Present address; Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoru Ebihara
- Department of Rehabilitation Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Riyo Komatsu
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mayumi Nihei
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Kobayashi
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taizou Hirano
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuyuki Tanaka
- Division of Tumor Immunobiology, Department of Cancer Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
20
|
Mikesch JH, Schwammbach D, Hartmann W, Schmidt L, Schliemann C, Angenendt L, Wiewrodt R, Marra A, Thoennissen NH, Wardelmann E, Köhler G, Lenz G, Müller-Tidow C, Berdel WE, Arteaga MF. Reptin drives tumour progression and resistance to chemotherapy in nonsmall cell lung cancer. Eur Respir J 2018; 52:13993003.01637-2017. [DOI: 10.1183/13993003.01637-2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 05/19/2018] [Indexed: 11/05/2022]
Abstract
While targeted nonsmall cell lung cancer (NSCLC) therapies have improved the outcome of defined disease subtypes, prognosis for most patients remains poor. We found the AAA+ ATPase Reptin to be highly expressed in the vast majority of 278 NSCLC tumour samples. Thus, the objective of the study was to assess the role of Reptin in NSCLC.Survival analyses of 1145 NSCLC patients revealed that high RNA expression levels of Reptin are associated with adverse outcome. Knockdown of Reptin in human NSCLC cells impaired growth ex vivo and eliminated engraftment in a xenograft model. Reptin directly interacted with histone deacetylase 1 (HDAC1) as the critical mechanism driving NSCLC tumour progression. Pharmacological disruption of the Reptin/HDAC1 complex resulted in a substantial decrease in NSCLC cell proliferation and induced significant sensitisation to cisplatin.Our results identify Reptin as a novel independent prognostic factor and as a key regulator mediating proliferation and clonal growth of human NSCLC cells ex vivo and in vivo. We unveil a Reptin/HDAC1 protein complex whose pharmacological disruption sensitises NSCLC cells to cisplatin, suggesting this approach for application in clinical trials.
Collapse
|
21
|
Niwa T, Kasuya Y, Suzuki Y, Ichikawa K, Yoshida H, Kurimoto A, Tanaka K, Morita K. Novel Immunoliposome Technology for Enhancing the Activity of the Agonistic Antibody against the Tumor Necrosis Factor Receptor Superfamily. Mol Pharm 2018; 15:3729-3740. [PMID: 29648839 DOI: 10.1021/acs.molpharmaceut.7b01167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have developed a technology for efficiently enhancing the anticancer apoptosis-inducing activity of agonistic antibodies against the tumor necrosis factor receptor (TNFR) superfamily by the formation of immunoliposomes. To induce apoptosis in cancer cells, agonistic antibodies to the TNFR superfamily normally need cross-linking by internal immune effector cells via the Fc region after binding to receptors on the cell membrane. To develop apoptosis-inducing antibodies that do not require the support of cross-linking by immune cells, we prepared immunoliposomes conjugated with TRA-8, an agonistic antibody against death receptor 5 (DR5), with various densities of antibody on the liposome surface, and evaluated their activities. The TRA-8 immunoliposomes exhibited apoptosis-inducing activity against various DR5-positive human carcinoma cells at a significantly lower concentration without cross-linking than that of the original TRA-8 and its natural ligand (TRAIL). The activity of the immunoliposomes was correlated with the density of antibodies on the surface. As the antibody component, not only the full-length antibody but also the Fab' fragment could be used, and the TRA-8 Fab' immunoliposomes also showed exceedingly high activity compared with the parental antibody, namely, TRA-8. Moreover, cytotoxicity of the TRA-8 full-length or Fab' immunoliposome against normal cells, such as human primary hepatocytes, was lower than that for TRAIL. Enhanced activity was also observed for immunoliposomes conjugated with other apoptosis-inducing antibodies against other receptors of the TNFR superfamily, such as death receptor 4 (DR4) and Fas. Thus, immunoliposomes are promising as a new modality that could exhibit significant activity at a low dose, for cost-effective application of an antibody fragment and with stable efficacy independent of the intratumoral environment of patients as a TNF superfamily agonistic therapy.
Collapse
Affiliation(s)
- Takako Niwa
- Daiichi Sankyo Co., Ltd. , 1-2-58 Hiromachi , Shinagawa-ku, Tokyo 140-8710 , Japan
| | - Yuji Kasuya
- Daiichi Sankyo Co., Ltd. , 1-2-58 Hiromachi , Shinagawa-ku, Tokyo 140-8710 , Japan
| | - Yukie Suzuki
- Daiichi Sankyo Co., Ltd. , 1-2-58 Hiromachi , Shinagawa-ku, Tokyo 140-8710 , Japan
| | - Kimihisa Ichikawa
- Daiichi Sankyo Co., Ltd. , 1-2-58 Hiromachi , Shinagawa-ku, Tokyo 140-8710 , Japan
| | - Hiroko Yoshida
- Daiichi Sankyo Co., Ltd. , 1-2-58 Hiromachi , Shinagawa-ku, Tokyo 140-8710 , Japan
| | - Akiko Kurimoto
- Daiichi Sankyo Co., Ltd. , 1-2-58 Hiromachi , Shinagawa-ku, Tokyo 140-8710 , Japan
| | - Kento Tanaka
- Daiichi Sankyo Co., Ltd. , 1-2-58 Hiromachi , Shinagawa-ku, Tokyo 140-8710 , Japan
| | - Koji Morita
- Daiichi Sankyo Co., Ltd. , 1-2-58 Hiromachi , Shinagawa-ku, Tokyo 140-8710 , Japan
| |
Collapse
|
22
|
Guimarães PP, Gaglione S, Sewastianik T, Carrasco RD, Langer R, Mitchell MJ. Nanoparticles for Immune Cytokine TRAIL-Based Cancer Therapy. ACS NANO 2018; 12:912-931. [PMID: 29378114 PMCID: PMC5834400 DOI: 10.1021/acsnano.7b05876] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The immune cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has received significant attention as a cancer therapeutic due to its ability to selectively trigger cancer cell apoptosis without causing toxicity in vivo. While TRAIL has demonstrated significant promise in preclinical studies in mice as a cancer therapeutic, challenges including poor circulation half-life, inefficient delivery to target sites, and TRAIL resistance have hindered clinical translation. Recent advances in drug delivery, materials science, and nanotechnology are now being exploited to develop next-generation nanoparticle platforms to overcome barriers to TRAIL therapeutic delivery. Here, we review the design and implementation of nanoparticles to enhance TRAIL-based cancer therapy. The platforms we discuss are diverse in their approaches to the delivery problem and provide valuable insight into guiding the design of future nanoparticle-based TRAIL cancer therapeutics to potentially enable future translation into the clinic.
Collapse
Affiliation(s)
- Pedro P.G. Guimarães
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Stephanie Gaglione
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, United States
| | - Tomasz Sewastianik
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Ruben D. Carrasco
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Pathology, Brigham & Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Robert Langer
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, United States
- Corresponding Authors. .,
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Corresponding Authors. .,
| |
Collapse
|
23
|
[Ru(pipe)(dppb)(bipy)]PF 6: A novel ruthenium complex that effectively inhibits ERK activation and cyclin D1 expression in A549 cells. Toxicol In Vitro 2017; 44:382-391. [PMID: 28774850 DOI: 10.1016/j.tiv.2017.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/10/2017] [Accepted: 07/20/2017] [Indexed: 11/22/2022]
Abstract
Lung cancer is the most frequent type of cancer worldwide. In Brazil, only 14% of the patients diagnosed with lung cancer survived 5years in the last decades. Although improvements in the therapeutic approach, it is relevant to identify new chemotherapeutic agents. In this framework, ruthenium metal compounds emerge as a promising alternative to platinum-based compounds once they displayed lower cytotoxicity and more selectivity for tumor cells. The present study aimed to evaluate the antitumor potential of innovative ruthenium(II) complex, [Ru(pipe)(dppb)(bipy)]PF6 (PIPE) on A549 cells, which is derived from non-small cell lung cancer. Results demonstrated that PIPE effectively reduced the viability and proliferation rate of A549 cells. When PIPE was used at 9μM there was increase in G0/G1 cell population with concomitant reduction in frequency of cells in S-phase, indicating cell cycle arrest in G1/S transition. Antiproliferative activity of PIPE was associated to its ability of reducing cyclin D1 expression and ERK phosphorylation levels. Cytotoxic activity of PIPE on A549 cells was observed when PIPE was used at 18μM, which was associated to its ability of inducing apoptosis by intrinsic pathway. Taken together, the data demonstrated that PIPE is a promising antitumor agent and further in vivo studies should be performed.
Collapse
|
24
|
Naoum GE, Buchsbaum DJ, Tawadros F, Farooqi A, Arafat WO. Journey of TRAIL from Bench to Bedside and its Potential Role in Immuno-Oncology. Oncol Rev 2017; 11:332. [PMID: 28584572 PMCID: PMC5432952 DOI: 10.4081/oncol.2017.332] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/17/2017] [Accepted: 02/27/2017] [Indexed: 12/21/2022] Open
Abstract
Induction of apoptosis in cancer cells has increasingly been the focus of many therapeutic approaches in oncology field. Since its identification as a TNF family member, TRAIL (TNF-related apoptosis-inducing ligand) paved a new path in apoptosis inducing cancer therapies. Its selective ability to activate extrinsic and intrinsic cell death pathways in cancer cells only, independently from p53 mutations responsible for conventional therapeutics resistance, spotted TRAIL as a potent cancer apoptotic agent. Many recombinant preparations of TRAIL and death receptor targeting monoclonal antibodies have been developed and being tested pre-clinically and clinically both as a single agent and in combinations. Of note, the monoclonal antibodies were not the only type of antibodies developed to target TRAIL receptors. Recent technology has brought forth several single chain variable domains (scFv) designs fused recombinantly to TRAIL as well. Also, it is becoming progressively more understandable that field of nanotechnology has revolutionized cancer diagnosis and therapy. The recent breakthroughs in materials science and protein engineering have helped considerably in strategically loading drugs into nanoparticles or conjugating drugs to their surface. In this review we aim to comprehensively highlight the molecular knowledge of TRAIL in the context of its pathway, receptors and resistance factors. We also aim to review the clinical trials that have been done using TRAIL based therapies and to review various scFv designs, the arsenal of nano-carriers and molecules available to selectively target tumor cells with TRAIL.
Collapse
Affiliation(s)
| | | | | | | | - Waleed O. Arafat
- Alexandria Comprehensive Cancer Center, Alexandria, Egypt
- Univeristy of Alabama, Birmingham, AL, USA
- University of Alexandria, Faculty of Medicine, Egypt
| |
Collapse
|
25
|
Dominguez GA, Condamine T, Mony S, Hashimoto A, Wang F, Liu Q, Forero A, Bendell J, Witt R, Hockstein N, Kumar P, Gabrilovich DI. Selective Targeting of Myeloid-Derived Suppressor Cells in Cancer Patients Using DS-8273a, an Agonistic TRAIL-R2 Antibody. Clin Cancer Res 2016; 23:2942-2950. [PMID: 27965309 DOI: 10.1158/1078-0432.ccr-16-1784] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/11/2016] [Accepted: 12/02/2016] [Indexed: 01/01/2023]
Abstract
Purpose: Myeloid-derived suppressor cells (MDSC) are one of the major contributors to immune suppression in cancer. We recently have demonstrated in preclinical study that MDSCs are sensitive to TRAIL receptor 2 (TRAIL-R2) agonist. The goal of this study was to clinically test the hypothesis that targeting TRAIL-R2 can selectively eliminate MDSCs.Experimental Design: The TRAIL-R2 agonistic antibody (DS-8273a) has been tested in 16 patients with advanced cancers enrolled in a phase I trial. The antibody (24 mg/kg) was administered intravenously once every 3 weeks till disease progression, unacceptable toxicities, or withdrawal of consent. The safety and the presence of various populations of myeloid and lymphoid cells in peripheral blood and tumor tissues were evaluated.Results: The treatment was well tolerated with only mild to moderate adverse events attributable to the study drug. Treatment with DS-8273a resulted in reduction of the elevated numbers of MDSCs in the peripheral blood of most patients to the levels observed in healthy volunteers. However, in several patients, MDSCs rebounded back to the pretreatment level by day 42. In contrast, DS-8273a did not affect the number of neutrophils, monocytes, and other populations of myeloid and lymphoid cells. Decrease in MDSCs inversely correlated with the length of progression-free survival. In tumors, DS-8273a treatment resulted in a decrease of MDSCs in 50% of the patients who were able to provide pre- and on-treatment biopsies.Conclusions: Targeting TRAIL-R2 resulted in elimination of different populations of MDSCs without affecting mature myeloid or lymphoid cells. These data support the use of this antibody in combination immmunotherapy of cancer. Clin Cancer Res; 23(12); 2942-50. ©2016 AACR.
Collapse
Affiliation(s)
| | | | - Sridevi Mony
- The Wistar Institute, Philadelphia, Pennsylvania
| | | | - Fang Wang
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Qin Liu
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Andres Forero
- University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, Alabama
| | - Johanna Bendell
- Sarah Cannon Research Institute Tennessee Oncology, Nashville, Tennessee
| | - Robert Witt
- Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, Delaware
| | - Neil Hockstein
- Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, Delaware
| | | | | |
Collapse
|
26
|
Naoum GE, Tawadros F, Farooqi AA, Qureshi MZ, Tabassum S, Buchsbaum DJ, Arafat W. Role of nanotechnology and gene delivery systems in TRAIL-based therapies. Ecancermedicalscience 2016; 10:660. [PMID: 27594905 PMCID: PMC4990059 DOI: 10.3332/ecancer.2016.660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 12/11/2022] Open
Abstract
Since its identification as a member of the tumour necrosis factor (TNF) family, TRAIL (TNF-related apoptosis-inducing ligand) has emerged as a new avenue in apoptosis-inducing cancer therapies. Its ability to circumvent the chemoresistance of conventional therapeutics and to interact with cancer stem cells (CSCs) self-renewal pathways, amplified its potential as a cancer apoptotic agent. Many recombinant preparations of this death ligand and monoclonal antibodies targeting its death receptors have been tested in monotherapy and combinational clinical trials. Gene therapy is a new approach for cancer treatment which implies viral or non-viral functional transgene induction of apoptosis in cancer cells or repair of the underlying genetic abnormality on a molecular level. The role of this approach in overcoming the traditional barriers of radiation and chemotherapeutics systemic toxicity, risk of recurrence, and metastasis made it a promising platform for cancer treatment. The recent first Food Drug Administration (FDA) approved oncolytic herpes virus for melanoma treatment brings forth the potency of the cancer gene therapy approach in the future. Many gene delivery systems have been studied for intratumoural TRAIL gene delivery alone or in combination with chemotherapeutic agents to produce synergistic cancer cytotoxicity. However, there still remain many obstacles to be conquered for this different gene delivery systems. Nanomedicine on the other hand offers a new frontier for clinical trials and biomedical research. The FDA approved nanodrugs motivates horizon exploration for other nanoscale designed particles’ implications in gene delivery. In this review we aim to highlight the molecular role of TRAIL in apoptosis and interaction with cancer stem cells (CSCs) self-renewal pathways. Finally, we also aim to discuss the different roles of gene delivery systems, mesenchymal cells, and nanotechnology designs in TRAIL gene delivery.
Collapse
Affiliation(s)
| | - Fady Tawadros
- East Tennessee State University, 1276 Gilbreath Dr, Johnson City, TN 37604, USA
| | | | | | - Sobia Tabassum
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Donald J Buchsbaum
- University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL 35233, USA
| | - Waleed Arafat
- University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL 35233, USA; University of Alexandria, El-Gaish Rd, Egypt, Alexandria, Egypt
| |
Collapse
|
27
|
Cheng AL, Kang YK, He AR, Lim HY, Ryoo BY, Hung CH, Sheen IS, Izumi N, Austin T, Wang Q, Greenberg J, Shiratori S, Beckman RA, Kudo M. Safety and efficacy of tigatuzumab plus sorafenib as first-line therapy in subjects with advanced hepatocellular carcinoma: A phase 2 randomized study. J Hepatol 2015; 63:896-904. [PMID: 26071796 DOI: 10.1016/j.jhep.2015.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 04/21/2015] [Accepted: 06/02/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Tigatuzumab is a humanized monoclonal antibody that acts as a death receptor-5 agonist and exerts tumour necrosis factor-related apoptosis-inducing ligand-like activity. In this phase II study, safety and tolerability of the combination of tigatuzumab and sorafenib was evaluated in patients with advanced hepatocellular carcinoma. METHODS Adults with advanced hepatocellular carcinoma, measurable disease, and an Eastern Cooperative Oncology Group performance score⩽1 were enrolled. Eligible subjects were randomly assigned 1:1:1 to tigatuzumab (6 mg/kg loading, 2 mg/kg/week maintenance) plus sorafenib 400 mg twice daily; tigatuzumab (6 mg/kg loading, 6 mg/kg/week maintenance) plus sorafenib 400 mg twice daily; or sorafenib 400 mg twice daily. The primary end point was time to progression. Secondary end points included overall survival and safety. RESULTS 163 subjects were randomized to treatment. Median time to progression was 3.0 months in the tigatuzumab 6/2 mg/kg combination group (p=0.988 vs. sorafenib), 3.9 months in the tigatuzumab 6/6 mg/kg combination group (p=0.586 vs. sorafenib), and 2.8 months in the sorafenib alone group. Median overall survival was 12.2 months in the tigatuzumab 6/6 mg/kg combination group (p=0.659 vs. sorafenib), vs. 8.2 months in both other treatment groups (p=0.303, tigatuzumab 6/2 mg/kg combination vs. sorafenib). The most common treatment-emergent adverse events were palmar-plantar erythrodysesthesia syndrome, diarrhea, and decreased appetite. CONCLUSIONS Tigatuzumab combined with sorafenib vs. sorafenib alone in adults with advanced hepatocellular carcinoma did not meet its primary efficacy end point, although tigatuzumab plus sorafenib is well tolerated in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ann-Lii Cheng
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Yoon-Koo Kang
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Aiwu Ruth He
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Ho Yeong Lim
- Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Baek-Yeol Ryoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chao-Hung Hung
- Chang Gung Medical Foundation-Kaohsiung, Kaohsiung, Taiwan
| | - I-Shyan Sheen
- Chang Gung Medical Foundation-Linkuo, Taoyaun, Taiwan
| | - Namiki Izumi
- Japan Red Cross Musashino Hospital, Tokyo, Japan
| | - TaShara Austin
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Qiang Wang
- Daiichi Sankyo Pharma Development, Edison, NJ, USA
| | | | | | - Robert A Beckman
- Department of Oncology, Lombardi Comprehensive Cancer Center and Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA; Department of Biostatistics, Bioinformatics, and Biomathematics, Lombardi Comprehensive Cancer Center and Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA
| | | | | |
Collapse
|
28
|
Redman JM, Hill EM, AlDeghaither D, Weiner LM. Mechanisms of action of therapeutic antibodies for cancer. Mol Immunol 2015; 67:28-45. [PMID: 25911943 PMCID: PMC4529810 DOI: 10.1016/j.molimm.2015.04.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/29/2015] [Accepted: 04/03/2015] [Indexed: 02/06/2023]
Abstract
The therapeutic utility of antibodies and their derivatives is achieved by various means. The FDA has approved several targeted antibodies that disrupt signaling of various growth factor receptors for the treatment of a number of cancers. Rituximab, and other anti-CD20 monoclonal antibodies are active in B cell malignancies. As more experience has been gained with anti-CD20 monoclonal antibodies, the multifactorial nature of their anti-tumor mechanisms has emerged. Other targeted antibodies function to dampen inhibitory checkpoints. These checkpoint inhibitors have recently achieved dramatic results in several cancers, including melanoma. These and related antibodies continue to be investigated in the clinical and pre-clinical settings. Novel antibody structures that target two or more antigens have also made their way into clinical use. Tumor targeted antibodies can also be conjugated to chemo- or radiotherapeutic agents, or catalytic toxins, as a means to deliver toxic payloads to cancer cells. Here we provide a review of these mechanisms and a discussion of their relevance to current and future clinical applications.
Collapse
Affiliation(s)
- J M Redman
- Departments of Oncology and Internal Medicine, Georgetown University Medical Center and Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - E M Hill
- Departments of Oncology and Internal Medicine, Georgetown University Medical Center and Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - D AlDeghaither
- Departments of Oncology and Internal Medicine, Georgetown University Medical Center and Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - L M Weiner
- Departments of Oncology and Internal Medicine, Georgetown University Medical Center and Lombardi Comprehensive Cancer Center, Washington, DC, United States.
| |
Collapse
|
29
|
Amarante-Mendes GP, Griffith TS. Therapeutic applications of TRAIL receptor agonists in cancer and beyond. Pharmacol Ther 2015; 155:117-31. [PMID: 26343199 DOI: 10.1016/j.pharmthera.2015.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
TRAIL/Apo-2L is a member of the TNF superfamily first described as an apoptosis-inducing cytokine in 1995. Similar to TNF and Fas ligand, TRAIL induces apoptosis in caspase-dependent manner following TRAIL death receptor trimerization. Because tumor cells were shown to be particularly sensitive to this cytokine while normal cells/tissues proved to be resistant along with being able to synthesize and release TRAIL, it was rapidly appreciated that TRAIL likely served as one of our major physiologic weapons against cancer. In line with this, a number of research laboratories and pharmaceutical companies have attempted to exploit the ability of TRAIL to kill cancer cells by developing recombinant forms of TRAIL or TRAIL receptor agonists (e.g., receptor-specific mAb) for therapeutic purposes. In this review article we will describe the biochemical pathways used by TRAIL to induce different cell death programs. We will also summarize the clinical trials related to this pathway and discuss possible novel uses of TRAIL-related therapies. In recent years, the physiological importance of TRAIL has expanded beyond being a tumoricidal molecule to one critical for a number of clinical settings - ranging from infectious disease and autoimmunity to cardiovascular anomalies. We will also highlight some of these conditions where modulation of the TRAIL/TRAIL receptor system may be targeted in the future.
Collapse
Affiliation(s)
- Gustavo P Amarante-Mendes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brazil; Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia, Brazil.
| | - Thomas S Griffith
- Department of Urology, Masonic Cancer Center, Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Minneapolis VA Health Care System, Minneapolis, MN 55417, USA.
| |
Collapse
|
30
|
Ciprotti M, Tebbutt NC, Lee FT, Lee ST, Gan HK, McKee DC, O'Keefe GJ, Gong SJ, Chong G, Hopkins W, Chappell B, Scott FE, Brechbiel MW, Tse AN, Jansen M, Matsumura M, Kotsuma M, Watanabe R, Venhaus R, Beckman RA, Greenberg J, Scott AM. Phase I Imaging and Pharmacodynamic Trial of CS-1008 in Patients With Metastatic Colorectal Cancer. J Clin Oncol 2015; 33:2609-16. [PMID: 26124477 DOI: 10.1200/jco.2014.60.4256] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE CS-1008 (tigatuzumab) is a humanized, monoclonal immunoglobulin G1 (IgG1) agonistic antibody to human death receptor 5. The purpose of this study was to investigate the impact of CS-1008 dose on the biodistribution, quantitative tumor uptake, and antitumor response in patients with metastatic colorectal cancer (mCRC). PATIENTS AND METHODS Patients with mCRC who had received at least one course of chemotherapy were assigned to one of five dosage cohorts and infused with a weekly dose of CS-1008. Day 1 and day 36 doses were trace-labeled with indium-111 ((111)In), followed by whole-body planar and regional single-photon emission computed tomography (SPECT) imaging at several time points over the course of 10 days. RESULTS Nineteen patients were enrolled. (111)In-CS-1008 uptake in tumor was observed in only 12 patients (63%). (111)In-CS-1008 uptake and pharmacokinetics were not affected by dose or repeated drug administration. (111)In-CS-1008 biodistribution showed gradual blood-pool clearance and no abnormal uptake in normal tissue. No anti-CS-1008 antibody development was detected. One patient achieved partial response (3.7 months duration), eight patients had stable disease, and 10 patients had progressive disease. Clinical benefit rate (stable disease + partial response) in patients with (111)In-CS-1008 uptake in tumor was 58% versus 28% in patients with no uptake. An analysis of individual lesions showed that lesions with antibody uptake were one third as likely to progress as those without antibody uptake (P = .07). Death-receptor-5 expression in archived tumor samples did not correlate with (111)In-CS-1008 uptake (P = .5) or tumor response (P = .6). CONCLUSION Death-receptor-5 imaging with (111)In-CS-1008 reveals interpatient and intrapatient heterogeneity of uptake in tumor, is not dose dependent, and is predictive of clinical benefit in the treatment of patients who have mCRC.
Collapse
Affiliation(s)
- Marika Ciprotti
- Marika Ciprotti, Niall C. Tebbutt, Fook-Thean Lee, Sze-Ting Lee, Hui K. Gan, Wendie Hopkins, Fiona E. Scott, Andrew M. Scott, Ludwig Institute for Cancer Research; David C. McKee, Graeme J. O'Keefe, Sylvia J. Gong, Geoffrey Chong, Bridget Chappell, Andrew M. Scott, Austin Health, Melbourne, Australia; Martin W. Brechbiel, National Cancer Institute, Bethesda, MD; Archie N. Tse, Jonathan Greenberg, Daiichi Sankyo Co., Ltd, Parsippany, NJ; Mendel Jansen, Daiichi Sankyo Development Ltd, Gerrards Cross, Buckinghamshire, United Kingdom; Manabu Matsumura, Masakatsu Kotsuma, Rira Watanabe, Daiichi Sankyo Co., Ltd, Tokyo, Japan; Robert A. Beckman, Georgetown University Medical Center and Ralph Venhaus, Ludwig Institute for Cancer Research, New York, NY
| | - Niall C Tebbutt
- Marika Ciprotti, Niall C. Tebbutt, Fook-Thean Lee, Sze-Ting Lee, Hui K. Gan, Wendie Hopkins, Fiona E. Scott, Andrew M. Scott, Ludwig Institute for Cancer Research; David C. McKee, Graeme J. O'Keefe, Sylvia J. Gong, Geoffrey Chong, Bridget Chappell, Andrew M. Scott, Austin Health, Melbourne, Australia; Martin W. Brechbiel, National Cancer Institute, Bethesda, MD; Archie N. Tse, Jonathan Greenberg, Daiichi Sankyo Co., Ltd, Parsippany, NJ; Mendel Jansen, Daiichi Sankyo Development Ltd, Gerrards Cross, Buckinghamshire, United Kingdom; Manabu Matsumura, Masakatsu Kotsuma, Rira Watanabe, Daiichi Sankyo Co., Ltd, Tokyo, Japan; Robert A. Beckman, Georgetown University Medical Center and Ralph Venhaus, Ludwig Institute for Cancer Research, New York, NY
| | - Fook-Thean Lee
- Marika Ciprotti, Niall C. Tebbutt, Fook-Thean Lee, Sze-Ting Lee, Hui K. Gan, Wendie Hopkins, Fiona E. Scott, Andrew M. Scott, Ludwig Institute for Cancer Research; David C. McKee, Graeme J. O'Keefe, Sylvia J. Gong, Geoffrey Chong, Bridget Chappell, Andrew M. Scott, Austin Health, Melbourne, Australia; Martin W. Brechbiel, National Cancer Institute, Bethesda, MD; Archie N. Tse, Jonathan Greenberg, Daiichi Sankyo Co., Ltd, Parsippany, NJ; Mendel Jansen, Daiichi Sankyo Development Ltd, Gerrards Cross, Buckinghamshire, United Kingdom; Manabu Matsumura, Masakatsu Kotsuma, Rira Watanabe, Daiichi Sankyo Co., Ltd, Tokyo, Japan; Robert A. Beckman, Georgetown University Medical Center and Ralph Venhaus, Ludwig Institute for Cancer Research, New York, NY
| | - Sze-Ting Lee
- Marika Ciprotti, Niall C. Tebbutt, Fook-Thean Lee, Sze-Ting Lee, Hui K. Gan, Wendie Hopkins, Fiona E. Scott, Andrew M. Scott, Ludwig Institute for Cancer Research; David C. McKee, Graeme J. O'Keefe, Sylvia J. Gong, Geoffrey Chong, Bridget Chappell, Andrew M. Scott, Austin Health, Melbourne, Australia; Martin W. Brechbiel, National Cancer Institute, Bethesda, MD; Archie N. Tse, Jonathan Greenberg, Daiichi Sankyo Co., Ltd, Parsippany, NJ; Mendel Jansen, Daiichi Sankyo Development Ltd, Gerrards Cross, Buckinghamshire, United Kingdom; Manabu Matsumura, Masakatsu Kotsuma, Rira Watanabe, Daiichi Sankyo Co., Ltd, Tokyo, Japan; Robert A. Beckman, Georgetown University Medical Center and Ralph Venhaus, Ludwig Institute for Cancer Research, New York, NY
| | - Hui K Gan
- Marika Ciprotti, Niall C. Tebbutt, Fook-Thean Lee, Sze-Ting Lee, Hui K. Gan, Wendie Hopkins, Fiona E. Scott, Andrew M. Scott, Ludwig Institute for Cancer Research; David C. McKee, Graeme J. O'Keefe, Sylvia J. Gong, Geoffrey Chong, Bridget Chappell, Andrew M. Scott, Austin Health, Melbourne, Australia; Martin W. Brechbiel, National Cancer Institute, Bethesda, MD; Archie N. Tse, Jonathan Greenberg, Daiichi Sankyo Co., Ltd, Parsippany, NJ; Mendel Jansen, Daiichi Sankyo Development Ltd, Gerrards Cross, Buckinghamshire, United Kingdom; Manabu Matsumura, Masakatsu Kotsuma, Rira Watanabe, Daiichi Sankyo Co., Ltd, Tokyo, Japan; Robert A. Beckman, Georgetown University Medical Center and Ralph Venhaus, Ludwig Institute for Cancer Research, New York, NY
| | - David C McKee
- Marika Ciprotti, Niall C. Tebbutt, Fook-Thean Lee, Sze-Ting Lee, Hui K. Gan, Wendie Hopkins, Fiona E. Scott, Andrew M. Scott, Ludwig Institute for Cancer Research; David C. McKee, Graeme J. O'Keefe, Sylvia J. Gong, Geoffrey Chong, Bridget Chappell, Andrew M. Scott, Austin Health, Melbourne, Australia; Martin W. Brechbiel, National Cancer Institute, Bethesda, MD; Archie N. Tse, Jonathan Greenberg, Daiichi Sankyo Co., Ltd, Parsippany, NJ; Mendel Jansen, Daiichi Sankyo Development Ltd, Gerrards Cross, Buckinghamshire, United Kingdom; Manabu Matsumura, Masakatsu Kotsuma, Rira Watanabe, Daiichi Sankyo Co., Ltd, Tokyo, Japan; Robert A. Beckman, Georgetown University Medical Center and Ralph Venhaus, Ludwig Institute for Cancer Research, New York, NY
| | - Graeme J O'Keefe
- Marika Ciprotti, Niall C. Tebbutt, Fook-Thean Lee, Sze-Ting Lee, Hui K. Gan, Wendie Hopkins, Fiona E. Scott, Andrew M. Scott, Ludwig Institute for Cancer Research; David C. McKee, Graeme J. O'Keefe, Sylvia J. Gong, Geoffrey Chong, Bridget Chappell, Andrew M. Scott, Austin Health, Melbourne, Australia; Martin W. Brechbiel, National Cancer Institute, Bethesda, MD; Archie N. Tse, Jonathan Greenberg, Daiichi Sankyo Co., Ltd, Parsippany, NJ; Mendel Jansen, Daiichi Sankyo Development Ltd, Gerrards Cross, Buckinghamshire, United Kingdom; Manabu Matsumura, Masakatsu Kotsuma, Rira Watanabe, Daiichi Sankyo Co., Ltd, Tokyo, Japan; Robert A. Beckman, Georgetown University Medical Center and Ralph Venhaus, Ludwig Institute for Cancer Research, New York, NY
| | - Sylvia J Gong
- Marika Ciprotti, Niall C. Tebbutt, Fook-Thean Lee, Sze-Ting Lee, Hui K. Gan, Wendie Hopkins, Fiona E. Scott, Andrew M. Scott, Ludwig Institute for Cancer Research; David C. McKee, Graeme J. O'Keefe, Sylvia J. Gong, Geoffrey Chong, Bridget Chappell, Andrew M. Scott, Austin Health, Melbourne, Australia; Martin W. Brechbiel, National Cancer Institute, Bethesda, MD; Archie N. Tse, Jonathan Greenberg, Daiichi Sankyo Co., Ltd, Parsippany, NJ; Mendel Jansen, Daiichi Sankyo Development Ltd, Gerrards Cross, Buckinghamshire, United Kingdom; Manabu Matsumura, Masakatsu Kotsuma, Rira Watanabe, Daiichi Sankyo Co., Ltd, Tokyo, Japan; Robert A. Beckman, Georgetown University Medical Center and Ralph Venhaus, Ludwig Institute for Cancer Research, New York, NY
| | - Geoffrey Chong
- Marika Ciprotti, Niall C. Tebbutt, Fook-Thean Lee, Sze-Ting Lee, Hui K. Gan, Wendie Hopkins, Fiona E. Scott, Andrew M. Scott, Ludwig Institute for Cancer Research; David C. McKee, Graeme J. O'Keefe, Sylvia J. Gong, Geoffrey Chong, Bridget Chappell, Andrew M. Scott, Austin Health, Melbourne, Australia; Martin W. Brechbiel, National Cancer Institute, Bethesda, MD; Archie N. Tse, Jonathan Greenberg, Daiichi Sankyo Co., Ltd, Parsippany, NJ; Mendel Jansen, Daiichi Sankyo Development Ltd, Gerrards Cross, Buckinghamshire, United Kingdom; Manabu Matsumura, Masakatsu Kotsuma, Rira Watanabe, Daiichi Sankyo Co., Ltd, Tokyo, Japan; Robert A. Beckman, Georgetown University Medical Center and Ralph Venhaus, Ludwig Institute for Cancer Research, New York, NY
| | - Wendie Hopkins
- Marika Ciprotti, Niall C. Tebbutt, Fook-Thean Lee, Sze-Ting Lee, Hui K. Gan, Wendie Hopkins, Fiona E. Scott, Andrew M. Scott, Ludwig Institute for Cancer Research; David C. McKee, Graeme J. O'Keefe, Sylvia J. Gong, Geoffrey Chong, Bridget Chappell, Andrew M. Scott, Austin Health, Melbourne, Australia; Martin W. Brechbiel, National Cancer Institute, Bethesda, MD; Archie N. Tse, Jonathan Greenberg, Daiichi Sankyo Co., Ltd, Parsippany, NJ; Mendel Jansen, Daiichi Sankyo Development Ltd, Gerrards Cross, Buckinghamshire, United Kingdom; Manabu Matsumura, Masakatsu Kotsuma, Rira Watanabe, Daiichi Sankyo Co., Ltd, Tokyo, Japan; Robert A. Beckman, Georgetown University Medical Center and Ralph Venhaus, Ludwig Institute for Cancer Research, New York, NY
| | - Bridget Chappell
- Marika Ciprotti, Niall C. Tebbutt, Fook-Thean Lee, Sze-Ting Lee, Hui K. Gan, Wendie Hopkins, Fiona E. Scott, Andrew M. Scott, Ludwig Institute for Cancer Research; David C. McKee, Graeme J. O'Keefe, Sylvia J. Gong, Geoffrey Chong, Bridget Chappell, Andrew M. Scott, Austin Health, Melbourne, Australia; Martin W. Brechbiel, National Cancer Institute, Bethesda, MD; Archie N. Tse, Jonathan Greenberg, Daiichi Sankyo Co., Ltd, Parsippany, NJ; Mendel Jansen, Daiichi Sankyo Development Ltd, Gerrards Cross, Buckinghamshire, United Kingdom; Manabu Matsumura, Masakatsu Kotsuma, Rira Watanabe, Daiichi Sankyo Co., Ltd, Tokyo, Japan; Robert A. Beckman, Georgetown University Medical Center and Ralph Venhaus, Ludwig Institute for Cancer Research, New York, NY
| | - Fiona E Scott
- Marika Ciprotti, Niall C. Tebbutt, Fook-Thean Lee, Sze-Ting Lee, Hui K. Gan, Wendie Hopkins, Fiona E. Scott, Andrew M. Scott, Ludwig Institute for Cancer Research; David C. McKee, Graeme J. O'Keefe, Sylvia J. Gong, Geoffrey Chong, Bridget Chappell, Andrew M. Scott, Austin Health, Melbourne, Australia; Martin W. Brechbiel, National Cancer Institute, Bethesda, MD; Archie N. Tse, Jonathan Greenberg, Daiichi Sankyo Co., Ltd, Parsippany, NJ; Mendel Jansen, Daiichi Sankyo Development Ltd, Gerrards Cross, Buckinghamshire, United Kingdom; Manabu Matsumura, Masakatsu Kotsuma, Rira Watanabe, Daiichi Sankyo Co., Ltd, Tokyo, Japan; Robert A. Beckman, Georgetown University Medical Center and Ralph Venhaus, Ludwig Institute for Cancer Research, New York, NY
| | - Martin W Brechbiel
- Marika Ciprotti, Niall C. Tebbutt, Fook-Thean Lee, Sze-Ting Lee, Hui K. Gan, Wendie Hopkins, Fiona E. Scott, Andrew M. Scott, Ludwig Institute for Cancer Research; David C. McKee, Graeme J. O'Keefe, Sylvia J. Gong, Geoffrey Chong, Bridget Chappell, Andrew M. Scott, Austin Health, Melbourne, Australia; Martin W. Brechbiel, National Cancer Institute, Bethesda, MD; Archie N. Tse, Jonathan Greenberg, Daiichi Sankyo Co., Ltd, Parsippany, NJ; Mendel Jansen, Daiichi Sankyo Development Ltd, Gerrards Cross, Buckinghamshire, United Kingdom; Manabu Matsumura, Masakatsu Kotsuma, Rira Watanabe, Daiichi Sankyo Co., Ltd, Tokyo, Japan; Robert A. Beckman, Georgetown University Medical Center and Ralph Venhaus, Ludwig Institute for Cancer Research, New York, NY
| | - Archie N Tse
- Marika Ciprotti, Niall C. Tebbutt, Fook-Thean Lee, Sze-Ting Lee, Hui K. Gan, Wendie Hopkins, Fiona E. Scott, Andrew M. Scott, Ludwig Institute for Cancer Research; David C. McKee, Graeme J. O'Keefe, Sylvia J. Gong, Geoffrey Chong, Bridget Chappell, Andrew M. Scott, Austin Health, Melbourne, Australia; Martin W. Brechbiel, National Cancer Institute, Bethesda, MD; Archie N. Tse, Jonathan Greenberg, Daiichi Sankyo Co., Ltd, Parsippany, NJ; Mendel Jansen, Daiichi Sankyo Development Ltd, Gerrards Cross, Buckinghamshire, United Kingdom; Manabu Matsumura, Masakatsu Kotsuma, Rira Watanabe, Daiichi Sankyo Co., Ltd, Tokyo, Japan; Robert A. Beckman, Georgetown University Medical Center and Ralph Venhaus, Ludwig Institute for Cancer Research, New York, NY
| | - Mendel Jansen
- Marika Ciprotti, Niall C. Tebbutt, Fook-Thean Lee, Sze-Ting Lee, Hui K. Gan, Wendie Hopkins, Fiona E. Scott, Andrew M. Scott, Ludwig Institute for Cancer Research; David C. McKee, Graeme J. O'Keefe, Sylvia J. Gong, Geoffrey Chong, Bridget Chappell, Andrew M. Scott, Austin Health, Melbourne, Australia; Martin W. Brechbiel, National Cancer Institute, Bethesda, MD; Archie N. Tse, Jonathan Greenberg, Daiichi Sankyo Co., Ltd, Parsippany, NJ; Mendel Jansen, Daiichi Sankyo Development Ltd, Gerrards Cross, Buckinghamshire, United Kingdom; Manabu Matsumura, Masakatsu Kotsuma, Rira Watanabe, Daiichi Sankyo Co., Ltd, Tokyo, Japan; Robert A. Beckman, Georgetown University Medical Center and Ralph Venhaus, Ludwig Institute for Cancer Research, New York, NY
| | - Manabu Matsumura
- Marika Ciprotti, Niall C. Tebbutt, Fook-Thean Lee, Sze-Ting Lee, Hui K. Gan, Wendie Hopkins, Fiona E. Scott, Andrew M. Scott, Ludwig Institute for Cancer Research; David C. McKee, Graeme J. O'Keefe, Sylvia J. Gong, Geoffrey Chong, Bridget Chappell, Andrew M. Scott, Austin Health, Melbourne, Australia; Martin W. Brechbiel, National Cancer Institute, Bethesda, MD; Archie N. Tse, Jonathan Greenberg, Daiichi Sankyo Co., Ltd, Parsippany, NJ; Mendel Jansen, Daiichi Sankyo Development Ltd, Gerrards Cross, Buckinghamshire, United Kingdom; Manabu Matsumura, Masakatsu Kotsuma, Rira Watanabe, Daiichi Sankyo Co., Ltd, Tokyo, Japan; Robert A. Beckman, Georgetown University Medical Center and Ralph Venhaus, Ludwig Institute for Cancer Research, New York, NY
| | - Masakatsu Kotsuma
- Marika Ciprotti, Niall C. Tebbutt, Fook-Thean Lee, Sze-Ting Lee, Hui K. Gan, Wendie Hopkins, Fiona E. Scott, Andrew M. Scott, Ludwig Institute for Cancer Research; David C. McKee, Graeme J. O'Keefe, Sylvia J. Gong, Geoffrey Chong, Bridget Chappell, Andrew M. Scott, Austin Health, Melbourne, Australia; Martin W. Brechbiel, National Cancer Institute, Bethesda, MD; Archie N. Tse, Jonathan Greenberg, Daiichi Sankyo Co., Ltd, Parsippany, NJ; Mendel Jansen, Daiichi Sankyo Development Ltd, Gerrards Cross, Buckinghamshire, United Kingdom; Manabu Matsumura, Masakatsu Kotsuma, Rira Watanabe, Daiichi Sankyo Co., Ltd, Tokyo, Japan; Robert A. Beckman, Georgetown University Medical Center and Ralph Venhaus, Ludwig Institute for Cancer Research, New York, NY
| | - Rira Watanabe
- Marika Ciprotti, Niall C. Tebbutt, Fook-Thean Lee, Sze-Ting Lee, Hui K. Gan, Wendie Hopkins, Fiona E. Scott, Andrew M. Scott, Ludwig Institute for Cancer Research; David C. McKee, Graeme J. O'Keefe, Sylvia J. Gong, Geoffrey Chong, Bridget Chappell, Andrew M. Scott, Austin Health, Melbourne, Australia; Martin W. Brechbiel, National Cancer Institute, Bethesda, MD; Archie N. Tse, Jonathan Greenberg, Daiichi Sankyo Co., Ltd, Parsippany, NJ; Mendel Jansen, Daiichi Sankyo Development Ltd, Gerrards Cross, Buckinghamshire, United Kingdom; Manabu Matsumura, Masakatsu Kotsuma, Rira Watanabe, Daiichi Sankyo Co., Ltd, Tokyo, Japan; Robert A. Beckman, Georgetown University Medical Center and Ralph Venhaus, Ludwig Institute for Cancer Research, New York, NY
| | - Ralph Venhaus
- Marika Ciprotti, Niall C. Tebbutt, Fook-Thean Lee, Sze-Ting Lee, Hui K. Gan, Wendie Hopkins, Fiona E. Scott, Andrew M. Scott, Ludwig Institute for Cancer Research; David C. McKee, Graeme J. O'Keefe, Sylvia J. Gong, Geoffrey Chong, Bridget Chappell, Andrew M. Scott, Austin Health, Melbourne, Australia; Martin W. Brechbiel, National Cancer Institute, Bethesda, MD; Archie N. Tse, Jonathan Greenberg, Daiichi Sankyo Co., Ltd, Parsippany, NJ; Mendel Jansen, Daiichi Sankyo Development Ltd, Gerrards Cross, Buckinghamshire, United Kingdom; Manabu Matsumura, Masakatsu Kotsuma, Rira Watanabe, Daiichi Sankyo Co., Ltd, Tokyo, Japan; Robert A. Beckman, Georgetown University Medical Center and Ralph Venhaus, Ludwig Institute for Cancer Research, New York, NY
| | - Robert A Beckman
- Marika Ciprotti, Niall C. Tebbutt, Fook-Thean Lee, Sze-Ting Lee, Hui K. Gan, Wendie Hopkins, Fiona E. Scott, Andrew M. Scott, Ludwig Institute for Cancer Research; David C. McKee, Graeme J. O'Keefe, Sylvia J. Gong, Geoffrey Chong, Bridget Chappell, Andrew M. Scott, Austin Health, Melbourne, Australia; Martin W. Brechbiel, National Cancer Institute, Bethesda, MD; Archie N. Tse, Jonathan Greenberg, Daiichi Sankyo Co., Ltd, Parsippany, NJ; Mendel Jansen, Daiichi Sankyo Development Ltd, Gerrards Cross, Buckinghamshire, United Kingdom; Manabu Matsumura, Masakatsu Kotsuma, Rira Watanabe, Daiichi Sankyo Co., Ltd, Tokyo, Japan; Robert A. Beckman, Georgetown University Medical Center and Ralph Venhaus, Ludwig Institute for Cancer Research, New York, NY
| | - Jonathan Greenberg
- Marika Ciprotti, Niall C. Tebbutt, Fook-Thean Lee, Sze-Ting Lee, Hui K. Gan, Wendie Hopkins, Fiona E. Scott, Andrew M. Scott, Ludwig Institute for Cancer Research; David C. McKee, Graeme J. O'Keefe, Sylvia J. Gong, Geoffrey Chong, Bridget Chappell, Andrew M. Scott, Austin Health, Melbourne, Australia; Martin W. Brechbiel, National Cancer Institute, Bethesda, MD; Archie N. Tse, Jonathan Greenberg, Daiichi Sankyo Co., Ltd, Parsippany, NJ; Mendel Jansen, Daiichi Sankyo Development Ltd, Gerrards Cross, Buckinghamshire, United Kingdom; Manabu Matsumura, Masakatsu Kotsuma, Rira Watanabe, Daiichi Sankyo Co., Ltd, Tokyo, Japan; Robert A. Beckman, Georgetown University Medical Center and Ralph Venhaus, Ludwig Institute for Cancer Research, New York, NY
| | - Andrew M Scott
- Marika Ciprotti, Niall C. Tebbutt, Fook-Thean Lee, Sze-Ting Lee, Hui K. Gan, Wendie Hopkins, Fiona E. Scott, Andrew M. Scott, Ludwig Institute for Cancer Research; David C. McKee, Graeme J. O'Keefe, Sylvia J. Gong, Geoffrey Chong, Bridget Chappell, Andrew M. Scott, Austin Health, Melbourne, Australia; Martin W. Brechbiel, National Cancer Institute, Bethesda, MD; Archie N. Tse, Jonathan Greenberg, Daiichi Sankyo Co., Ltd, Parsippany, NJ; Mendel Jansen, Daiichi Sankyo Development Ltd, Gerrards Cross, Buckinghamshire, United Kingdom; Manabu Matsumura, Masakatsu Kotsuma, Rira Watanabe, Daiichi Sankyo Co., Ltd, Tokyo, Japan; Robert A. Beckman, Georgetown University Medical Center and Ralph Venhaus, Ludwig Institute for Cancer Research, New York, NY.
| |
Collapse
|
31
|
Lim B, Allen JE, Prabhu VV, Talekar MK, Finnberg NK, El-Deiry WS. Targeting TRAIL in the treatment of cancer: new developments. Expert Opin Ther Targets 2015; 19:1171-85. [DOI: 10.1517/14728222.2015.1049838] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Dai X, Zhang J, Arfuso F, Chinnathambi A, Zayed ME, Alharbi SA, Kumar AP, Ahn KS, Sethi G. Targeting TNF-related apoptosis-inducing ligand (TRAIL) receptor by natural products as a potential therapeutic approach for cancer therapy. Exp Biol Med (Maywood) 2015; 240:760-73. [PMID: 25854879 DOI: 10.1177/1535370215579167] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to selectively induce apoptotic cell death in various tumor cells by engaging its death-inducing receptors (TRAIL-R1 and TRAIL-R2). This property has led to the development of a number of TRAIL-receptor agonists such as the soluble recombinant TRAIL and agonistic antibodies, which have shown promising anticancer activity in preclinical studies. However, besides activating caspase-dependent apoptosis in several cancer cells, TRAIL may also activate nonapoptotic signal transduction pathways such as nuclear factor-kappa B, mitogen-activated protein kinases, AKT, and signal transducers and activators of transcription 3, which may contribute to TRAIL resistance that is being now frequently encountered in various cancers. TRAIL resistance can be overcome by the application of efficient TRAIL-sensitizing pharmacological agents. Natural compounds have shown a great potential in sensitizing cells to TRAIL treatment through suppression of distinct survival pathways. In this review, we have summarized both apoptotic and nonapoptotic pathways activated by TRAIL, as well as recent advances in developing TRAIL-receptor agonists for cancer therapy. We also briefly discuss combination therapies that have shown great potential in overcoming TRAIL resistance in various tumors.
Collapse
Affiliation(s)
- Xiaoyun Dai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jingwen Zhang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Frank Arfuso
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - M E Zayed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
33
|
Lemke J, von Karstedt S, Zinngrebe J, Walczak H. Getting TRAIL back on track for cancer therapy. Cell Death Differ 2014; 21:1350-64. [PMID: 24948009 PMCID: PMC4131183 DOI: 10.1038/cdd.2014.81] [Citation(s) in RCA: 369] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 02/07/2023] Open
Abstract
Unlike other members of the TNF superfamily, the TNF-related apoptosis-inducing ligand (TRAIL, also known as Apo2L) possesses the unique capacity to induce apoptosis selectively in cancer cells in vitro and in vivo. This exciting discovery provided the basis for the development of TRAIL-receptor agonists (TRAs), which have demonstrated robust anticancer activity in a number of preclinical studies. Subsequently initiated clinical trials testing TRAs demonstrated, on the one hand, broad tolerability but revealed, on the other, that therapeutic benefit was rather limited. Several factors that are likely to account for TRAs' sobering clinical performance have since been identified. First, because of initial concerns over potential hepatotoxicity, TRAs with relatively weak agonistic activity were selected to enter clinical trials. Second, although TRAIL can induce apoptosis in several cancer cell lines, it has now emerged that many others, and importantly, most primary cancer cells are resistant to TRAIL monotherapy. Third, so far patients enrolled in TRA-employing clinical trials were not selected for likelihood of benefitting from a TRA-comprising therapy on the basis of a valid(ated) biomarker. This review summarizes and discusses the results achieved so far in TRA-employing clinical trials in the light of these three shortcomings. By integrating recent insight on apoptotic and non-apoptotic TRAIL signaling in cancer cells, we propose approaches to introduce novel, revised TRAIL-based therapeutic concepts into the cancer clinic. These include (i) the use of recently developed highly active TRAs, (ii) the addition of efficient, but cancer-cell-selective TRAIL-sensitizing agents to overcome TRAIL resistance and (iii) employing proteomic profiling to uncover resistance mechanisms. We envisage that this shall enable the design of effective TRA-comprising therapeutic concepts for individual cancer patients in the future.
Collapse
Affiliation(s)
- J Lemke
- 1] Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK [2] Clinic of General and Visceral Surgery, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - S von Karstedt
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - J Zinngrebe
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - H Walczak
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| |
Collapse
|
34
|
Holland PM. Death receptor agonist therapies for cancer, which is the right TRAIL? Cytokine Growth Factor Rev 2013; 25:185-93. [PMID: 24418173 DOI: 10.1016/j.cytogfr.2013.12.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/15/2013] [Indexed: 01/28/2023]
Abstract
The activation of cell-surface death receptors represents an attractive therapeutic strategy to promote apoptosis of tumor cells. Several investigational therapeutics that target this extrinsic pathway, including recombinant human Apo2L/TRAIL and monoclonal agonist antibodies directed against death receptors-4 (DR4) or -5 (DR5), have been evaluated in the clinic. Although Phase 1/1b studies provided encouraging preliminary results, findings from randomized Phase 2 studies failed to demonstrate significant clinical benefit. This has raised multiple questions as to why pre-clinical data were not predictive of clinical response. Results from clinical studies and insight into why current agents have failed to yield robust responses are discussed. In addition, new strategies for the development of next generation death receptor agonists are reviewed.
Collapse
Affiliation(s)
- Pamela M Holland
- Therapeutic Innovation Unit, Amgen Inc., 360 Binney Street, Cambridge, MA 02142, United States.
| |
Collapse
|