1
|
Probiotics in the Sourdough Bread Fermentation: Current Status. FERMENTATION 2023. [DOI: 10.3390/fermentation9020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sourdough fermentation is an ancient technique to ferment cereal flour that improves bread quality, bringing nutritional and health benefits. The fermented dough has a complex microbiome composed mainly of lactic acid bacteria and yeasts. During fermentation, the production of metabolites and chemical reactions occur, giving the product unique characteristics and a high sensory quality. Mastery of fermentation allows adjustment of gluten levels, delaying starch digestibility, and increasing the bio-accessibility of vitamins and minerals. This review focuses on the main steps of sourdough fermentation, the microorganisms involved, and advances in bread production with functional properties. The impact of probiotics on human health, the metabolites produced, and the main microbial enzymes used in the bakery industry are also discussed.
Collapse
|
2
|
Kurosawa A, Nishioka R, Aburai N, Fujii K. Isolation and Characterization of Basidiomycetous Yeasts Capable of Producing Phytase under Oligotrophic Conditions. Microorganisms 2022; 10:2182. [PMID: 36363773 PMCID: PMC9695711 DOI: 10.3390/microorganisms10112182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2024] Open
Abstract
Phytic acid is an organic phosphorus source naturally produced by plants as phosphorus stock and can be an alternative to rock phosphate, which is a dwindling resource globally. However, phytic acid is insoluble, owing to its binding to divalent metals and is, thus, not readily bioavailable for plants and monogastric livestock. Therefore, the enzyme phytase is indispensable for hydrolyzing phytic acid to liberate free phosphates for nutritional availability, making the screening of novel phytase-producing microbes an attractive research focus to agriculture and animal feed industries. In the present study, a soil-extract-based culture medium was supplemented with phytic acid as the sole phosphorus source and oligotrophic phytase-producing strains, which had not been previously studied, were isolated. Four fungal strains with phytic acid, assimilation activities were isolated. They were found to produce phytase in the culture supernatants and phylogenetic analysis identified three strains as basidiomycetous yeasts (Saitozyma, Leucosporidium, and Malassezia) and one strain as an ascomycetous fungus (Chaetocapnodium). The optimal pH for phytase activity of the strains was 6.0-7.0, suggesting that they are suitable for industrial applications as feed supplements or fertilizer additives for farmland.
Collapse
Affiliation(s)
| | | | | | - Katsuhiko Fujii
- Department of Chemistry and Life Science, Kogakuin University, 2665-1 Nakano-cho, Tokyo 1920015, Japan
| |
Collapse
|
3
|
Li Z, Zhou M, Cui M, Wang Y, Li H. Improvement of whole wheat dough fermentation for steamed bread making using selected phytate-degrading Wickerhamomyces anomalus P4. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Yeast Biodiversity in Fermented Doughs and Raw Cereal Matrices and the Study of Technological Traits of Selected Strains Isolated in Spain. Microorganisms 2020; 9:microorganisms9010047. [PMID: 33375367 PMCID: PMC7824024 DOI: 10.3390/microorganisms9010047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Bakers use pure microorganisms and/or traditional sourdoughs as the leavening agent for making bread. The performance of each starter and the substances produced by the microorganisms greatly affect the dough rheology and features of breads. Modern sourdoughs inoculated with selected lactic acid bacteria and yeasts are microbiologically stable, safer than traditional sourdoughs, and easy to use. However, the commercial repertoire of baker’s yeasts is still limited. Therefore, there is a demand for new strains of yeast species, capable of conferring distinctive traits to breads made from a variety of agri-food matrices, in the design of innovative starters. In this context, we report the first comprehensive study on yeasts isolated from a wide range of fermented doughs, cereal flours, and grains of Spain. Nine yeast species were identified from 433 isolates, which were distributed among separate clades. Moreover, phenotypic traits of potential technological relevance were identified in selected yeast strains. Mother doughs (MDs) showed the greatest yeast biodiversity, whereas commercial Saccharomyces starters or related and wild strains often dominated the bakery doughs. A metataxonomic analysis of wheat and tritordeum MDs revealed a greater richness of yeast species and percentage variations related to the consistency, flour type, and fermentation time of MDs.
Collapse
|
5
|
Characterization and selection of functional yeast strains during sourdough fermentation of different cereal wholegrain flours. Sci Rep 2020; 10:12856. [PMID: 32732890 PMCID: PMC7393511 DOI: 10.1038/s41598-020-69774-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/16/2020] [Indexed: 01/25/2023] Open
Abstract
The increasing demand for healthy baked goods boosted studies on sourdough microbiota with beneficial metabolic traits, to be used as potential functional starters. Here, 139 yeasts isolated from cereal-based fermented foods were in vitro characterized for their phytase and antioxidant activities. The molecular characterization at strain level of the best 39 performing isolates showed that they did not derive from cross contamination by baker’s yeast. Afterwards, the 39 isolates were in vivo analyzed for their leavening ability, phytase activity and polyphenols content using five different wholegrain flours, obtained from conventional and pigmented common wheat, emmer and hull-less barley. Combining these findings, through multivariate permutation analysis, we identified the 2 best performing strains, which resulted diverse for each flour. Doughs singly inoculated with the selected strains were further analyzed for their antioxidant capacity, phenolic acids, xanthophylls and anthocyanins content. All the selected yeasts significantly increased the total antioxidant activity, the soluble, free and conjugated, forms of phenolic acids and anthocyanins of fermented doughs. This study revealed the importance of a specific selection of yeast strains for wholegrain flours obtained from different cereals or cultivars, in order to enhance the pro-technological, nutritional and nutraceutical traits of fermented doughs.
Collapse
|
6
|
Zhang Q, Li H, Sun X, Huang W, Zhan J. Exploitation of Indigenous Wine Yeasts from Spontaneously Fermenting Grape must and Vineyard Soil in Beijing, China. EFOOD 2020. [DOI: 10.2991/efood.k.200731.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
7
|
Mohammadi‐Kouchesfahani M, Hamidi‐Esfahani Z, Azizi MH. Isolation and identification of lactic acid bacteria with phytase activity from sourdough. Food Sci Nutr 2019; 7:3700-3708. [PMID: 31763019 PMCID: PMC6848837 DOI: 10.1002/fsn3.1229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 11/10/2022] Open
Abstract
Wholemeal bread is strongly recommended due to its nutritional value. However, whole-grain foods contain a high level of phytic acid, an antinutritional factor that decreases the mineral bioavailability. The objective of this study was isolation and identification of lactic acid bacteria with phytase activity to find a suitable starter for bread-making. Wheat-legume sourdoughs were prepared by the back-slopping procedure. Lactic acid bacteria were isolated from the sourdough of wheat flour-mung bean, and their phytase activity was tested in the solid and liquid media. Out of the nine phytase-active isolates in the solid medium, only three isolates produced extracellular phytase in the liquid medium with activity ranging from 16.3 to 53.2 (U/ml). These isolates belonged to species Weissella confusa mk.zh95 and Pediococcus pentosaceus. The highest phytase activity was found for Weissella confusa mk.zh95. Weissella confusa mk.zh95 is considered an interesting source of phytase during cereals and legumes fermentation which improves the bioavailability of minerals.
Collapse
Affiliation(s)
| | - Zohreh Hamidi‐Esfahani
- Department of Food Science and TechnologyFaculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Mohammad Hossein Azizi
- Department of Food Science and TechnologyFaculty of AgricultureTarbiat Modares UniversityTehranIran
| |
Collapse
|
8
|
Isolation of yeast strains from Chinese liquor Daqu and its use in the wheat sourdough bread making. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.100443] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
APPLICATION OF CO-BIOPROCESSING TECHNIQUES (ENZYMATIC HYDROLYSIS AND FERMANTATION) FOR IMPROVING THE NUTRITIONAL VALUE OF WHEAT BRAN AS FOOD FUNCTIONAL INGREDIENS. EUREKA: LIFE SCIENCES 2019. [DOI: 10.21303/2504-5695.2019.00992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Last time the food industry pays the great attention to questions, connected with changing existing technologies for raising the efficacy of the raw materials complex processing and increasing the output of high-quality products and food ingredients with a minimal amount of waste. Cereal crops are the most reach source of functional ingredients and main component in the human food ration. The technological process of cereal crops processing at enterprises is closely connected with creating a great number of secondary raw material resources and its further utilization.
For confirming the efficacy of using secondary products of grain processing as cheap raw material resources of dietary fiber and physiologically functional ingredients, there is characterized the accessibility of their biotransformation that gives a possibility to get biologically active substances of different chemical nature with a wide spectrum of physiological effects.
Secondary products of cereal crops processing (bran) are multi-component substrates, formed of different histological layers of wheat grains after comminution, consisted of (external pericarp, internal pericarp, grain coat, hyaline and aleurone layer of a grain coat).
Wheat bran is rich in dietary fiber, nutritive and phytochemical substances, that is why, it is most often used for feeding animals. But for today there are important proofs of using it in the food industry.
The development of new innovative technologies, modern achievements in microbiology and biotechnology have an important value for secondary products of grain processing, because they allow to conduct directed technological processes at the qualitatively new level that provides using soft regimes of vegetable raw materials processing, allowing to preserve natural biologically active substances and nutrients.
The modeling of the combined complex processing that includes enzymatic hydrolysis and fermentation by microorganisms improves technological, sensor and also nutritive and physiologically functional properties of wheat bran at the expanse of: bioavailability increase of phenol compounds, vitamins and minerals, assimilability of proteins and decrease of the content of anti-nutritive compounds.
Enzymatic preparations allow to use vegetable raw materials rationally, to intensify technological processes, in such a way increasing the output of biologically active substances and to widen the assortment of created products. The process of wheat bran formation results in increasing the nutritional value, enriching the biopolymeric complex with probiotic microorganisms and prebiotic substances.
Based on the structural peculiarities and multicomponent composition of wheat bran, presented and studied in the article, it has been established, that the use of the directed modification allows to get functional ingredients and products with set properties that influence the human health favorably. So, wheat bran must be used not only in agriculture as a cattle fodder, but also in the food industry.
Collapse
|
10
|
Menezes AGT, Ramos CL, Cenzi G, Melo DS, Dias DR, Schwan RF. Probiotic Potential, Antioxidant Activity, and Phytase Production of Indigenous Yeasts Isolated from Indigenous Fermented Foods. Probiotics Antimicrob Proteins 2019; 12:280-288. [DOI: 10.1007/s12602-019-9518-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Carbonetto B, Ramsayer J, Nidelet T, Legrand J, Sicard D. Bakery yeasts, a new model for studies in ecology and evolution. Yeast 2018; 35:591-603. [DOI: 10.1002/yea.3350] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Belén Carbonetto
- SPO, Univ Montpellier, INRA; Montpellier SupAgro; Montpellier France
- Instituto Gulbenkian de Ciência; Bioinformatics and Computational Biology Unit; Oeiras Portugal
| | - Johan Ramsayer
- SPO, Univ Montpellier, INRA; Montpellier SupAgro; Montpellier France
| | - Thibault Nidelet
- SPO, Univ Montpellier, INRA; Montpellier SupAgro; Montpellier France
| | - Judith Legrand
- GQE-Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech; Université Paris-Saclay; Gif-sur-Yvette France
| | - Delphine Sicard
- SPO, Univ Montpellier, INRA; Montpellier SupAgro; Montpellier France
| |
Collapse
|
12
|
Hernández A, Pérez-Nevado F, Ruiz-Moyano S, Serradilla MJ, Villalobos MC, Martín A, Córdoba MG. Spoilage yeasts: What are the sources of contamination of foods and beverages? Int J Food Microbiol 2018; 286:98-110. [PMID: 30056262 DOI: 10.1016/j.ijfoodmicro.2018.07.031] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
Foods and beverages are nutrient-rich ecosystems in which most microorganisms are able to grow. Moreover, several factors, such as physicochemical characteristics, storage temperature, culinary practices, and application of technologies for storage, also define the microbial population of foods and beverages. The yeast population has been well-characterised in fresh and processed fruit and vegetables, dairy products, dry-cured meat products, and beverages, among others. Some species are agents of alteration in different foods and beverages. Since the most comprehensive studies of spoilage yeasts have been performed in the winemaking process, hence, these studies form the thread of the discussion in this review. The natural yeast populations in raw ingredients and environmental contamination in the manufacturing facilities are the main modes by which food contamination occurs. After contamination, yeasts play a significant role in food and beverage spoilage, particularly in the alteration of fermented foods. Several mechanisms contribute to spoilage by yeasts, such as the production of lytic enzymes (lipases, proteases, and cellulases) and gas, utilisation of organic acids, discolouration, and off-flavours. This review addresses the role of yeasts in foods and beverages degradation by considering the modes of contamination and colonisation by yeasts, the yeast population diversity, mechanisms involved, and the analytical techniques for their identification, primarily molecular methods.
Collapse
Affiliation(s)
- A Hernández
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain.
| | - F Pérez-Nevado
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| | - S Ruiz-Moyano
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| | - M J Serradilla
- Área de Vegetales, Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), A5 km 372, 06187 Guadajira, Spain
| | - M C Villalobos
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| | - A Martín
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| | - M G Córdoba
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| |
Collapse
|
13
|
Use of phytase active yeasts and lactic acid bacteria isolated from sourdough in the production of whole wheat bread. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.01.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Nor Qhairul Izzreen M. N., Nuobariene L, Rasmussen SK, Arneborg N, Hansen ÅS. Changes in Phytate Content in Whole Meal Wheat Dough and Bread Fermented with Phytase-Active Yeasts. Cereal Chem 2017. [DOI: 10.1094/cchem-03-17-0043-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Nor Qhairul Izzreen M. N.
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Lina Nuobariene
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - Søren K. Rasmussen
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldensvej 40, 1871 Frederiksberg C, Denmark
| | - Nils Arneborg
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - Åse S. Hansen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| |
Collapse
|
15
|
Palla M, Cristani C, Giovannetti M, Agnolucci M. Identification and characterization of lactic acid bacteria and yeasts of PDO Tuscan bread sourdough by culture dependent and independent methods. Int J Food Microbiol 2017; 250:19-26. [PMID: 28364622 DOI: 10.1016/j.ijfoodmicro.2017.03.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 10/19/2022]
Abstract
Sourdough fermentation has been increasingly used worldwide, in accordance with the demand of consumers for tasty, natural and healthy food. The high diversity of lactic acid bacteria (LAB) and yeast species, detected in sourdoughs all over the world, may affect nutritional, organoleptic and technological traits of leavened baked goods. A wide regional variety of traditional sourdough breads, over 200 types, has been recorded in Italy, including special types selected as worthy of either Protected Geographical Indication (PGI) or Protected Designation of Origin (PDO), whose sourdough microbiota has been functionally and molecularly characterized. As, due to the very recent designation, the microbiota of Tuscan bread sourdough has not been investigated so far, the aim of the present work was to isolate and characterize the species composition of LAB and yeasts of PDO Tuscan bread sourdough by culture-independent and dependent methods. A total of 130 yeasts from WLN medium and 193 LAB from both mMRS and SDB media were isolated and maintained to constitute the germplasm bank of PDO Tuscan bread. Ninety six LAB from mMRS medium and 68 yeasts from WLN medium were randomly selected and molecularly identified by ARDRA (Amplified Ribosomal DNA Restriction Analysis) and PCR-RFLP analysis of the ITS region, respectively, and sequencing. The yeast identity was confirmed by 26S D1/D2 sequencing. All bacterial isolates showed 99% identity with Lactobacillus sanfranciscensis, 65 yeast isolates were identified as Candida milleri, and 3 as Saccharomyces cerevisiae. Molecular characterization of PDO Tuscan bread sourdough by PCR-DGGE confirmed such data. The distinctive tripartite species association, detected as the microbiota characterizing the sourdough used to produce PDO Tuscan bread, encompassed a large number of L. sanfranciscensis and C. milleri strains, along with a few of S. cerevisiae. The relative composition and specific physiological characteristics of such microbiota could potentially affect the nutritional features of PDO Tuscan bread, as suggested by the qualitative functional characterization of the isolates. Investigations on the differential functional traits of such LAB and yeast isolates could lead to the selection of the most effective single strains and of the best performing strain combinations to be used as starters for the production of baked goods.
Collapse
Affiliation(s)
- Michela Palla
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Caterina Cristani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Monica Agnolucci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
16
|
Pontonio E, Rizzello CG, Di Cagno R, Dousset X, Clément H, Filannino P, Onno B, Gobbetti M. How organic farming of wheat may affect the sourdough and the nutritional and technological features of leavened baked goods. Int J Food Microbiol 2016; 239:44-53. [DOI: 10.1016/j.ijfoodmicro.2016.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/16/2016] [Accepted: 07/09/2016] [Indexed: 02/07/2023]
|
17
|
Qvirist L, Vorontsov E, Veide Vilg J, Andlid T. Strain improvement of Pichia kudriavzevii TY13 for raised phytase production and reduced phosphate repression. Microb Biotechnol 2016; 10:341-353. [PMID: 27790831 PMCID: PMC5328827 DOI: 10.1111/1751-7915.12427] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 12/18/2022] Open
Abstract
In this work, we present the development and characterization of a strain of Pichia kudriavzevii (TY1322), with highly improved phytate‐degrading capacity. The mutant strain TY1322 shows a biomass‐specific phytate degradation of 1.26 mmol g−1 h−1 after 8 h of cultivation in a high‐phosphate medium, which is about 8 times higher compared with the wild‐type strain. Strain TY1322 was able to grow at low pH (pH 2), at high temperature (46°C) and in the presence of ox bile (2% w/v), indicating this strain's ability to survive passage through the gastrointestinal tract. The purified phytase showed two pH optima, at pH 3.5 and 5.5, and one temperature optimum at 55°C. The lower pH optimum of 3.5 matches the reported pH of the pig stomach, meaning that TY1322 and/or its phytase is highly suitable for use in feed production. Furthermore, P. kudriavzeviiTY1322 tolerates ethanol up to 6% (v/v) and shows high osmotic stress tolerance. Owing to the phenotypic characteristics and non‐genetically modified organisms nature of TY1322, this strain show great potential for future uses in (i) cereal fermentations for increased mineral bioavailability, and (ii) feed production to increase the phosphate bioavailability for monogastric animals to reduce the need for artificial phosphate fortification.
Collapse
Affiliation(s)
- Linnea Qvirist
- Department of Biology and Biological Engineering, Food and Nutritional Science, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Egor Vorontsov
- Proteomics Core Facility, Gothenburg University, SE-405 30, Gothenburg, Sweden
| | - Jenny Veide Vilg
- Department of Biology and Biological Engineering, Food and Nutritional Science, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Thomas Andlid
- Department of Biology and Biological Engineering, Food and Nutritional Science, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| |
Collapse
|
18
|
Taccari M, Aquilanti L, Polverigiani S, Osimani A, Garofalo C, Milanović V, Clementi F. Microbial Diversity of Type I Sourdoughs Prepared and Back-Slopped with Wholemeal and Refined Soft (Triticum aestivum) Wheat Flours. J Food Sci 2016; 81:M1996-2005. [PMID: 27332783 DOI: 10.1111/1750-3841.13372] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 01/10/2023]
Abstract
The fermentation of type I sourdough was studied for 20 d with daily back-slopping under laboratory and artisan bakery conditions using 1 wholemeal and 2 refined soft wheat (Triticum aestivum) flours. The sourdough bacterial and yeast diversity and dynamics were investigated by plate counting and a combination of culture-dependent and culture-independent PCR-DGGE approach. The pH, total titrable acidity, and concentration of key organic acids (phytic, lactic, and acetic) were measured. Three flours differed for both chemical and rheological properties. A microbial succession was observed, with the atypical sourdough species detected at day 0 (i.e. Lactococcus lactis and Leuconostoc holzapfelii/citreum group for bacteria and Candida silvae and Wickerhamomyces anomalus for yeasts) being progressively replaced by taxa more adapted to the sourdough ecosystem (Lactobacillus brevis, Lactobacillus alimentarius/paralimentarius, Saccharomyces cerevisiae). In mature sourdoughs, a notably different species composition was observed. As sourdoughs propagated with the same flour at laboratory and artisan bakery level were compared, the influence of both the substrate and the propagation environment on microbial diversity was assumed.
Collapse
Affiliation(s)
- Manuela Taccari
- Dipt. di Scienze Agrarie Alimentari ed Ambientali (D3A), Univ. Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Lucia Aquilanti
- Dipt. di Scienze Agrarie Alimentari ed Ambientali (D3A), Univ. Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Serena Polverigiani
- Dipt. di Scienze Agrarie Alimentari ed Ambientali (D3A), Univ. Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Andrea Osimani
- Dipt. di Scienze Agrarie Alimentari ed Ambientali (D3A), Univ. Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Cristiana Garofalo
- Dipt. di Scienze Agrarie Alimentari ed Ambientali (D3A), Univ. Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Vesna Milanović
- Dipt. di Scienze Agrarie Alimentari ed Ambientali (D3A), Univ. Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Clementi
- Dipt. di Scienze Agrarie Alimentari ed Ambientali (D3A), Univ. Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
19
|
Gabaza M, Muchuweti M, Vandamme P, Raes K. Can fermentation be used as a sustainable strategy to reduce iron and zinc binders in traditional African fermented cereal porridges or gruels? FOOD REVIEWS INTERNATIONAL 2016. [DOI: 10.1080/87559129.2016.1196491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Molly Gabaza
- Department of Biochemistry, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe
- Department of Biochemistry and Microbiology, Faculty of Science, Ghent University, Gent, Belgium
- Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium
| | - Maud Muchuweti
- Department of Biochemistry, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe
| | - Peter Vandamme
- Department of Biochemistry and Microbiology, Faculty of Science, Ghent University, Gent, Belgium
| | - Katleen Raes
- Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium
| |
Collapse
|
20
|
Lhomme E, Urien C, Legrand J, Dousset X, Onno B, Sicard D. Sourdough microbial community dynamics: An analysis during French organic bread-making processes. Food Microbiol 2016; 53:41-50. [DOI: 10.1016/j.fm.2014.11.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/20/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
|
21
|
Nuobariene L, Cizeikiene D, Gradzeviciute E, Hansen ÅS, Rasmussen SK, Juodeikiene G, Vogensen FK. Phytase-active lactic acid bacteria from sourdoughs: Isolation and identification. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.03.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Hellström A, Qvirist L, Svanberg U, Veide Vilg J, Andlid T. Secretion of non-cell-bound phytase by the yeast Pichia kudriavzevii TY13. J Appl Microbiol 2015; 118:1126-36. [PMID: 25630750 DOI: 10.1111/jam.12767] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/10/2014] [Accepted: 01/19/2015] [Indexed: 11/28/2022]
Abstract
AIMS Mineral deficiencies cause several health problems in the world, especially for populations consuming cereal-based diets rich in the anti-nutrient phytate. Our aim was to characterize the phytate-degrading capacity of the yeast Pichia kudriavzevii TY13 and its secretion of phytase. METHODS AND RESULTS The phytase activity in cell-free supernatants from cultures with 100% intact cells was 35-190 mU ml(-1) depending on the media. The Km was 0.28 mmol l(-1) and the specific phytase activity 0.32 U mg(-1) total protein. The phytase activity and secretion of extracellular non-cell-bound phytase was affected by the medium phosphate concentrations. Further, addition of yeast extract had a clearly inducing effect, resulting in over 60% of the cultures total phytase activity as non-cell-bound. CONCLUSIONS Our study reveals that it is possible to achieve high extracellular phytase activity from the yeast P. kudriavzevii TY13 by proper composition of the growth medium. SIGNIFICANCE AND IMPACT OF THE STUDY TY13 could be a promising future starter culture for fermented foods with improved mineral bioavailability. Using strains that secrete phytase to the food matrix may significantly improve the phytate degradation by facilitating the enzyme-to-substrate interaction. The secreted non-cell-bound phytase activities by TY13 could further be advantageous in industrial production of phytase.
Collapse
Affiliation(s)
- A Hellström
- Department of Chemical and Biological Engineering, Food Science, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
23
|
Candida milleri species reveals intraspecific genetic and metabolic polymorphisms. Food Microbiol 2014; 42:72-81. [DOI: 10.1016/j.fm.2014.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/17/2014] [Accepted: 02/15/2014] [Indexed: 11/20/2022]
|