1
|
Xu M, Li W, He J, Wang Y, Lv J, He W, Chen L, Zhi H. DDCM: A Computational Strategy for Drug Repositioning Based on Support-Vector Regression Algorithm. Int J Mol Sci 2024; 25:5267. [PMID: 38791306 PMCID: PMC11121335 DOI: 10.3390/ijms25105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Computational drug-repositioning technology is an effective tool for speeding up drug development. As biological data resources continue to grow, it becomes more important to find effective methods to identify potential therapeutic drugs for diseases. The effective use of valuable data has become a more rational and efficient approach to drug repositioning. The disease-drug correlation method (DDCM) proposed in this study is a novel approach that integrates data from multiple sources and different levels to predict potential treatments for diseases, utilizing support-vector regression (SVR). The DDCM approach resulted in potential therapeutic drugs for neoplasms and cardiovascular diseases by constructing a correlation hybrid matrix containing the respective similarities of drugs and diseases, implementing the SVR algorithm to predict the correlation scores, and undergoing a randomized perturbation and stepwise screening pipeline. Some potential therapeutic drugs were predicted by this approach. The potential therapeutic ability of these drugs has been well-validated in terms of the literature, function, drug target, and survival-essential genes. The method's feasibility was confirmed by comparing the predicted results with the classical method and conducting a co-drug analysis of the sub-branch. Our method challenges the conventional approach to studying disease-drug correlations and presents a fresh perspective for understanding the pathogenesis of diseases.
Collapse
Affiliation(s)
- Manyi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Jiaheng He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Yahui Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Weiming He
- Institute of Opto-Electronics, Harbin Institute of Technology, Harbin 150000, China;
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Hui Zhi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| |
Collapse
|
2
|
Musleh Ud Din S, Streit SG, Huynh BT, Hana C, Abraham AN, Hussein A. Therapeutic Targeting of Hypoxia-Inducible Factors in Cancer. Int J Mol Sci 2024; 25:2060. [PMID: 38396737 PMCID: PMC10888675 DOI: 10.3390/ijms25042060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
In the realm of cancer therapeutics, targeting the hypoxia-inducible factor (HIF) pathway has emerged as a promising strategy. This study delves into the intricate web of HIF-associated mechanisms, exploring avenues for future anticancer therapies. Framing the investigation within the broader context of cancer progression and hypoxia response, this article aims to decipher the pivotal role played by HIF in regulating genes influencing angiogenesis, cell proliferation, and glucose metabolism. Employing diverse approaches such as HIF inhibitors, anti-angiogenic therapies, and hypoxia-activated prodrugs, the research methodologically intervenes at different nodes of the HIF pathway. Findings showcase the efficacy of agents like EZN-2968, Minnelide, and Acriflavine in modulating HIF-1α protein synthesis and destabilizing HIF-1, providing preliminary proof of HIF-1α mRNA modulation and antitumor activity. However, challenges, including toxicity, necessitate continued exploration and development, as exemplified by ongoing clinical trials. This article concludes by emphasizing the potential of targeted HIF therapies in disrupting cancer-related signaling pathways.
Collapse
Affiliation(s)
- Saba Musleh Ud Din
- Department of Internal Medicine, Memorial Healthcare System, 703 North Flamingo Road, Pembroke Pines, FL 33028, USA
| | - Spencer G. Streit
- Department of Hematology and Oncology, Memorial Healthcare System, 703 North Flamingo Road, Pembroke Pines, FL 33028, USA; (S.G.S.); (C.H.); (A.-N.A.); (A.H.)
| | - Bao Tran Huynh
- Department of Pharmacy, Memorial Healthcare System, 703 North Flamingo Road, Pembroke Pines, FL 33028, USA
| | - Caroline Hana
- Department of Hematology and Oncology, Memorial Healthcare System, 703 North Flamingo Road, Pembroke Pines, FL 33028, USA; (S.G.S.); (C.H.); (A.-N.A.); (A.H.)
| | - Anna-Ninny Abraham
- Department of Hematology and Oncology, Memorial Healthcare System, 703 North Flamingo Road, Pembroke Pines, FL 33028, USA; (S.G.S.); (C.H.); (A.-N.A.); (A.H.)
| | - Atif Hussein
- Department of Hematology and Oncology, Memorial Healthcare System, 703 North Flamingo Road, Pembroke Pines, FL 33028, USA; (S.G.S.); (C.H.); (A.-N.A.); (A.H.)
| |
Collapse
|
3
|
Pérez-González A, Bévant K, Blanpain C. Cancer cell plasticity during tumor progression, metastasis and response to therapy. NATURE CANCER 2023; 4:1063-1082. [PMID: 37537300 PMCID: PMC7615147 DOI: 10.1038/s43018-023-00595-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/01/2023] [Indexed: 08/05/2023]
Abstract
Cell plasticity represents the ability of cells to be reprogrammed and to change their fate and identity, enabling homeostasis restoration and tissue regeneration following damage. Cell plasticity also contributes to pathological conditions, such as cancer, enabling cells to acquire new phenotypic and functional features by transiting across distinct cell states that contribute to tumor initiation, progression, metastasis and resistance to therapy. Here, we review the intrinsic and extrinsic mechanisms driving cell plasticity that promote tumor growth and proliferation as well as metastasis and drug tolerance. Finally, we discuss how cell plasticity could be exploited for anti-cancer therapy.
Collapse
Affiliation(s)
- Andrea Pérez-González
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Kevin Bévant
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- WELBIO, ULB, Bruxelles, Belgium.
| |
Collapse
|
4
|
El Omari N, Lee LH, Bakrim S, Makeen HA, Alhazmi HA, Mohan S, Khalid A, Ming LC, Bouyahya A. Molecular mechanistic pathways underlying the anticancer therapeutic efficiency of romidepsin. Biomed Pharmacother 2023; 164:114774. [PMID: 37224749 DOI: 10.1016/j.biopha.2023.114774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/15/2023] [Accepted: 04/23/2023] [Indexed: 05/26/2023] Open
Abstract
Romidepsin, also known as NSC630176, FR901228, FK-228, FR-901228, depsipeptide, or Istodax®, is a natural molecule produced by the Chromobacterium violaceum bacterium that has been approved for its anti-cancer effect. This compound is a selective histone deacetylase (HDAC) inhibitor, which modifies histones and epigenetic pathways. An imbalance between HDAC and histone acetyltransferase can lead to the down-regulation of regulatory genes, resulting in tumorigenesis. Inhibition of HDACs by romidepsin indirectly contributes to the anticancer therapeutic effect by causing the accumulation of acetylated histones, restoring normal gene expression in cancer cells, and promoting alternative pathways, including the immune response, p53/p21 signaling cascades, cleaved caspases, poly (ADP-ribose) polymerase (PARP), and other events. Secondary pathways mediate the therapeutic action of romidepsin by disrupting the endoplasmic reticulum and proteasome and/or aggresome, arresting the cell cycle, inducing intrinsic and extrinsic apoptosis, inhibiting angiogenesis, and modifying the tumor microenvironment. This review aimed to highlight the specific molecular mechanisms responsible for HDAC inhibition by romidepsin. A more detailed understanding of these mechanisms can significantly improve the understanding of cancer cell disorders and pave the way for new therapeutic approaches using targeted therapy.
Collapse
Affiliation(s)
- Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia; Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, 45142 Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha In-20 stitute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia; Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum 11111, Sudan.
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| |
Collapse
|
5
|
Bui BP, Nguyen PL, Lee K, Cho J. Hypoxia-Inducible Factor-1: A Novel Therapeutic Target for the Management of Cancer, Drug Resistance, and Cancer-Related Pain. Cancers (Basel) 2022; 14:cancers14246054. [PMID: 36551540 PMCID: PMC9775408 DOI: 10.3390/cancers14246054] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor that regulates the transcription of many genes that are responsible for the adaptation and survival of tumor cells in hypoxic environments. Over the past few decades, tremendous efforts have been made to comprehensively understand the role of HIF-1 in tumor progression. Based on the pivotal roles of HIF-1 in tumor biology, many HIF-1 inhibitors interrupting expression, stabilization, DNA binding properties, or transcriptional activity have been identified as potential therapeutic agents for various cancers, yet none of these inhibitors have yet been successfully translated into clinically available cancer treatments. In this review, we briefly introduce the regulation of the HIF-1 pathway and summarize its roles in tumor cell proliferation, angiogenesis, and metastasis. In addition, we explore the implications of HIF-1 in the development of drug resistance and cancer-related pain: the most commonly encountered obstacles during conventional anticancer therapies. Finally, the current status of HIF-1 inhibitors in clinical trials and their perspectives are highlighted, along with their modes of action. This review provides new insights into novel anticancer drug development targeting HIF-1. HIF-1 inhibitors may be promising combinational therapeutic interventions to improve the efficacy of current cancer treatments and reduce drug resistance and cancer-related pain.
Collapse
|
6
|
Pramanik SD, Kumar Halder A, Mukherjee U, Kumar D, Dey YN, R M. Potential of histone deacetylase inhibitors in the control and regulation of prostate, breast and ovarian cancer. Front Chem 2022; 10:948217. [PMID: 36034650 PMCID: PMC9411967 DOI: 10.3389/fchem.2022.948217] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that play a role in chromatin remodeling and epigenetics. They belong to a specific category of enzymes that eliminate the acetyl part of the histones' -N-acetyl lysine, causing the histones to be wrapped compactly around DNA. Numerous biological processes rely on HDACs, including cell proliferation and differentiation, angiogenesis, metastasis, gene regulation, and transcription. Epigenetic changes, specifically increased expression and activity of HDACs, are commonly detected in cancer. As a result, HDACi could be used to develop anticancer drugs. Although preclinical outcomes with HDACs as monotherapy have been promising clinical trials have had mixed results and limited success. In both preclinical and clinical trials, however, combination therapy with different anticancer medicines has proved to have synergistic effects. Furthermore, these combinations improved efficacy, decreased tumor resistance to therapy, and decreased toxicity. In the present review, the detailed modes of action, classification of HDACs, and their correlation with different cancers like prostate, breast, and ovarian cancer were discussed. Further, the different cell signaling pathways and the structure-activity relationship and pharmaco-toxicological properties of the HDACi, and their synergistic effects with other anticancer drugs observed in recent preclinical and clinical studies used in combination therapy were discussed for prostate, breast, and ovarian cancer treatment.
Collapse
Affiliation(s)
- Siddhartha Das Pramanik
- Department of Pharmaceutical Engineering and Technology, IIT-BHU, Varanasi, Uttar Pradesh, India
| | - Amit Kumar Halder
- Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India
| | - Ushmita Mukherjee
- Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India
| | - Dharmendra Kumar
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Sasaram, Bihar, India
| | - Yadu Nandan Dey
- Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India
| | - Mogana R
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI Education SDN.BHD., Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Tan L, Zhang J, Wang Y, Wang X, Wang Y, Zhang Z, Shuai W, Wang G, Chen J, Wang C, Ouyang L, Li W. Development of Dual Inhibitors Targeting Epidermal Growth Factor Receptor in Cancer Therapy. J Med Chem 2022; 65:5149-5183. [PMID: 35311289 DOI: 10.1021/acs.jmedchem.1c01714] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epidermal growth factor receptor (EGFR) is of great significance in mediating cell signaling transduction and tumor behaviors. Currently, third-generation inhibitors of EGFR, especially osimertinib, are at the clinical frontier for the treatment of EGFR-mutant non-small-cell lung cancer (NSCLC). Regrettably, the rapidly developing drug resistance caused by EGFR mutations and the compensatory mechanism have largely limited their clinical efficacy. Given the synergistic effect between EGFR and other compensatory targets during tumorigenesis and tumor development, EGFR dual-target inhibitors are promising for their reduced risk of drug resistance, higher efficacy, lower dosage, and fewer adverse events than those of single-target inhibitors. Hence, we present the synergistic mechanism underlying the role of EGFR dual-target inhibitors against drug resistance, their structure-activity relationships, and their therapeutic potential. Most importantly, we emphasize the optimal target combinations and design strategies for EGFR dual-target inhibitors and provide some perspectives on new challenges and future directions in this field.
Collapse
Affiliation(s)
- Lun Tan
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Xiye Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yanyan Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Zhixiong Zhang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Wen Shuai
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Guan Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Juncheng Chen
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Liang Ouyang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| |
Collapse
|
8
|
Jain AS, Prasad A, Pradeep S, Dharmashekar C, Achar RR, Silina E, Stupin V, Amachawadi RG, Prasad SK, Pruthvish R, Syed A, Shivamallu C, Kollur SP. Everything Old Is New Again: Drug Repurposing Approach for Non-Small Cell Lung Cancer Targeting MAPK Signaling Pathway. Front Oncol 2021; 11:741326. [PMID: 34692523 PMCID: PMC8526962 DOI: 10.3389/fonc.2021.741326] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a prominent subtype of lung carcinoma that accounts for the majority of cancer-related deaths globally, and it is responsible for about 80% to 85% of lung cancers. Mitogen-Activated Protein Kinase (MAPK) signaling pathways are a vital aspect of NSCLC, and have aided in the advancement of therapies for this carcinoma. Targeting the Ras/Raf/MEK/ERK pathway is a promising and alternative method in NSCLC treatment, which is highlighted in this review. The introduction of targeted medicines has revolutionized the treatment of patients with this carcinoma. When combined with current systems biology-driven stratagems, repurposing non-cancer drugs into new therapeutic niches presents a cost-effective and efficient technique with enhancing outcomes for discovering novel pharmacological activity. This article highlights the successful cutting-edge techniques while focusing on NSCLC targeted therapies. The ultimate challenge will be integrating these repurposed drugs into the therapeutic regimen of patients affected with NSCLC to potentially increase lung cancer cure rates.
Collapse
Affiliation(s)
- Anisha S. Jain
- Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Ashwini Prasad
- Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Sushma Pradeep
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Chandan Dharmashekar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Ekaterina Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery, N.I. Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Raghavendra G. Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Shashanka K. Prasad
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - R Pruthvish
- Department of Biotechnology, Acharya Institute of Technology, Bengaluru, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Shiva Prasad Kollur
- Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru, India
| |
Collapse
|
9
|
Awad MM, Le Bruchec Y, Lu B, Ye J, Miller J, Lizotte PH, Cavanaugh ME, Rode AJ, Dumitru CD, Spira A. Selective Histone Deacetylase Inhibitor ACY-241 (Citarinostat) Plus Nivolumab in Advanced Non-Small Cell Lung Cancer: Results From a Phase Ib Study. Front Oncol 2021; 11:696512. [PMID: 34552864 PMCID: PMC8451476 DOI: 10.3389/fonc.2021.696512] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/27/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Histone deacetylase (HDAC) overexpression has been documented in various cancers and may be associated with worse outcomes. Data from early-phase studies of advanced non-small cell lung cancer (NSCLC) suggest encouraging antitumor activity with the combination of an HDAC inhibitor and either platinum-based chemotherapy or an EGFR inhibitor; however, toxicity is a limiting factor in the use of pan-HDAC inhibitors. Selective inhibition of HDAC6 may represent a potential therapeutic target and preclinical studies revealed immunomodulatory effects with HDAC6 inhibition, suggesting the potential for combination with immune checkpoint inhibitors. This phase Ib, multicenter, single-arm, open-label, dose-escalation study investigated the HDAC6 inhibitor ACY-241 (citarinostat) plus nivolumab in patients with previously treated advanced NSCLC who had not received a prior HDAC or immune checkpoint inhibitor. METHODS The orally administered ACY-241 dose was escalated (180, 360, or 480 mg once daily). Nivolumab was administered at 240 mg (day 15 of cycle 1, then every 2 weeks thereafter). The primary endpoint was to determine the maximum tolerated dose (MTD) of ACY-241 plus nivolumab. Secondary endpoints included safety, tolerability, and preliminary antitumor activity. Pharmacodynamics was an exploratory endpoint. RESULTS A total of 18 patients were enrolled, with 17 patients treated. No dose-limiting toxicities (DLTs) occurred with ACY-241 at 180 or 360 mg; 2 DLTs occurred at 480 mg. The MTD of ACY-241 was 360 mg. The most common grade ≥ 3 treatment-emergent adverse events were dyspnea (n = 3; 18%) and pneumonia (n = 3; 18%). At the 180-mg dose, 1 complete response and 2 partial responses (PRs) were observed. At the 360-mg dose, 3 PRs were observed; 1 patient achieved stable disease (SD) and 1 experienced progressive disease (PD). At the 480-mg dose, no responses were observed; 1 patient achieved SD and 3 experienced PD. Acetylation analyses revealed transient increases in histone and tubulin acetylation levels following treatment. An increase in infiltrating total CD3+ T cells was observed following treatment. CONCLUSIONS The study identified an MTD for ACY-241 plus nivolumab and the data suggest that the combination may be feasible in patients with advanced NSCLC. Responses were observed in patients with advanced NSCLC. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT02635061 (identifier, NCT02635061).
Collapse
Affiliation(s)
- Mark M. Awad
- Lowe Center for Thoracic Oncology and Dana-Farber Cancer Institute, Boston, MA, United States
| | | | - Brian Lu
- Bristol Myers Squibb, Princeton, NJ, United States
| | - Jason Ye
- Acetylon Pharmaceuticals, Inc, Boston, MA, United States
| | | | - Patrick H. Lizotte
- Dana-Farber Cancer Institute and Belfer Center for Applied Cancer Science, Boston, MA, United States
| | - Megan E. Cavanaugh
- Dana-Farber Cancer Institute and Belfer Center for Applied Cancer Science, Boston, MA, United States
| | - Amanda J. Rode
- Dana-Farber Cancer Institute and Belfer Center for Applied Cancer Science, Boston, MA, United States
| | | | - Alexander Spira
- Virginia Cancer Specialists (VCS) Research Institute, Fairfax, VA, United States
| |
Collapse
|
10
|
Jenke R, Reßing N, Hansen FK, Aigner A, Büch T. Anticancer Therapy with HDAC Inhibitors: Mechanism-Based Combination Strategies and Future Perspectives. Cancers (Basel) 2021; 13:634. [PMID: 33562653 PMCID: PMC7915831 DOI: 10.3390/cancers13040634] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/26/2022] Open
Abstract
The increasing knowledge of molecular drivers of tumorigenesis has fueled targeted cancer therapies based on specific inhibitors. Beyond "classic" oncogene inhibitors, epigenetic therapy is an emerging field. Epigenetic alterations can occur at any time during cancer progression, altering the structure of the chromatin, the accessibility for transcription factors and thus the transcription of genes. They rely on post-translational histone modifications, particularly the acetylation of histone lysine residues, and are determined by the inverse action of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Importantly, HDACs are often aberrantly overexpressed, predominantly leading to the transcriptional repression of tumor suppressor genes. Thus, histone deacetylase inhibitors (HDACis) are powerful drugs, with some already approved for certain hematological cancers. Albeit HDACis show activity in solid tumors as well, further refinement and the development of novel drugs are needed. This review describes the capability of HDACis to influence various pathways and, based on this knowledge, gives a comprehensive overview of various preclinical and clinical studies on solid tumors. A particular focus is placed on strategies for achieving higher efficacy by combination therapies, including phosphoinositide 3-kinase (PI3K)-EGFR inhibitors and hormone- or immunotherapy. This also includes new bifunctional inhibitors as well as novel approaches for HDAC degradation via PROteolysis-TArgeting Chimeras (PROTACs).
Collapse
Affiliation(s)
- Robert Jenke
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, D-04103 Leipzig, Germany
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| | - Nina Reßing
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, Rheinische Fried-rich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; (N.R.); (F.K.H.)
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, Rheinische Fried-rich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; (N.R.); (F.K.H.)
| | - Achim Aigner
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| | - Thomas Büch
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| |
Collapse
|
11
|
Jimura N, Fujii K, Qiao Z, Tsuchiya R, Yoshimatsu Y, Kondo T, Kanekura T. Kinome profiling analysis identified Src pathway as a novel therapeutic target in combination with histone deacetylase inhibitors for cutaneous T-cell lymphoma. J Dermatol Sci 2021; 101:194-201. [PMID: 33531202 DOI: 10.1016/j.jdermsci.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 12/26/2020] [Accepted: 01/13/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Histone deacetylase inhibitors (HDACi) are used to treat patients with cutaneous T-cell lymphoma (CTCL), but they show limited efficacy. Hence, combination therapies should be explored to enhance the effectiveness of HDACis. OBJECTIVE This study was conducted to identify novel therapeutic targets that can be combined with HDACis for treating CTCL. METHODS We performed a global kinome profiling assay of three CTCL cell lines (HH, MJ, and Hut78) with three HDACis (romidepsin, vorinostat, and belinostat) using the PamChip® microarray. The three cell lines were co-treated with romidepsin and an inhibitor against the tyrosine kinase pathway. RESULTS Principal component analysis revealed that kinome expression patterns were mainly related to the cell origin and were not affected by the drugs. Few kinases were commonly activated by the HDACis. Most identified kinases were Src-associated molecules, such as annexin A2, embryonal Fyn-associated substrate, and progesterone receptor. Phosphorylated Src was not observed in any untreated cell lines, whereas Src phosphorylation was detected in two of the three cell lines after HDACi treatment. Ponatinib, a Src inhibitor, significantly enhanced romidepsin-induced apoptosis not only in HH, MJ, and Hut78 cells, but also in Myla and SeAx CTCL cell lines. CONCLUSION The Src pathway is a possible target for combination therapy involving HDACis for CTCL.
Collapse
Affiliation(s)
- Nozomi Jimura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazuyasu Fujii
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan.
| | - Zhiwei Qiao
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Ryuto Tsuchiya
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuki Yoshimatsu
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan; Department of Innovative Seeds Evaluation, National Cancer Center Research Institute, Tokyo, Japan
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
12
|
Hontecillas-Prieto L, Flores-Campos R, Silver A, de Álava E, Hajji N, García-Domínguez DJ. Synergistic Enhancement of Cancer Therapy Using HDAC Inhibitors: Opportunity for Clinical Trials. Front Genet 2020; 11:578011. [PMID: 33024443 PMCID: PMC7516260 DOI: 10.3389/fgene.2020.578011] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 12/25/2022] Open
Abstract
Chemotherapy is one of the most established and effective treatments for almost all types of cancer. However, the elevated toxicity due to the non-tumor-associated effects, development of secondary malignancies, infertility, radiation-induced fibrosis and resistance to treatment limit the effectiveness and safety of treatment. In addition, these multiple factors significantly impact quality of life. Over the last decades, our increased understanding of cancer epigenetics has led to new therapeutic approaches and the promise of improved patient outcomes. Epigenetic alterations are commonly found in cancer, especially the increased expression and activity of histone deacetylases (HDACs). Dysregulation of HDACs are critical to the development and progression of the majority of tumors. Hence, HDACs inhibitors (HDACis) were developed and now represent a very promising treatment strategy. The use of HDACis as monotherapy has shown very positive pre-clinical results, but clinical trials have had only limited success. However, combinatorial regimens with other cancer drugs have shown synergistic effects both in pre-clinical and clinical studies. At the same time, these combinations have enhanced the efficacy, reduced the toxicity and tumor resistance to therapy. In this review, we will examine examples of HDACis used in combination with other cancer drugs and highlight the synergistic effects observed in recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Lourdes Hontecillas-Prieto
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla/CIBERONC, Seville, Spain
| | - Rocío Flores-Campos
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla/CIBERONC, Seville, Spain
| | - Andrew Silver
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Enrique de Álava
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla/CIBERONC, Seville, Spain.,Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Seville, Spain
| | - Nabil Hajji
- Division of Brain Sciences, Imperial College London, London, United Kingdom
| | - Daniel J García-Domínguez
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla/CIBERONC, Seville, Spain
| |
Collapse
|
13
|
Liu T, Wan Y, Xiao Y, Xia C, Duan G. Dual-Target Inhibitors Based on HDACs: Novel Antitumor Agents for Cancer Therapy. J Med Chem 2020; 63:8977-9002. [PMID: 32320239 DOI: 10.1021/acs.jmedchem.0c00491] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone deacetylases (HDACs) play an important role in regulating target gene expression. They have been highlighted as a novel category of anticancer targets, and their inhibition can induce apoptosis, differentiation, and growth arrest in cancer cells. In view of the fact that HDAC inhibitors and other antitumor agents, such as BET inhibitors, topoisomerase inhibitors, and RTK pathway inhibitors, exert a synergistic effect on cellular processes in cancer cells, the combined inhibition of two targets is regarded as a rational strategy to improve the effectiveness of these single-target drugs for cancer treatment. In this review, we discuss the theoretical basis for designing HDAC-involved dual-target drugs and provide insight into the structure-activity relationships of these dual-target agents.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Yuliang Xiao
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| | - Chengcai Xia
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| | - Guiyun Duan
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| |
Collapse
|
14
|
Association of Valproic Acid Use, a Potent Histone Deacetylase Inhibitor, and Melanoma Risk. J Invest Dermatol 2020; 140:2353-2358. [PMID: 32353448 DOI: 10.1016/j.jid.2020.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/24/2022]
Abstract
Histone deacetylase inhibitors, including valproic acid, selectively induce cellular differentiation and apoptosis in melanoma cells. No published pharmacoepidemiologic studies have explored the association between valproic acid use and melanoma risk. We conducted a retrospective cohort study of adult white Kaiser Permanente Northern California members (n = 2,213,845) from 1997 to 2012 to examine the association between valproic acid use and melanoma risk. Melanoma hazard ratios (HRs) and 95% CIs were estimated using Cox proportional hazards models, adjusted for age, sex, calendar year, and healthcare use. Melanoma incidence was lower among exposed individuals (64.0 exposed vs. 96.2 unexposed per 100,000 person-years, P < 0.001). Exposed individuals had a lower incident melanoma risk (HR = 0.64; 95% CI = 0.51-0.79) in unadjusted analysis, and the estimate was attenuated but significant in adjusted analysis (HR = 0.76, 95% CI = 0.61-0.94). Cumulative exposure based on the number of fills revealed a biologically implausible inverse dose-effect. Exposed individuals were more likely to present with local than regional or distant disease at diagnosis (80/82; 97.6% exposed vs. 12,940/13,971; 92.6% unexposed). Our findings suggest that valproic acid exposure may be associated with decreased melanoma risk and progression, but the cumulative exposure analyses suggest that the observation may be owing to residual confounding.
Collapse
|
15
|
Stockhammer P, Ho CSL, Hegedus L, Lotz G, Molnár E, Bankfalvi A, Herold T, Kalbourtzis S, Ploenes T, Eberhardt WEE, Schuler M, Aigner C, Schramm A, Hegedus B. HDAC inhibition synergizes with ALK inhibitors to overcome resistance in a novel ALK mutated lung adenocarcinoma model. Lung Cancer 2020; 144:20-29. [PMID: 32353632 DOI: 10.1016/j.lungcan.2020.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Somatic chromosomal rearrangements resulting in ALK fusion oncogenes are observed in 3-7 % of lung adenocarcinomas. ALK tyrosine kinase inhibitors (ALKi) induce initially response, however, various resistance mechanisms limit their efficacy. Novel therapeutic approaches are of utmost importance to tailor these targeted therapies. MATERIALS AND METHODS A synchronous ALK-rearranged and mutated lung cancer cell line pair was established from malignant pleural effusion (PF240-PE) and carcinosis (PF240-PC) at time of ALKi resistance. Immunohistochemistry, FISH and sequencing were performed in pre- and post-treatment tumors and in both cell lines. Differentiation markers were measured by immunoblot. Viability was tested following treatment with ALKi and/or a pan-HDAC inhibitor. Additionally, a novel treatment-naïve ALK-rearranged cell line served as control. In vivo tumorigenicity was evaluated in subcutaneous xenografts. RESULTS Two distinct resistance mutations were identified in different carcinosis tissues at time of resistance, the previously described resistance mutation L1152R and the hitherto uncharacterized E1161K. Strikingly, PF240-PC cells carried E1161K and PF240-PE cells harbored L1152R. Immunohistochemistry and immunoblot identified epithelial-to-mesenchymal transition markers upregulated following ALKi resistance development both in carcinosis tissues and cell lines. While both lines grew as xenografts, they differed in morphology, migration, in vivo growth and sensitivity to ALKi in vitro. Strikingly, the combination of ALKi with SAHA yielded strong synergism. CONCLUSION Using a patient-derived ALKi resistant lung cancer model we demonstrated the synergism of HDAC and ALK inhibition. Furthermore, our findings provide strong evidence for intratumoral heterogeneity under targeted therapy and highlight the importance of site-specific mutational analysis.
Collapse
Affiliation(s)
- Paul Stockhammer
- Department of Thoracic Surgery, West German Cancer Center, University Hospital Essen - Ruhrlandklinik, University Duisburg-Essen, Essen, Germany; Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Cassandra Su Lyn Ho
- Laboratory for Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Luca Hegedus
- Department of Thoracic Surgery, West German Cancer Center, University Hospital Essen - Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
| | - Gabor Lotz
- 2(nd)Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Eszter Molnár
- 2(nd)Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Agnes Bankfalvi
- Institute of Pathology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thomas Herold
- Institute of Pathology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stavros Kalbourtzis
- Institute of Pathology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Till Ploenes
- Department of Thoracic Surgery, West German Cancer Center, University Hospital Essen - Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
| | - Wilfried E E Eberhardt
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Martin Schuler
- Laboratory for Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery, West German Cancer Center, University Hospital Essen - Ruhrlandklinik, University Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Alexander Schramm
- Laboratory for Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Balazs Hegedus
- Department of Thoracic Surgery, West German Cancer Center, University Hospital Essen - Ruhrlandklinik, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
16
|
He H, Xu C, Cheng Z, Qian X, Zheng L. Drug Combinatorial Therapies for the Treatment of KRAS Mutated Lung Cancers. Curr Top Med Chem 2019; 19:2128-2142. [PMID: 31475900 DOI: 10.2174/1568026619666190902150555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/23/2019] [Accepted: 07/04/2019] [Indexed: 02/08/2023]
Abstract
KRAS is the most common oncogene to be mutated in lung cancer, and therapeutics directly targeting KRAS have proven to be challenging. The mutations of KRAS are associated with poor prognosis, and resistance to both adjuvant therapy and targeted EGFR TKI. EGFR TKIs provide significant clinical benefit for patients whose tumors bear EGFR mutations. However, tumors with KRAS mutations rarely respond to the EGFR TKI therapy. Thus, combination therapy is essential for the treatment of lung cancers with KRAS mutations. EGFR TKI combined with inhibitors of MAPKs, PI3K/mTOR, HDAC, Wee1, PARP, CDK and Hsp90, even miRNAs and immunotherapy, were reviewed. Although the effects of the combination vary, the combined therapeutics are one of the best options at present to treat KRAS mutant lung cancer.
Collapse
Affiliation(s)
- Hao He
- School of Pharmacy, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Chang Xu
- National Vaccine & Serum Institute, Beijing, China
| | - Zhao Cheng
- School of Pharmacy, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xiaoying Qian
- School of Pharmacy, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Lei Zheng
- School of Pharmacy, Xi'an Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
17
|
Liu WJ, Du Y, Wen R, Yang M, Xu J. Drug resistance to targeted therapeutic strategies in non-small cell lung cancer. Pharmacol Ther 2019; 206:107438. [PMID: 31715289 DOI: 10.1016/j.pharmthera.2019.107438] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023]
Abstract
Rapidly developing molecular biology techniques have been employed to identify cancer driver genes in specimens from patients with non-small cell lung cancer (NSCLC). Inhibitors and antibodies that specifically target driver gene-mediated signaling pathways to suppress tumor growth and progression are expected to extend the survival time and further improve the quality of life of patients. However, the health of patients with advanced and metastatic NSCLC presents significant challenges due to treatment resistance, mediated by cancer driver gene alteration, epigenetic alteration, and tumor heterogeneity. In this review, we discuss two different resistance mechanisms in NSCLC targeted therapies, namely changes in the targeted oncogenes (on-target resistance) and changes in other related signaling pathways (off-target resistance) in tumor cells. We highlight the conventional mechanisms of drug resistance elicited by the complex heterogeneous microenvironment of NSCLC during targeted therapy, including mutations in epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), the receptor tyrosine kinase ROS proto-oncogene 1 (ROS1), and the serine/threonine-protein kinase BRAF (v-Raf murine sarcoma viral oncogene homolog B). We also discuss the mechanism of action of less common oncoproteins, as in-depth understanding of these molecular mechanisms is important for optimizing treatment strategies.
Collapse
Affiliation(s)
- Wen-Juan Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, China
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ru Wen
- Department of Medicine, Stanford University School of Medicine, California, USA
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, China.
| | - Jian Xu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
18
|
Zhu X, Chen L, Liu L, Niu X. EMT-Mediated Acquired EGFR-TKI Resistance in NSCLC: Mechanisms and Strategies. Front Oncol 2019; 9:1044. [PMID: 31681582 PMCID: PMC6798878 DOI: 10.3389/fonc.2019.01044] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/25/2019] [Indexed: 01/06/2023] Open
Abstract
Acquired resistance inevitably limits the curative effects of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), which represent the classical paradigm of molecular-targeted therapies in non-small-cell lung cancer (NSCLC). How to break such a bottleneck becomes a pressing problem in cancer treatment. The epithelial-mesenchymal transition (EMT) is a dynamic process that governs biological changes in various aspects of malignancies, notably drug resistance. Progress in delineating the nature of this process offers an opportunity to develop clinical therapeutics to tackle resistance toward anticancer agents. Herein, we seek to provide a framework for the mechanistic underpinnings on the EMT-mediated acquisition of EGFR-TKI resistance, with a focus on NSCLC, and raise the question of what therapeutic strategies along this line should be pursued to optimize the efficacy in clinical practice.
Collapse
Affiliation(s)
- Xuan Zhu
- Institute of Translational Medicine, China Medical University, Shenyang, China.,Department of Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lijie Chen
- Department of Third Clinical College, China Medical University, Shenyang, China
| | - Ling Liu
- Department of College of Stomatology, China Medical University, Shenyang, China
| | - Xing Niu
- Department of Second Clinical College, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| |
Collapse
|
19
|
de Pinho NB, Martucci RB, Rodrigues VD, D’Almeida CA, Thuler LCS, Saunders C, Jager‐Wittenaar H, Peres WAF. High prevalence of malnutrition and nutrition impact symptoms in older patients with cancer: Results of a Brazilian multicenter study. Cancer 2019; 126:156-164. [DOI: 10.1002/cncr.32437] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Nivaldo B. de Pinho
- Department of Nutrition and Dietetics, Institute of Nutrition Federal University of Rio de Janeiro Rio de Janeiro Brazil
- Technical Support Division, Cancer Hospital Unit I National Cancer Institute Jose Alencar Gomes da Silva Rio de Janeiro Brazil
- Brazilian Society of Oncology Nutrition Rio de Janeiro Brazil
| | - Renata B. Martucci
- Brazilian Society of Oncology Nutrition Rio de Janeiro Brazil
- Nutrition and Dietetic Service, Cancer Hospital Unit I National Cancer Institute Jose Alencar Gomes da Silva Rio de Janeiro Brazil
- Nutrition Institute State University of Rio de Janeiro Rio de Janeiro Brazil
| | - Viviane D. Rodrigues
- Nutrition and Dietetic Service, Cancer Hospital Unit I National Cancer Institute Jose Alencar Gomes da Silva Rio de Janeiro Brazil
- Nutrition Institute State University of Rio de Janeiro Rio de Janeiro Brazil
| | - Cristiane A. D’Almeida
- Nutrition and Dietetic Service, Cancer Hospital Unit I National Cancer Institute Jose Alencar Gomes da Silva Rio de Janeiro Brazil
| | - Luiz C. S. Thuler
- Clinical Research Division, Research Center National Cancer Institute Jose Alencar Gomes da Silva Rio de Janeiro Brazil
| | - Claudia Saunders
- Department of Nutrition and Dietetics, Institute of Nutrition Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Harriet Jager‐Wittenaar
- Research Group Healthy Ageing, Allied Health Care and Nursing Hanze University of Applied Sciences Groningen Netherlands
- Department of Maxillofacial Surgery University of Groningen, University Medical Center Groningen Groningen Netherlands
| | - Wilza A. F. Peres
- Department of Nutrition and Dietetics, Institute of Nutrition Federal University of Rio de Janeiro Rio de Janeiro Brazil
- Brazilian Society of Oncology Nutrition Rio de Janeiro Brazil
| |
Collapse
|
20
|
Lyu X, Hu M, Peng J, Zhang X, Sanders YY. HDAC inhibitors as antifibrotic drugs in cardiac and pulmonary fibrosis. Ther Adv Chronic Dis 2019; 10:2040622319862697. [PMID: 31367296 PMCID: PMC6643173 DOI: 10.1177/2040622319862697] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022] Open
Abstract
Fibrosis usually results from dysregulated wound repair and is characterized by
excessive scar tissue. It is a complex process with unclear mechanisms.
Accumulating evidence indicates that epigenetic alterations, including histone
acetylation, play a pivotal role in this process. Histone acetylation is
governed by histone acetyltransferases (HATs) and histone deacetylases (HDACs).
HDACs are enzymes that remove the acetyl groups from both histone and nonhistone
proteins. Aberrant HDAC activities are observed in fibrotic diseases, including
cardiac and pulmonary fibrosis. HDAC inhibitors (HDACIs) are molecules that
block HDAC functions. HDACIs have been studied extensively in a variety of
tumors. Currently, there are four HDACIs approved by the US Food and Drug
Administration for cancer treatment yet none for fibrotic diseases. Emerging
evidence from in vitro and in vivo preclinical
studies has presented beneficial effects of HDACIs in preventing or reversing
fibrogenesis. In this review, we summarize the latest findings of the roles of
HDACs in the pathogenesis of cardiac and pulmonary fibrosis and highlight the
potential applications of HDACIs in these two fibrotic diseases.
Collapse
Affiliation(s)
- Xing Lyu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Hu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieting Peng
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 901 19 Street South, BMRII Room 408, Birmingham, AL 35294, USA
| |
Collapse
|
21
|
Abstract
Epigenetic reprogramming plays a crucial role in the tumorigenicity and maintenance of tumor-specific gene expression that especially occurs through DNA methylation and/or histone modifications. It has well-defined mechanisms. It is known that alterations in the DNA methylation pattern and/or the loss of specific histone acetylation/methylation markers are related to several hallmarks of cancer, such as drug resistance, stemness, epithelial-mesenchymal transition, and metastasis. It has also recently been highlighted that epigenetic alterations are critical for the regulation of the stemlike properties of cancer cells (tumor-initiating cells; cancer stem cells). Cancer stem cells are thought to be responsible for the recurrence of cancer which makes the patient return to the clinic with metastatic tumor tissue. Hence, the dysregulation of epigenetic machinery represents potential new therapeutic targets. Therefore, compounds with epigenetic activities have become crucial for developing new therapy regimens (e.g., antimetastatic agents) in the fight against cancer. Here, we review the epigenetic modifiers that have already been used in the clinic and/or in clinical trials, related preclinical studies in cancer therapy, and the smart combination strategies that target cancer stem cells along with the other cancer cells. The emerging role of epitranscriptome (RNA epigenetic) in cancer therapy has also been included in this review as a new avenue and potential target for the better management of cancer-beneficial epigenetic machinery.
Collapse
Affiliation(s)
- Remzi Okan Akar
- Department of Cancer Biology and Pharmacology, Institute of Health Sciences, İstinye University, İstanbul, Turkey
| | - Selin Selvi
- Department of Cancer Biology and Pharmacology, Institute of Health Sciences, İstinye University, İstanbul, Turkey
| | - Engin Ulukaya
- Department of Medical Biochemistry, Faculty of Medicine, İstinye University, İstanbul, Turkey
| | - Nazlıhan Aztopal
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, İstinye University, İstanbul, Turkey
| |
Collapse
|
22
|
McCoach CE, Bivona TG. Engineering Multidimensional Evolutionary Forces to Combat Cancer. Cancer Discov 2019; 9:587-604. [PMID: 30992280 PMCID: PMC6497542 DOI: 10.1158/2159-8290.cd-18-1196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/28/2018] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
With advances in technology and bioinformatics, we are now positioned to view and manage cancer through an evolutionary lens. This perspective is critical as our appreciation for the role of tumor heterogeneity, tumor immune compartment, and tumor microenvironment on cancer pathogenesis and evolution grows. Here, we explore recent knowledge on the evolutionary basis of cancer pathogenesis and progression, viewing tumors as multilineage, multicomponent organisms whose growth is regulated by subcomponent fitness relationships. We propose reconsidering some current tenets of the cancer management paradigm in order to take better advantage of crucial fitness relationships to improve outcomes of patients with cancer. SIGNIFICANCE: Tumor and tumor immune compartment and microenvironment heterogeneity, and their evolution, are critical disease features that affect treatment response. The impact and interplay of these components during treatment are viable targets to improve clinical response. In this article, we consider how tumor cells, the tumor immune compartment and microenvironment, and epigenetic factors interact and also evolve during treatment. We evaluate the convergence of these factors and suggest innovative treatment concepts that leverage evolutionary relationships to limit tumor growth and drug resistance.
Collapse
Affiliation(s)
- Caroline E McCoach
- Department of Medicine, University of California, San Francisco, California.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, California.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California
| |
Collapse
|
23
|
Manzotti G, Ciarrocchi A, Sancisi V. Inhibition of BET Proteins and Histone Deacetylase (HDACs): Crossing Roads in Cancer Therapy. Cancers (Basel) 2019; 11:cancers11030304. [PMID: 30841549 PMCID: PMC6468908 DOI: 10.3390/cancers11030304] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Histone DeACetylases (HDACs) are enzymes that remove acetyl groups from histones and other proteins, regulating the expression of target genes. Pharmacological inhibition of these enzymes re-shapes chromatin acetylation status, confusing boundaries between transcriptionally active and quiescent chromatin. This results in reinducing expression of silent genes while repressing highly transcribed genes. Bromodomain and Extraterminal domain (BET) proteins are readers of acetylated chromatin status and accumulate on transcriptionally active regulatory elements where they serve as scaffold for the building of transcription-promoting complexes. The expression of many well-known oncogenes relies on BET proteins function, indicating BET inhibition as a strategy to counteract their activity. BETi and HDACi share many common targets and affect similar cellular processes to the point that combined inhibition of both these classes of proteins is regarded as a strategy to improve the effectiveness of these drugs in cancer. In this work, we aim to discuss the molecular basis of the interplay between HDAC and BET proteins, pointing at chromatin acetylation as a crucial node of their functional interaction. We will also describe the state of the art of their dual inhibition in cancer therapy. Finally, starting from their mechanism of action we will provide a speculative perspective on how these drugs may be employed in combination with standard therapies to improve effectiveness and/or overcome resistance.
Collapse
Affiliation(s)
- Gloria Manzotti
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| |
Collapse
|
24
|
Pozo K, Zahler S, Ishimatsu K, Carter AM, Telange R, Tan C, Wang S, Pfragner R, Fujimoto J, Grubbs EG, Takahashi M, Oltmann SC, Bibb JA. Preclinical characterization of tyrosine kinase inhibitor-based targeted therapies for neuroendocrine thyroid cancer. Oncotarget 2018; 9:37662-37675. [PMID: 30701022 PMCID: PMC6340867 DOI: 10.18632/oncotarget.26480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022] Open
Abstract
Medullary thyroid carcinoma (MTC) is a slow growing neuroendocrine (NE) tumor for which few treatment options are available. Its incidence is rising and mortality rates have remained unchanged for decades. Increasing the repertoire of available treatments is thus crucial to manage MTC progression. Scarcity of patient samples and of relevant animal models are two challenges that have limited the development of effective non-surgical treatments. Here we use a clinically accurate mouse model of MTC to assess the effects and mode of action of the tyrosine kinase inhibitor (TKI) Vandetanib, one of only two drugs currently available to treat MTC. Effects on tumor progression, histopathology, and tumorigenic signaling were evaluated. Vandetanib blocked MTC growth through an anti-angiogenic mechanism. Furthermore, Vandetanib had an apparent anti-angiogenic effect in a patient MTC sample. Vandetanib displayed minimal anti-proliferative effects in vivo and in human and mouse MTC tumor-derived cells. Based on these results, we evaluated the second-generation TKI, Nintedanib, alone and in combination with the histone deacetylase (HDAC) inhibitor, Romidepsin, as potential alternative treatments to Vandetanib. Nintedanib showed an anti-angiogenic effect while Romidepsin decreased proliferation. Mechanistically, TKIs attenuated RET-, VEGFR2- and PI3K/AKT/FOXO signaling cascades. Nintedanib alone or in combination with Romidepsin, but not Vandetanib, inhibited mTOR signaling suggesting Nintedanib may have broader anti-cancer applicability. These findings validate the MTC mouse model as a clinically relevant platform for preclinical drug testing and reveal the modes of action and limitations of TKI therapies.
Collapse
Affiliation(s)
- Karine Pozo
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stefan Zahler
- Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Keisuke Ishimatsu
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Angela M Carter
- Department of Surgery, The University of Alabama, Birmingham, AL, USA
| | - Rahul Telange
- Department of Surgery, The University of Alabama, Birmingham, AL, USA
| | - Chunfeng Tan
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shuaijun Wang
- Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Roswitha Pfragner
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth Gardner Grubbs
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Masaya Takahashi
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarah C Oltmann
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James A Bibb
- Department of Surgery, The University of Alabama, Birmingham, AL, USA.,Comprehensive Cancer Center, The University of Alabama at Birmingham Medical Center, Birmingham, AL, USA
| |
Collapse
|
25
|
Chromatin dynamics at the core of kidney fibrosis. Matrix Biol 2018; 68-69:194-229. [DOI: 10.1016/j.matbio.2018.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 02/06/2023]
|
26
|
Amin SA, Adhikari N, Jha T. Structure-activity relationships of HDAC8 inhibitors: Non-hydroxamates as anticancer agents. Pharmacol Res 2018. [DOI: 10.1016/j.phrs.2018.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
27
|
Rusan M, Li K, Li Y, Christensen CL, Abraham BJ, Kwiatkowski N, Buczkowski KA, Bockorny B, Chen T, Li S, Rhee K, Zhang H, Chen W, Terai H, Tavares T, Leggett AL, Li T, Wang Y, Zhang T, Kim TJ, Hong SH, Poudel-Neupane N, Silkes M, Mudianto T, Tan L, Shimamura T, Meyerson M, Bass AJ, Watanabe H, Gray NS, Young RA, Wong KK, Hammerman PS. Suppression of Adaptive Responses to Targeted Cancer Therapy by Transcriptional Repression. Cancer Discov 2018; 8:59-73. [PMID: 29054992 PMCID: PMC5819998 DOI: 10.1158/2159-8290.cd-17-0461] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/02/2017] [Accepted: 10/17/2017] [Indexed: 12/15/2022]
Abstract
Acquired drug resistance is a major factor limiting the effectiveness of targeted cancer therapies. Targeting tumors with kinase inhibitors induces complex adaptive programs that promote the persistence of a fraction of the original cell population, facilitating the eventual outgrowth of inhibitor-resistant tumor clones. We show that the addition of a newly identified CDK7/12 inhibitor, THZ1, to targeted therapy enhances cell killing and impedes the emergence of drug-resistant cell populations in diverse cellular and in vivo cancer models. We propose that targeted therapy induces a state of transcriptional dependency in a subpopulation of cells poised to become drug tolerant, which THZ1 can exploit by blocking dynamic transcriptional responses, promoting remodeling of enhancers and key signaling outputs required for tumor cell survival in the setting of targeted therapy. These findings suggest that the addition of THZ1 to targeted therapies is a promising broad-based strategy to hinder the emergence of drug-resistant cancer cell populations.Significance: CDK7/12 inhibition prevents active enhancer formation at genes, promoting resistance emergence in response to targeted therapy, and impedes the engagement of transcriptional programs required for tumor cell survival. CDK7/12 inhibition in combination with targeted cancer therapies may serve as a therapeutic paradigm for enhancing the effectiveness of targeted therapies. Cancer Discov; 8(1); 59-73. ©2017 AACR.See related commentary by Carugo and Draetta, p. 17This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Maria Rusan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Clinical Medicine, Aarhus University, Aarhus, 8000, Denmark
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Kapsok Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yvonne Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Brian J Abraham
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Nicholas Kwiatkowski
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin A Buczkowski
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Bruno Bockorny
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Ting Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Shuai Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Kevin Rhee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Haikuo Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Wankun Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hideki Terai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Tiffany Tavares
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Alan L Leggett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Tianxia Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Yichen Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tae-Jung Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sook-Hee Hong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Michael Silkes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Tenny Mudianto
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Li Tan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Takeshi Shimamura
- Molecular Pharmacology and Therapeutics, Oncology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153 USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Departments of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hideo Watanabe
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kwok-Kin Wong
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Peter S Hammerman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Novartis Institutes of Biomedical Research, Cambridge, MA, 02139
| |
Collapse
|
28
|
Cho JH, Oezkan F, Koenig M, Otterson GA, Herman JG, He K. Epigenetic Therapeutics and Their Impact in Immunotherapy of Lung Cancer. CURRENT PHARMACOLOGY REPORTS 2017; 3:360-373. [PMID: 29503796 PMCID: PMC5831502 DOI: 10.1007/s40495-017-0110-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lung cancer is the leading cause of cancer-related death in the United States and worldwide. Novel therapeutic developments are critically necessary to improve outcomes for this disease. Aberrant epigenetic change plays an important role in lung cancer development and progression. Therefore, drugs targeting the epigenome are being investigated in the treatment of lung cancer. Monotherapy of epigenetic therapeutics such as DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi) have so far not shown any apparent benefit while one of the clinical trials with the combinations of DNMTi and HDACi showed a small positive signal for treating lung cancer. Combinations of DNMTi and HDACi with chemotherapies have some efficacy but are often limited by increased toxicities. Preclinical data and clinical trial results suggest that combining epigenetic therapeutics with targeted therapies might potentially improve outcomes in lung cancer patients. Furthermore, several clinical studies suggest that the HDACi vorinostat could be used as a radiosensitizer in lung cancer patients receiving radiation therapy. Immune checkpoint blockade therapies are revolutionizing lung cancer management. However, only a minority of lung cancer patients experience long-lasting benefits from immunotherapy. The role of epigenetic reprogramming in boosting the effects of immunotherapy is an area of active investigation. Preclinical studies and early clinical trial results support this approach which may improve lung cancer treatment, with potentially prolonged survival and tolerable toxicity. In this review, we discuss the current status of epigenetic therapeutics and their combination with other antineoplastic therapies, including novel immunotherapies, in lung cancer management.
Collapse
Affiliation(s)
- Ju Hwan Cho
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
| | - Filiz Oezkan
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
- Department of Interventional Pneumology, Ruhrlandklinik, West German
Lung Center, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Michael Koenig
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
| | - Gregory A. Otterson
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
| | - James Gordon Herman
- Department of Medicine, Division of Hematology/Oncology, University
of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kai He
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The
Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
29
|
Yu W, Lu W, Chen G, Cheng F, Su H, Chen Y, Liu M, Pang X. Inhibition of histone deacetylases sensitizes EGF receptor-TK inhibitor-resistant non-small-cell lung cancer cells to erlotinib in vitro and in vivo. Br J Pharmacol 2017; 174:3608-3622. [PMID: 28749535 DOI: 10.1111/bph.13961] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 07/16/2017] [Accepted: 07/21/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Intrinsic and/or acquired resistance of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) commonly occurs in patients with non-small-cell lung cancer (NSCLC). Here, we developed a combined therapy of histone deacetylase inhibition by a novel HDAC inhibitor, YF454A, with erlotinib to overcome EGFR-TKI resistance in NSCLC. EXPERIMENTAL APPROACH The sensitization of the effects of erlotinib by YF454A was examined in a panel of EGFR-TKI-resistant NSCLC cell lines in vitro and two different erlotinib-resistant NSCLC xenograft mouse models in vivo. Western blotting and Affymetrix GeneChip expression analysis were further performed to determine the underlying mechanisms for the effects of the combination of erlotinib and YF454A. KEY RESULTS YF454A and erlotinib showed a strong synergy in the suppression of cell growth by blocking the cell cycle and triggering cell apoptosis in EGFR-TKI-resistant NSCLC cells. The combined treatment led to a significant decrease in tumour growth and tumour weight compared with single agents alone. Mechanistically, this combination therapy dramatically down-regulated the expression of several crucial EGFR-TKI resistance-related receptor tyrosine kinases, such as Her2, c-Met, IGF1R and AXL, at both the transcriptional and protein levels and consequently blocked the activation of downstream molecules Akt and ERK. Transcriptomic profiling analysis further revealed that YF454A and erlotinib synergistically suppressed the cell cycle pathway and decreased the transcription of cell-cycle related genes, such as MSH6 and MCM7. CONCLUSION AND IMPLICATIONS Our preclinical study of YF454A provides a rationale for combining erlotinib with a histone deacetylase inhibitor to treat NSCLC with EGFR-TKI resistance.
Collapse
Affiliation(s)
- Weiwei Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Guoliang Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Feixiong Cheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.,Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hui Su
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, TX, USA
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
30
|
Xiong S, Xue M, Mu Y, Deng Z, Sun P, Zhou R. Determination of AZD3759 in rat plasma and brain tissue by LC-MS/MS and its application in pharmacokinetic and brain distribution studies. J Pharm Biomed Anal 2017; 140:362-366. [PMID: 28399431 DOI: 10.1016/j.jpba.2017.03.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 02/08/2023]
Abstract
A simple and sensitive high performance liquid chromatography with tandem mass spectrometry (LC-MS/MS) method for determination of AZD3759, a novel epidermal growth factor receptor tyrosine kinase inhibitor, in rat plasma and brain homogenate was developed and validated over the range of 1.0-1000ng/mL. Chromatographic separation was carried out on a C18 column with acetonitrile and 0.1% formic acid in water as mobile phase with gradient elution at a flow rate of 0.4mL/min. The lower limits of quantification (LLOQs) were 1.0ng/mL for AZD3759 in both rat plasma and brain homogenate. The intra-day and inter-day precision and accuracy of AZD3759 were well within the acceptable limits of variation. The simple and sensitive LC-MS/MS method was successfully applied to the pharmacokinetic and brain distribution studies following an oral administration of AZD3759 to rats.
Collapse
Affiliation(s)
- Shan Xiong
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Ji'nan 250062, PR China; Key Laboratory for Biotech-Drugs Ministry of Health, Ji'nan 250062, PR China; Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250062, PR China.
| | - Mingxing Xue
- Shandong Yantong Pharmaceutical Technology Co., Ltd., Ji'nan 250014, PR China
| | - Yanling Mu
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Ji'nan 250062, PR China; Key Laboratory for Biotech-Drugs Ministry of Health, Ji'nan 250062, PR China; Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250062, PR China
| | - Zhipeng Deng
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Ji'nan 250062, PR China
| | - Peilu Sun
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Ji'nan 250062, PR China
| | - Ruican Zhou
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Ji'nan 250062, PR China
| |
Collapse
|
31
|
Shieh JM, Tang YA, Hu FH, Huang WJ, Wang YJ, Jen J, Liao SY, Lu YH, Yeh YL, Wang TW, Lin P, Wang YC. A histone deacetylase inhibitor enhances expression of genes inhibiting Wnt pathway and augments activity of DNA demethylation reagent against nonsmall-cell lung cancer. Int J Cancer 2017; 140:2375-2386. [DOI: 10.1002/ijc.30664] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/17/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Jiunn-Min Shieh
- Division of Chest Medicine, Department of Internal Medicine; Chi Mei Medical Center; Tainan Taiwan ROC
- The Center of General Education, Chia Nan University of Pharmacy & Science; Tainan Taiwan ROC
| | - Yen-An Tang
- Institute of Basic Medical Sciences, National Cheng Kung University; Tainan Taiwan ROC
| | - Fu-Han Hu
- Department of Pharmacology; National Cheng Kung University; Tainan Taiwan ROC
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, Taipei Medical University; Taipei Taiwan ROC
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health; National Cheng Kung University; Tainan Taiwan ROC
| | - Jayu Jen
- Institute of Basic Medical Sciences, National Cheng Kung University; Tainan Taiwan ROC
| | - Sheng-You Liao
- Institute of Basic Medical Sciences, National Cheng Kung University; Tainan Taiwan ROC
| | - Ying-Hung Lu
- Department of Pharmacology; National Cheng Kung University; Tainan Taiwan ROC
| | - Ya-Ling Yeh
- Department of Environmental and Occupational Health; National Cheng Kung University; Tainan Taiwan ROC
| | - Tseng-Wei Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes; Zhunan Taiwan ROC
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes; Zhunan Taiwan ROC
| | - Yi-Ching Wang
- Institute of Basic Medical Sciences, National Cheng Kung University; Tainan Taiwan ROC
- Department of Pharmacology; National Cheng Kung University; Tainan Taiwan ROC
| |
Collapse
|
32
|
Shum E, Wang F, Kim S, Perez-Soler R, Cheng H. Investigational therapies for squamous cell lung cancer: from animal studies to phase II trials. Expert Opin Investig Drugs 2017; 26:415-426. [PMID: 28277882 DOI: 10.1080/13543784.2017.1302425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION It remains challenging to treat squamous cell lung cancer (SCC) with limited therapeutic options. However, recent breakthroughs in targeted therapies and immunotherapies have shed some light on the management of this deadly disease. Areas covered: The article first reviews the current treatment options for advanced SCC, especially recent FDA approved molecular agents (afatinib, ramucirumab and necitumumab) and immunotherapies (nivolumab, pembrolizumab and atezolimumab). We then provide an overview on investigational therapies with data ranging from preclinical to phase II studies, focusing on new cytotoxic agents, emerging molecularly targeted agents (including a PARP inhibitor for Homologous Recombinant Deficiency positive SCC) and novel immunotherapeutic strategies. Expert opinion summary: Identification of potential therapeutic targets, development of novel clinical trials and the rapid approvals of immune checkpoint inhibitors have shifted the management paradigm for squamous cell lung cancer. On the other hand, continued efforts are needed to identify the predictive biomarkers and to investigate novel mechanistically-driven mono- and combination therapies. We need to learn more about the biology behind immune checkpoint blockade and tumor genomics in SCC for better patient selection and future trial design.
Collapse
Affiliation(s)
- Elaine Shum
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Feng Wang
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Salem Kim
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Roman Perez-Soler
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Haiying Cheng
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| |
Collapse
|
33
|
Bao L, Diao H, Dong N, Su X, Wang B, Mo Q, Yu H, Wang X, Chen C. Histone deacetylase inhibitor induces cell apoptosis and cycle arrest in lung cancer cells via mitochondrial injury and p53 up-acetylation. Cell Biol Toxicol 2016. [PMID: 27423454 DOI: 10.1007/s10565-016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The reversibility of non-genotoxic phenotypic changes has been explored in order to develop novel preventive and therapeutic approaches for cancer. Quisinostat (JNJ-26481585), a novel second-generation histone deacetylase inhibitor (HDACi), has efficient therapeutic actions on non-small cell lung cancer (NSCLC) cell. The present study aims at investigating underlying molecular mechanisms involved in the therapeutic activity of quisinostat on NSCLC cells. We found that quisinostat significantly inhibited A549 cell proliferation in dose- and time-dependent manners. Up-acetylation of histones H3 and H4 and non-histone protein α-tubulin was induced by quisinostat treatment in a nanomolar concentration. We also demonstrated that quisinostat increased reactive oxygen species (ROS) production and destroyed mitochondrial membrane potential (ΔΨm), inducing mitochondria-mediated cell apoptosis. Furthermore, exposure of A549 cells to quisinostat significantly suppressed cell migration by inhibiting epithelial-mesenchymal transition (EMT) process. Bioinformatics analysis indicated that effects of quisinostat on NSCLC cells were associated with activated p53 signaling pathway. We found that quisinostat increased p53 acetylation at K382/K373 sites, upregulated the expression of p21(Waf1/Cip1), and resulted in G1 phase arrest. Thus, our results suggest that the histone deacetylase can be a therapeutic target of NSCLC to discover and develop a new category of therapy for lung cancer.
Collapse
Affiliation(s)
- Lianmin Bao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Hua Diao
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China
| | - Nian Dong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xiaoqiong Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Bingbin Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qiongya Mo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Heguo Yu
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China.
| | - Xiangdong Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Chengshui Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
34
|
Bunn PA. Karnofsky Award 2016: A Lung Cancer Journey, 1973 to 2016. J Clin Oncol 2016; 35:243-252. [PMID: 28056194 DOI: 10.1200/jco.2016.70.4064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Paul A Bunn
- From University of Colorado Cancer Center, Aurora, CO
| |
Collapse
|
35
|
Histone deacetylase inhibitor induces cell apoptosis and cycle arrest in lung cancer cells via mitochondrial injury and p53 up-acetylation. Cell Biol Toxicol 2016; 32:469-482. [PMID: 27423454 PMCID: PMC5099365 DOI: 10.1007/s10565-016-9347-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/28/2016] [Indexed: 12/18/2022]
Abstract
The reversibility of non-genotoxic phenotypic changes has been explored in order to develop novel preventive and therapeutic approaches for cancer. Quisinostat (JNJ-26481585), a novel second-generation histone deacetylase inhibitor (HDACi), has efficient therapeutic actions on non-small cell lung cancer (NSCLC) cell. The present study aims at investigating underlying molecular mechanisms involved in the therapeutic activity of quisinostat on NSCLC cells. We found that quisinostat significantly inhibited A549 cell proliferation in dose- and time-dependent manners. Up-acetylation of histones H3 and H4 and non-histone protein α-tubulin was induced by quisinostat treatment in a nanomolar concentration. We also demonstrated that quisinostat increased reactive oxygen species (ROS) production and destroyed mitochondrial membrane potential (ΔΨm), inducing mitochondria-mediated cell apoptosis. Furthermore, exposure of A549 cells to quisinostat significantly suppressed cell migration by inhibiting epithelial-mesenchymal transition (EMT) process. Bioinformatics analysis indicated that effects of quisinostat on NSCLC cells were associated with activated p53 signaling pathway. We found that quisinostat increased p53 acetylation at K382/K373 sites, upregulated the expression of p21(Waf1/Cip1), and resulted in G1 phase arrest. Thus, our results suggest that the histone deacetylase can be a therapeutic target of NSCLC to discover and develop a new category of therapy for lung cancer.
Collapse
|
36
|
Greve G, Schiffmann I, Pfeifer D, Pantic M, Schüler J, Lübbert M. The pan-HDAC inhibitor panobinostat acts as a sensitizer for erlotinib activity in EGFR-mutated and -wildtype non-small cell lung cancer cells. BMC Cancer 2015; 15:947. [PMID: 26675484 PMCID: PMC4682236 DOI: 10.1186/s12885-015-1967-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The receptor tyrosine kinase (RTK) EGFR is overexpressed and mutated in NSCLC. These mutations can be targeted by RTK inhibitors (TKIs) such as erlotinib. Chromatin-modifying agents may offer a novel therapeutic approach by sensitizing tumor cells to TKIs. METHODS The NSCLC cell lines HCC827 (EGFR mutant, adenocarcinoma), A549 (EGFR wt, adenocarcinoma) and NCI-H460 (EGFR wt, large cell carcinoma) were analyzed by SNP6.0 array. Changes in proliferation after panobinostat (LBH-589, PS) and erlotinib treatment were quantified by WST-1 assay and apoptosis by Annexin V/7-AAD flow cytometry. Abundance of target proteins and histone marks (acH3, H3K4me1/2/3) was determined by immunoblotting. RESULTS As expected, the EGFR wt cell lines A549 and NCI-H460 were quite insensitive to the growth-inhibitory effect of erlotinib (IC50 70-100 μM), compared to HCC827 (IC50<0.02 μM). All three cell lines were sensitive to PS treatment (IC50: HCC827 10 nM, A549 20 nM and NCI-H460 35 nM). The combination of both drugs further reduced proliferation in HCC827 and in A549, but not in NCI-H460. PS alone induced differentiation and expression of p21WAF1/CIP1 and p53 and decreased CHK1 in all three cell lines, with almost no further effect when combined with erlotinib. In contrast, combination treatment additively decreased pEGFR, pERK and pAKT in A549. Both drugs synergistically induced acH3 in the adenocarcinoma lines. Surprisingly, we also observed induction of H3K4 methylation marks after erlotinib treatment in HCC827 and in A549 that was further enhanced by combination with PS. CONCLUSION PS sensitized lung adenocarcinoma cells to the antiproliferative effects of erlotinib. In these cell lines, the drug combination also had a robust, not previously described effect on histone H3 acetylation and H3K4 methylation.
Collapse
Affiliation(s)
- Gabriele Greve
- University of Freiburg Medical Center, Freiburg, Germany. .,University of Freiburg, Faculty of Biology, Freiburg, Germany.
| | - Insa Schiffmann
- University of Freiburg Medical Center, Freiburg, Germany. .,University of Freiburg, Faculty of Medicine, Freiburg, Germany.
| | | | - Milena Pantic
- University of Freiburg Medical Center, Freiburg, Germany.
| | - Julia Schüler
- Department for in vivo Tumorbiology, Oncotest GmbH, Freiburg, Germany.
| | - Michael Lübbert
- University of Freiburg Medical Center, Freiburg, Germany. .,DKTK, German Consortium for Translational Cancer Research, Freiburg, Germany.
| |
Collapse
|