1
|
Abou Elez RMM, Elsohaby I, Al-Mohammadi AR, Seliem M, Tahoun ABMB, Abousaty AI, Algendy RM, Mohamed EAA, El-Gazzar N. Antibacterial and anti-biofilm activities of probiotic Lactobacillus plantarum against Listeria monocytogenes isolated from milk, chicken and pregnant women. Front Microbiol 2023; 14:1201201. [PMID: 37538844 PMCID: PMC10394229 DOI: 10.3389/fmicb.2023.1201201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023] Open
Abstract
Listeria monocytogenes (L. monocytogenes) is a foodborne pathogen that poses significant risks to public health and food safety. The present study aimed to identify the presence of Listeria spp. in various samples, including pasteurized milk, chicken fillets, and stool samples from pregnant women in Sharkia Governorate, Egypt. Additionally, the study identified the serotypes, virulence-associated genes, antimicrobial resistance patterns, and biofilm formation in L. monocytogenes isolates. Moreover, the antibacterial and anti-biofilm activity of Lactobacillus plantarum ATCC 14917 (L. plantarum) against L. monocytogenes isolates was investigated. A cross-sectional study was conducted from August 2021 to January 2022 to collect 300 samples of pasteurized milk, chicken fillets, and stool from pregnant women admitted to outpatient clinics of hospitals. The results showed that 32.7% of the samples were positive for Listeria spp., including L. innocua (48.9%), L. monocytogenes (26.5%), L. ivanovii (14.3%), L. grayi (5.1%), and L. welshimeri (5.1%). Among all L. monocytogenes isolates, hlyA, actA, inlC, and inlJ virulence-associated genes were detected. However, the virulence genes plcB, iap, and inlA were found in 10 (38.5%), 8 (30.8%), and 25 (96.2%) isolates, respectively. The L. monocytogenes isolates classified into four serotypes (1/2a, 1/2b, 1/2c, and 4b), with 1/2a and 4b each identified in 30.8% of the isolates, while 1/2b and 1/2c were identified in 19.2% of the isolates. All L. monocytogenes isolates showed 100% resistance to streptomycin, kanamycin, and nalidix acid, and 92.3% of isolates showed gentamicin resistance. However, all isolates were susceptible to ampicillin and ampicillin/sulbactam. Multidrug resistance (MDR) was observed in 20 (76.9%) L. monocytogenes isolates. The biofilm formation ability of 26 L. monocytogenes isolates was evaluated at different incubation temperatures. At 4°C, 25°C, and 37°C, 53.8, 69.2, and 80.8% of the isolates, respectively, were biofilm producers. Furthermore, 23.1% were strong biofilm producers at both 4°C and 25°C, while 34.6% were strong biofilm formers at 37°C. Treating L. monocytogenes isolates with L. plantarum cell-free supernatant (CFS) reduced the number of biofilm-producing isolates to 15.4, 42.3, and 53.8% at 4°C, 25°C, and 37°C, respectively. L. plantarum's CFS antibacterial activity was tested against six virulent, MDR, and biofilm-forming L. monocytogenes isolates. At a concentration of 5 μg/mL of L. plantarum CFS, none of the L. monocytogenes isolates exhibited an inhibition zone. However, an inhibition zone was observed against L. monocytogenes strains isolated from pasteurized milk and pregnant women's stools when using a concentration of 10 μg/mL. Transmission electron microscopy (TEM) revealed that L. plantarum CFS induced morphological and intracellular structural changes in L. monocytogenes. In conclusion, this study identified virulent MDR L. monocytogenes isolates with strong biofilm-forming abilities in food products in Egypt, posing significant risks to food safety. Monitoring the prevalence and antimicrobial resistance profile of L. monocytogenes in dairy and meat products is crucial to enhance their safety. Although L. plantarum CFS showed potential antibacterial and anti-biofilm effects against L. monocytogenes isolates, further research is needed to explore its full probiotic potential.
Collapse
Affiliation(s)
- Rasha M. M. Abou Elez
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ibrahim Elsohaby
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Applied One Health Research and Policy Advice (OHRP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Marwa Seliem
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Asmaa B. M. B. Tahoun
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amira I. Abousaty
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Reem M. Algendy
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Eman A. A. Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nashwa El-Gazzar
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Identification of Listeria species and Multilocus Variable-Number Tandem Repeat Analysis (MLVA) Typing of Listeria innocua and Listeria monocytogenes Isolates from Cattle Farms and Beef and Beef-Based Products from Retail Outlets in Mpumalanga and North West Provinces, South Africa. Pathogens 2023; 12:pathogens12010147. [PMID: 36678495 PMCID: PMC9862459 DOI: 10.3390/pathogens12010147] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
In this study, Listeria isolates (214) were characterized as follows: L. innocua (77.10%), L. monocytogenes (11.21%), L. welshimeri (5.61%), L. grayi (1.40%), L. seeligeri (0.93%), and L. species (3.73%) that were not identified at the species level, from beef and beef based products from retail and farms in Mpumalanga and North West provinces of South Africa. MLVA was further used to type Listeria innocua isolates (165) and Listeria monocytogenes isolates (24). The L. monocytogenes isolates were also serogrouped using PCR. The MLVA protocol for L. monocytogenes typing included six tandem repeat primer sets, and the MLVA protocol for L. innocua included the use of three tandem repeats primer sets. The L. monocytogenes serogroups were determined as follows: 4b-4d-4e (IVb) (37.50%), 1/2a-3a (IIa) (29.16%), 1/2b-3b (IIb) (12.50%), 1/2c-3c (IIc) (8.33%), and IVb-1 (4.16%). MLVA could cluster isolates belonging to each specie, L. monocytogenes, and L. innocua isolates, into MLVA-related strains. There were 34 and 10 MLVA types obtained from the MLVA typing of L. innocua and L. monocytogenes, respectively. MLVA clustered the L. monocytogenes isolates irrespective of sample category, serogroups, and geographical origin. Similarly, the L. innocua isolates clustered irrespective of meat category and geographical origin. MLVA was able to cluster isolates based on MLVA relatedness. The clustering of isolates from farms and retailers indicates transmission of Listeria spp. MLVA is an affordable, simple, and discriminatory method that can be used routinely to type L. monocytogenes and L. innocua isolates.
Collapse
|
3
|
Osek J, Lachtara B, Wieczorek K. Listeria monocytogenes in foods-From culture identification to whole-genome characteristics. Food Sci Nutr 2022; 10:2825-2854. [PMID: 36171778 PMCID: PMC9469866 DOI: 10.1002/fsn3.2910] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen, which is able to persist in the food production environments. The presence of these bacteria in different niches makes them a potential threat for public health. In the present review, the current information on the classical and alternative methods used for isolation and identification of L. monocytogenes in food have been described. Although these techniques are usually simple, standardized, inexpensive, and are routinely used in many food testing laboratories, several alternative molecular-based approaches for the bacteria detection in food and food production environments have been developed. They are characterized by the high sample throughput, a short time of analysis, and cost-effectiveness. However, these methods are important for the routine testing toward the presence and number of L. monocytogenes, but are not suitable for characteristics and typing of the bacterial isolates, which are crucial in the study of listeriosis infections. For these purposes, novel approaches, with a high discriminatory power to genetically distinguish the strains during epidemiological studies, have been developed, e.g., whole-genome sequence-based techniques such as NGS which provide an opportunity to perform comparison between strains of the same species. In the present review, we have shown a short description of the principles of microbiological, alternative, and modern methods of detection of L. monocytogenes in foods and characterization of the isolates for epidemiological purposes. According to our knowledge, similar comprehensive papers on such subject have not been recently published, and we hope that the current review may be interesting for research communities.
Collapse
Affiliation(s)
- Jacek Osek
- Department of Hygiene of Food of Animal OriginNational Veterinary Research InstitutePuławyPoland
| | - Beata Lachtara
- Department of Hygiene of Food of Animal OriginNational Veterinary Research InstitutePuławyPoland
| | - Kinga Wieczorek
- Department of Hygiene of Food of Animal OriginNational Veterinary Research InstitutePuławyPoland
| |
Collapse
|
4
|
Emerging electrochemical biosensing approaches for detection of Listeria monocytogenes in food samples: An overview. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Necidová L, Mrňousová B, Haruštiaková D, Bursová Š, Janštová B, Golian J. The effect of selected preservatives on the growth of Listeria monocytogenes in ready-to-eat foods. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Parsons C, Jahanafroozi M, Kathariou S. Requirement of lmo1930, a Gene in the Menaquinone Biosynthesis Operon, for Esculin Hydrolysis and Lithium Chloride Tolerance in Listeria monocytogenes. Microorganisms 2019; 7:E539. [PMID: 31717272 PMCID: PMC6921027 DOI: 10.3390/microorganisms7110539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 11/30/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that is widely distributed in nature, having been isolated from a variety of sources such as soil, water, plant matter, and animals. In addition, L. monocytogenes is often detected in the regular sampling of food and food processing environments. The most common method for detecting L. monocytogenes is the use of selective enrichments. Both lithium chloride and esculin, in combination with ferric ammonium citrate, are utilized in several of the most commonly-employed selective enrichment schemes for L. monocytogenes. Here we report that transposon-based inactivation of lmo1930, one of the genes in the menaquinone biosynthesis operon, via transposon mutagenesis severely impaired the ability of L. monocytogenes to grow in the presence of lithium chloride or hydrolyze esculin, and conferred reduced growth and colony size. All phenotypes were restored upon genetic complementation. Thus, strains of L. monocytogenes with mutations leading to inactivation of lmo1930 may evade many commonly-used selective enrichment protocols employed in the detection of L. monocytogenes.
Collapse
Affiliation(s)
- Cameron Parsons
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | | | | |
Collapse
|
7
|
Vizzini P, Braidot M, Vidic J, Manzano M. Electrochemical and Optical Biosensors for the Detection of Campylobacter and Listeria: An Update Look. MICROMACHINES 2019; 10:E500. [PMID: 31357655 PMCID: PMC6722628 DOI: 10.3390/mi10080500] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/29/2022]
Abstract
Foodborne safety has aroused tremendous research interest in recent years because of a global public health problem. The rapid and precise detection of foodborne pathogens can reduce significantly infection diseases and save lives by the early initiation of an effective treatment. This review highlights current advances in the development of biosensors for detection of Campylobacter spp. and Listeria monocytogenes that are the most common causes of zoonosis. The consumption of pathogen contaminated food is responsible for humans hospitalization and death. The attention focused on the recognition elements such as antibodies (Ab), DNA probes and aptamers able to recognize cells, amplicons, and specific genes from different samples like bacteria, food, environment and clinical samples. Moreover, the review focused on two main signal-transducing mechanisms, i.e., electrochemical, measuring an amperometric, potentiometric and impedimetric signal; and optical, measuring a light signal by OLED (Organic Light Emitting Diode), SPR (Surface Plasmon Resonance), and Optical fiber. We expect that high-performance of devices being developed through basic research will find extensive applications in environmental monitoring, biomedical diagnostics, and food safety.
Collapse
Affiliation(s)
- Priya Vizzini
- Department of Agriculture Food Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - Matteo Braidot
- Department of Agriculture Food Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - Jasmina Vidic
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Marisa Manzano
- Department of Agriculture Food Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy.
| |
Collapse
|
8
|
Rocha R, Sousa JM, Cerqueira L, Vieira MJ, Almeida C, Azevedo NF. Development and application of Peptide Nucleic Acid Fluorescence in situ Hybridization for the specific detection of Listeria monocytogenes. Food Microbiol 2018; 80:1-8. [PMID: 30704592 DOI: 10.1016/j.fm.2018.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/25/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023]
Abstract
Listeria monocytogenes is one of the most important foodborne pathogens due to the high hospitalization and mortality rates associated to an outbreak. Several new molecular methods that accelerate the identification of L. monocytogenes have been developed, however conventional culture-based methods still remain the gold standard. In this work we developed a novel Peptide Nucleic Acid Fluorescence in situ Hybridization (PNA-FISH) method for the specific detection of L. monocytogenes. The method was based on an already existing PNA probe, LmPNA1253, coupled with a novel blocker probe in a 1:2 ratio. The method was optimized for the detection of L. monocytogenes in food samples through an evaluation of several rich and selective enrichment broths. The best outcome was achieved using One Broth Listeria in a two-step enrichment of 24 h plus 18 h. For validation in food samples, ground beef, ground pork, milk, lettuce and cooked shrimp were artificially contaminated with two ranges of inoculum: a low level (0.2-2 CFU/25 g or mL) and a high level (2-10 CFU/25 g or mL). The PNA-FISH method performed well in all types of food matrices, presenting an overall accuracy of ≈99% and a detection limit of 0.5 CFU/25 g or mL of food sample.
Collapse
Affiliation(s)
- Rui Rocha
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; BIOMODE, Biomolecular Determination S.A., Edifício GNRATION, Praça Conde Agrolongo no 123, 4700-312, Braga, Portugal.
| | - José M Sousa
- BIOMODE, Biomolecular Determination S.A., Edifício GNRATION, Praça Conde Agrolongo no 123, 4700-312, Braga, Portugal
| | - Laura Cerqueira
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; BIOMODE, Biomolecular Determination S.A., Edifício GNRATION, Praça Conde Agrolongo no 123, 4700-312, Braga, Portugal
| | - Maria J Vieira
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Carina Almeida
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; BIOMODE, Biomolecular Determination S.A., Edifício GNRATION, Praça Conde Agrolongo no 123, 4700-312, Braga, Portugal; INIAV, IP- National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, 4485-655, Vairão, Vila do Conde, Portugal
| | - Nuno F Azevedo
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
9
|
Comparative evaluation of impedanciometry combined with chromogenic agars or RNA hybridization and real-time PCR methods for the detection of L. monocytogenes in dry-cured ham. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Olaimat AN, Al-Holy MA, Shahbaz HM, Al-Nabulsi AA, Abu Ghoush MH, Osaili TM, Ayyash MM, Holley RA. Emergence of Antibiotic Resistance in Listeria monocytogenes Isolated from Food Products: A Comprehensive Review. Compr Rev Food Sci Food Saf 2018; 17:1277-1292. [PMID: 33350166 DOI: 10.1111/1541-4337.12387] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/07/2018] [Accepted: 06/07/2018] [Indexed: 12/12/2022]
Abstract
Listeria monocytogenes is an opportunistic pathogen that has been involved in several deadly illness outbreaks. Future outbreaks may be more difficult to manage because of the emergence of antibiotic resistance among L. monocytogenes strains isolated from food products. The present review summarizes the available evidence on the emergence of antibiotic resistance among L. monocytogenes strains isolated from food products and the possible ways this resistance has developed. Furthermore, the resistance of food L. monocytogenes isolates to antibiotics currently used in the treatment of human listeriosis such as penicillin, ampicillin, tetracycline, and gentamicin, has been documented. Acquisition of movable genetic elements is considered the major mechanism of antibiotic resistance development in L. monocytogenes. Efflux pumps have also been linked with resistance of L. monocytogenes to some antibiotics including fluoroquinolones. Some L. monocytogenes strains isolated from food products are intrinsically resistant to several antibiotics. However, factors in food processing chains and environments (from farm to table) including extensive or sub-inhibitory antibiotics use, horizontal gene transfer, exposure to environmental stresses, biofilm formation, and presence of persister cells play crucial roles in the development of antibiotic resistance by L. monocytogenes.
Collapse
Affiliation(s)
- Amin N Olaimat
- Dept. of Clinical Nutrition and Dietetics, Faculty of Allied Health Sciences, Hashemite Univ., P.O. Box 150459, Zarqa, 13115, Jordan
| | - Murad A Al-Holy
- Dept. of Clinical Nutrition and Dietetics, Faculty of Allied Health Sciences, Hashemite Univ., P.O. Box 150459, Zarqa, 13115, Jordan
| | - Hafiz M Shahbaz
- Dept. of Food Science and Human Nutrition, Univ. of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Anas A Al-Nabulsi
- Dept. of Nutrition and Food Technology, Jordan Univ. of Science and Technology, P.O. Box 3030, Irbid, Jordan
| | - Mahmoud H Abu Ghoush
- Dept. of Clinical Nutrition and Dietetics, Faculty of Allied Health Sciences, Hashemite Univ., P.O. Box 150459, Zarqa, 13115, Jordan
| | - Tareq M Osaili
- Dept. of Nutrition and Food Technology, Jordan Univ. of Science and Technology, P.O. Box 3030, Irbid, Jordan.,Dept. of Clinical Nutrition and Dietetics, College of Health Sciences, Univ. of Sharjah, Sharjah, United Arab Emirates
| | - Mutamed M Ayyash
- Dept. of Food Science, United Arab Emirates Univ., Al Ain, United Arab Emirates
| | - Richard A Holley
- Dept. of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, Univ. of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
11
|
Choi MH, Park YJ, Kim M, Seo YH, Kim YA, Choi JY, Yong D, Jeong SH, Lee K. Increasing Incidence of Listeriosis and Infection-associated Clinical Outcomes. Ann Lab Med 2018; 38:102-109. [PMID: 29214753 PMCID: PMC5736668 DOI: 10.3343/alm.2018.38.2.102] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/11/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Listeriosis caused by Listeria monocytogenes has a high case-fatality rate (CFR) of approximately 20% to 30%. An increasing incidence of listeriosis has been reported in many countries recently. We investigated the annual incidence, clinical characteristics, and outcomes of listeriosis at three different hospitals in Korea and evaluated the effects of appropriate empiric antimicrobial treatments on patient outcomes. METHODS We retrospectively collected the data of all culture-positive cases of human listeriosis from three hospitals of different sizes in Korea during 2006-2016 and calculated the annual number of cases and incidence per 100,000 admissions. RESULTS A total of 58 patients with L. monocytogenes were included in this study. The incidence of listeriosis was significantly higher in 2013-2016 than in 2006-2012 (RR 3.1; 95% CI 1.79-5.36; P<0.001), mainly because of an increase in patients over 60 years of age (RR 3.69; 95% CI 1.70-8.02; P<0.001). Multivariate analysis showed that healthcare-associated infection (adjusted OR, 12.15; 95% CI, 2.56-86.01; P=0.004) and empirical treatment with first-line antimicrobial agents (adjusted OR, 0.08; 95% CI, 0.00-0.63; P=0.044) were associated with CFR. CONCLUSIONS Healthcare-associated infections caused by L. monocytogenes are associated with high CFR. Adequate initial empirical treatments could reduce CFR, suggesting that careful consideration of an empirical antimicrobial regimen is warranted for elderly or immunocompromised patients admitted to the hospital.
Collapse
Affiliation(s)
- Min Hyuk Choi
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Yu Jin Park
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Myungsook Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Young Hee Seo
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ah Kim
- Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Jun Yong Choi
- Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Kyungwon Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
12
|
Soni DK, Ahmad R, Dubey SK. Biosensor for the detection of Listeria monocytogenes: emerging trends. Crit Rev Microbiol 2018; 44:590-608. [PMID: 29790396 DOI: 10.1080/1040841x.2018.1473331] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The early detection of Listeria monocytogenes (L. monocytogenes) and understanding the disease burden is of paramount interest. The failure to detect pathogenic bacteria in the food industry may have terrible consequences, and poses deleterious effects on human health. Therefore, integration of methods to detect and trace the route of pathogens along the entire food supply network might facilitate elucidation of the main contamination sources. Recent research interest has been oriented towards the development of rapid and affordable pathogen detection tools/techniques. An innovative and new approach like biosensors has been quite promising in revealing the foodborne pathogens. In spite of the existing knowledge, advanced research is still needed to substantiate the expeditious nature and sensitivity of biosensors for rapid and in situ analysis of foodborne pathogens. This review summarizes recent developments in optical, piezoelectric, cell-based, and electrochemical biosensors for Listeria sp. detection in clinical diagnostics, food analysis, and environmental monitoring, and also lists their drawbacks and advantages.
Collapse
Affiliation(s)
- Dharmendra Kumar Soni
- a Department of Botany, Institute of Science , Banaras Hindu University , Varanasi , India
| | - Rafiq Ahmad
- b Sensors Lab, Electrical Engineering Program, Computer, Electrical and Mathematical Science and Engineering Division , King Abdullah University of Science and Technology (KAUST) , Thuwal , Kingdom of Saudi Arabia
| | - Suresh Kumar Dubey
- a Department of Botany, Institute of Science , Banaras Hindu University , Varanasi , India
| |
Collapse
|
13
|
Enhanced sensitivity of lateral-flow test strip immunoassays using colloidal palladium nanoparticles and horseradish peroxidase. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.08.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
|
15
|
Teng J, Yuan F, Ye Y, Zheng L, Yao L, Xue F, Chen W, Li B. Aptamer-Based Technologies in Foodborne Pathogen Detection. Front Microbiol 2016; 7:1426. [PMID: 27672383 PMCID: PMC5018482 DOI: 10.3389/fmicb.2016.01426] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/29/2016] [Indexed: 11/13/2022] Open
Abstract
Aptamers are single stranded DNA or RNA ligands, which can be selected by a method called systematic evolution of ligands by exponential enrichment (SELEX); and they can specifically recognize and bind to their targets. These unique characteristics of aptamers offer great potentials in applications such as pathogen detection and biomolecular screening. Pathogen detection is the critical means in detecting and identifying the problems related to public health and food safety; and only the rapid, sensitive and efficient detection technologies can enable the users to make the accurate assessments on the risks of infections (humans and animals) or contaminations (foods and other commodities) caused by various pathogens. This article reviews the development in the field of the aptamer-based approaches for pathogen detection, including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-based biosensors have been developed for pathogen detection. Thus, in this review, we also cover the development in aptamer-based biosensors including optical biosensors for multiple pathogen detection by multiple-labeling or label-free models such as fluorescence detection and surface plasmon resonance, electrochemical biosensors and lateral chromatography test strips, and their applications in pathogen detection and biomolecular screening. While notable progress has been made in the field in the last decade, challenges or drawbacks in their applications such as pathogen detection and biomolecular screening remain to be overcome.
Collapse
Affiliation(s)
- Jun Teng
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Fang Yuan
- Animal Quarantine Laboratory, Jiangsu Entry-Exit Inspection and Quarantine Bureau, NanjingChina
| | - Yingwang Ye
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Lei Zheng
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Li Yao
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Feng Xue
- Animal Quarantine Laboratory, Jiangsu Entry-Exit Inspection and Quarantine Bureau, NanjingChina
| | - Wei Chen
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Baoguang Li
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MDUSA
| |
Collapse
|
16
|
Performance of two alternative methods for Listeria detection throughout Serro Minas cheese ripening. Braz J Microbiol 2016; 47:749-56. [PMID: 27268116 PMCID: PMC4927643 DOI: 10.1016/j.bjm.2016.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 01/04/2016] [Indexed: 12/02/2022] Open
Abstract
The ability of pathogens to survive cheese ripening is a food-security concern. Therefore, this study aimed to evaluate the performance of two alternative methods of analysis of Listeria during the ripening of artisanal Minas cheese. These methods were tested and compared with the conventional method: Lateral Flow System™, in cheeses produced on laboratory scale using raw milk collected from different farms and inoculated with Listeria innocua; and VIDAS®-LMO, in cheese samples collected from different manufacturers in Serro, Minas Gerais, Brazil. These samples were also characterized in terms of lactic acid bacteria, coliforms and physical–chemical analysis. In the inoculated samples, L. innocua was detected by Lateral Flow System™ method with 33% false-negative and 68% accuracy results. L. innocua was only detected in the inoculated samples by the conventional method at 60-days of cheese ripening. L. monocytogenes was not detected by the conventional and the VIDAS®-LMO methods in cheese samples collected from different manufacturers, which impairs evaluating the performance of this alternative method. We concluded that the conventional method provided a better recovery of L. innocua throughout cheese ripening, being able to detect L. innocua at 60-day, aging period which is required by the current legislation.
Collapse
|
17
|
Law JWF, Ab Mutalib NS, Chan KG, Lee LH. An insight into the isolation, enumeration, and molecular detection of Listeria monocytogenes in food. Front Microbiol 2015; 6:1227. [PMID: 26579116 PMCID: PMC4630303 DOI: 10.3389/fmicb.2015.01227] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022] Open
Abstract
Listeria monocytogenes, a foodborne pathogen that can cause listeriosis through the consumption of food contaminated with this pathogen. The ability of L. monocytogenes to survive in extreme conditions and cause food contaminations have become a major concern. Hence, routine microbiological food testing is necessary to prevent food contamination and outbreaks of foodborne illness. This review provides insight into the methods for cultural detection, enumeration, and molecular identification of L. monocytogenes in various food samples. There are a number of enrichment and plating media that can be used for the isolation of L. monocytogenes from food samples. Enrichment media such as buffered Listeria enrichment broth, Fraser broth, and University of Vermont Medium (UVM) Listeria enrichment broth are recommended by regulatory agencies such as Food and Drug Administration-bacteriological and analytical method (FDA-BAM), US Department of Agriculture-Food and Safety (USDA-FSIS), and International Organization for Standardization (ISO). Many plating media are available for the isolation of L. monocytogenes, for instance, polymyxin acriflavin lithium-chloride ceftazidime aesculin mannitol, Oxford, and other chromogenic media. Besides, reference methods like FDA-BAM, ISO 11290 method, and USDA-FSIS method are usually applied for the cultural detection or enumeration of L. monocytogenes. most probable number technique is applied for the enumeration of L. monocytogenes in the case of low level contamination. Molecular methods including polymerase chain reaction, multiplex polymerase chain reaction, real-time/quantitative polymerase chain reaction, nucleic acid sequence-based amplification, loop-mediated isothermal amplification, DNA microarray, and next generation sequencing technology for the detection and identification of L. monocytogenes are discussed in this review. Overall, molecular methods are rapid, sensitive, specific, time- and labor-saving. In future, there are chances for the development of new techniques for the detection and identification of foodborne with improved features.
Collapse
Affiliation(s)
- Jodi Woan-Fei Law
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash UniversityBandar Sunway, Malaysia
| | | | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Learn-Han Lee
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash UniversityBandar Sunway, Malaysia
| |
Collapse
|
18
|
Välimaa AL, Tilsala-Timisjärvi A, Virtanen E. Rapid detection and identification methods for Listeria monocytogenes in the food chain – A review. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.02.037] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Rapid detection and differentiation of Listeria monocytogenes and Listeria species in deli meats by a new multiplex PCR method. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.12.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Simultaneous, rapid and sensitive detection of three food-borne pathogenic bacteria using multicolor quantum dot probes based on multiplex fluoroimmunoassay in food samples. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.12.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Bacteria detection based on the evolution of enzyme-generated volatile organic compounds: Determination of Listeria monocytogenes in milk samples. Anal Chim Acta 2014; 848:80-87. [DOI: 10.1016/j.aca.2014.07.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 12/27/2022]
|
22
|
Development of Double Loop-Mediated Isothermal Amplification to Detect Listeria monocytogenes in Food. Curr Microbiol 2014; 69:839-45. [DOI: 10.1007/s00284-014-0661-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 05/21/2014] [Indexed: 11/27/2022]
|
23
|
Liu H, Zhan F, Liu F, Zhu M, Zhou X, Xing D. Visual and sensitive detection of viable pathogenic bacteria by sensing of RNA markers in gold nanoparticles based paper platform. Biosens Bioelectron 2014; 62:38-46. [PMID: 24973541 DOI: 10.1016/j.bios.2014.06.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/05/2014] [Accepted: 06/10/2014] [Indexed: 01/04/2023]
Abstract
Food-borne pathogens have been recognized as a major cause of human infections worldwide. Their identification needs to be simpler, cheaper and more reliable than the traditional methods. Here, we constructed a low-cost paper platform for viable pathogenic bacteria detection with the naked eye. In this study, an effective isothermal amplification method was used to amplify the hlyA mRNA gene, a specific RNA marker in Listeria monocytogenes. The amplification products were applied to the paper-based platform to perform a visual test using sandwich hybridization assays. When the RNA products migrated along the platform by capillary action, the gold nanoparticles accumulated at the designated area. Under optimized experimental conditions, as little as 0.5 pg/μL genomic RNA from L. monocytogenes could be detected. It could also be used to specifically detect 20 CFU/mL L. monocytogenes from actual samples. The whole assay process, including RNA extraction, amplification, and visualization, can be completed within several hours. This method is suitable for point-of-care applications to detect food-borne pathogens, as it can overcome the false-positive results caused by amplifying nonviable L. monocytogenes. Furthermore, the results can be imaged and transformed into a two-dimensional bar code through an Android-based smart phone for further analysis or in-field food safety tracking.
Collapse
Affiliation(s)
- Hongxing Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Fangfang Zhan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Fang Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Minjun Zhu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaoming Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
24
|
Barbosa MS, Todorov SD, Belguesmia Y, Choiset Y, Rabesona H, Ivanova IV, Chobert JM, Haertlé T, Franco BDGM. Purification and characterization of the bacteriocin produced by Lactobacillus sakei MBSa1 isolated from Brazilian salami. J Appl Microbiol 2014; 116:1195-208. [PMID: 24506656 DOI: 10.1111/jam.12438] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 11/19/2013] [Accepted: 01/06/2014] [Indexed: 11/29/2022]
Abstract
AIMS The study aimed at determining the biochemical characteristics of the bacteriocin produced by Lactobacillus sakei MBSa1, isolated from salami, correlating the results with the genetic features of the producer strain. METHODS AND RESULTS Identification of strain MBSa1 was performed by 16S rDNA sequencing. The bacteriocin was tested for spectrum of activity, heat and pH stability, mechanism of action, molecular mass and amino acid sequence when purified by cation-exchange and reversed-phase HPLC. Genomic DNA was tested for bacteriocin genes commonly present in Lact. sakei. Bacteriocin MBSa1 was heat-stable, unaffected by pH 2·0 to 6·0 and active against all tested Listeria monocytogenes strains. Maximal production of bacteriocin MBSa1 (1600 AU ml(-1)) in MRS broth occurred after 20 h at 25°C. The molecular mass of produced bacteriocin was 4303·3 Da, and the molecule contained the SIIGGMISGWAASGLAG sequence, also present in sakacin A. The strain contained the sakacin A and curvacin A genes but was negative for other tested sakacin genes (sakacins T-α, T-β, X, P, G and Q). CONCLUSIONS In the studied conditions, Lact. sakei MBSa1 produced sakacin A, a class II bacteriocin, with anti-Listeria activity. SIGNIFICANCE AND IMPACT OF THE STUDY The study covers the purification and characterization of the bacteriocin produced by a lactic acid bacteria isolated from salami (Lact. sakei MBSa1), linking genetic and expression information. Its heat-resistance, pH stability in acid conditions (pH 2·0-6·0) and activity against L. monocytogenes food isolates bring up a potential technological application to improve food safety.
Collapse
Affiliation(s)
- M S Barbosa
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cetinkaya F, Elal Mus T, Yibar A, Guclu N, Tavsanli H, Cibik R. Prevalence, Serotype Identification by Multiplex Polymerase Chain Reaction and Antimicrobial Resistance Patterns of L
isteria Monocytogenes
Isolated from Retail Foods. J Food Saf 2014. [DOI: 10.1111/jfs.12093] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Figen Cetinkaya
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine; University of Uludag; Gorukle Campus Bursa 16059 Turkey
| | - Tulay Elal Mus
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine; University of Uludag; Gorukle Campus Bursa 16059 Turkey
| | - Artun Yibar
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine; University of Uludag; Gorukle Campus Bursa 16059 Turkey
| | - Nedret Guclu
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine; University of Uludag; Gorukle Campus Bursa 16059 Turkey
| | - Hakan Tavsanli
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine; University of Uludag; Gorukle Campus Bursa 16059 Turkey
| | - Recep Cibik
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine; University of Uludag; Gorukle Campus Bursa 16059 Turkey
| |
Collapse
|
26
|
Ghanbari M, Jami M, Domig KJ, Kneifel W. Seafood biopreservation by lactic acid bacteria – A review. Lebensm Wiss Technol 2013. [DOI: 10.1016/j.lwt.2013.05.039] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Kotzekidou P. Survey of Listeria monocytogenes, Salmonella spp. and Escherichia coli O157:H7 in raw ingredients and ready-to-eat products by commercial real-time PCR kits. Food Microbiol 2013; 35:86-91. [DOI: 10.1016/j.fm.2013.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/07/2013] [Accepted: 03/27/2013] [Indexed: 11/30/2022]
|
28
|
Kuda T, Nakamura S, An C, Takahashi H, Kimura B, Nishizawa M. Effects of holdfast of Laminaria japonica on listeria invasion on enterocyte-like Caco-2 cells and NO production of macrophage RAW 264.7 cells. Appl Biochem Biotechnol 2012; 168:928-35. [PMID: 22893519 DOI: 10.1007/s12010-012-9831-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/06/2012] [Indexed: 10/28/2022]
Abstract
Listeria monocytogenes (Lm) causes food poisoning in humans mainly through consumption of ready-to-eat foods. Immunocompromised persons are at the highest risk for infection. We investigated effects of crude soluble polysaccharides (SPS) and ethanolic extract (EE) fractions of frond (kombu) and holdfast (ganiashi) parts of Laminaria japonica on Lm invasion into human enterocyte-like Caco-2 cells and immune and/or inflammatory reactions of murine macrophage RAW 264.7 cells. Recovery and viscosity were high in kombu SPS. Total phenolic content and antioxidant activities (2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity and Fe-reducing power) were higher in ganiashi EE. EE of ganiashi, rather than kombu, suppressed the Lm invasion into the differentiated Caco-2 cells, though the inhibitory effect of SPS was not significant. Ganiashi SPS increased the nitric oxide (NO) production of intact RAW 264.7 cells. On the other hand, the NO production from Escherichia coli O111 lipopolysaccharide-activated cells was suppressed by kombu SPS and ganiashi EE. These results suggest that L. japonica, particularly ganiashi, might suppress the invasion and infection of Lm and also the inflammation.
Collapse
Affiliation(s)
- Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Konan, Tokyo 108-8477, Japan.
| | | | | | | | | | | |
Collapse
|