1
|
Bansal H, Singh HP, Singh S, Sharma A, Singh J, Kaur K, Mehta SK. Preserving plum perfection: Buckwheat starch edible coating with xanthan gum and lemongrass essential oil. Int J Biol Macromol 2024; 274:133239. [PMID: 38897516 DOI: 10.1016/j.ijbiomac.2024.133239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
The research focused on the fabrication of composite coatings using buckwheat starch (BS) and xanthan gum (XG) with incorporation of lemongrass (Cymbopogon citratus) essential oil (LEO) with varying concentration (0.75 %, 1.0 % and 1.25 % (w/v). BS was extracted from buckwheat groats (Fagopyrum esculentum) and its physico-chemical characteristics were determined. BS showed spherical and polygonal morphology and its XRD pattern was similar to starch extracted from other cereal sources. The amount of reducing sugar, starch and amylose content in extracted BS were 0.99 ± 0.33 %, 86.32 ± 0.22 % and 21.02 ± 1.89 % respectively, which indicates that BS is a suitable base material for the formation of edible coatings. XG was mixed with BS in different ratios (1:1, 2:1, 3:1 and 4:1) to optimize the best ratio of combination for composite coatings. The coating with a ratio of 2:1 was very smooth and was chosen for incorporation of LEO and the coatings physical, functional, mechanical, thermal and micro-structural characteristics were examined. The coating S5 with 1.25 % (w/v) concentration of LEO showed the best results with least moisture content (MC), minimum water vapor permeability (WVP) and maximum contact angle value. Moreover, the S5 formulation had the highest antioxidant (73.3 %) ability and maximum antimicrobial efficiency with inhibition zones of 22.09 ± 0.06 mm and 28.65 ± 0.14 mm against S. aureus and E. coli respectively. The coatings were then coated on plum fruit, and various parameters like weight loss, pH, shrinkage and TSS were calculated every 4th day during the 20 days of refrigeration period. The coated plums' ripening pace was delayed by the S5 formulation which improved moisture retention, maintained the plums' TSS value and overall pH. Therefore, composite coatings made up of BS, XG and 1.25 % (w/v) can be used as a cost-effective bio-active coating material for plum preservation under refrigeration conditions.
Collapse
Affiliation(s)
- Himanshi Bansal
- Energy Research Center, Panjab University, Chandigarh 160014, India
| | - Hemant Pratap Singh
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Surinder Singh
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India.
| | - Aashima Sharma
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Jatinder Singh
- Department of Chemistry, Guru Nank College, Budhlada, Mansa, India
| | - Kuljinder Kaur
- National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana 131028, India
| | - S K Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India; University of Ladakh, Leh, UT-Ladakh 194101, India
| |
Collapse
|
2
|
Sofía B, Juana JR, Karina FS. Development of antimicrobial starch-based composite films reinforced with soybean expeller for sustainable active packaging applications. Food Sci Biotechnol 2024; 33:2559-2569. [PMID: 39144190 PMCID: PMC11319692 DOI: 10.1007/s10068-023-01516-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 12/22/2023] [Indexed: 08/16/2024] Open
Abstract
In this study, the influence of glycerol and sonicated soybean expeller (SSE) on composite edible films supporting natamycin and nisin was investigated using Response Surface Methodology. Assessments were conducted on mechanical properties, moisture content, water solubility (SW), and color. Optimal results were achieved with 0.46% SSE and 1.4% glycerol, yielding a maximum tensile strength (TS) of 1.0 ± 0.1 MPa and a minimum SW of 19.0 ± 0.3%. SSE had no impact on Tg values (82-89 °C), while antimicrobials reduced Tg (70-73 °C) due to increased water retention. Water vapor permeability was (2.5 ± 0.2) × 10-9 -1 s-1 Pa-1. FTIR analysis revealed strong component interactions. The composite films demonstrated biodegradability in compost after seven days and effective action against Listeria innocua and Saccharomyces cerevisiae. These findings suggest that these materials hold promise as active films for food preservation. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01516-6.
Collapse
Affiliation(s)
- Berti Sofía
- Universidad de Buenos Aires (UBA), Facultad de Ingeniería (FI), Departamento de Ingeniería Química. CONICET - Universidad de Buenos Aires, Instituto de Tecnologías y Ciencias de la Ingeniería (INTECIN), Av. Int. Guiraldes 2620, (C1428EGA) CABA, Argentina
| | - Jagus Rosa Juana
- Universidad de Buenos Aires (UBA), Facultad de Ingeniería (FI), Departamento de Ingeniería Química. CONICET - Universidad de Buenos Aires, Instituto de Tecnologías y Ciencias de la Ingeniería (INTECIN), Av. Int. Guiraldes 2620, (C1428EGA) CABA, Argentina
| | - Flores Silvia Karina
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales (FCEN), Departamento de Industrias. CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Av. Int. Guiraldes 2620, (C1428EGA) CABA, Argentina
| |
Collapse
|
3
|
Oudir M, Ait Mesbah Z, Lerari D, Issad N, Djenane D. Development of Eco-Friendly Biocomposite Films Based on Opuntia ficus-indica Cladodes Powder Blended with Gum Arabic and Xanthan Envisaging Food Packaging Applications. Foods 2023; 13:78. [PMID: 38201106 PMCID: PMC10778558 DOI: 10.3390/foods13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Currently, food packaging is facing a critical transition period and a major challenge: it must preserve the food products' quality and, at the same time, it must meet the current requirements of the circular economy and the fundamental principles of packaging materials eco-design. Our research presents the development of eco-friendly packaging films based on Opuntia ficus-indica cladodes (OFIC) as renewable resources. OFIC powder (OFICP)-agar, OFICP-agar-gum arabic (GA), and OFICP-agar-xanthan (XG) blend films were eco-friendlily prepared by a solution casting method. The films' properties were investigated by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (X-RD), and differential scanning calorimeter (DSC). Water solubility and moisture content were also determined. Morphology, thickness, molecular interactions, miscibility, crystallinity, and thermal properties, were affected by adjusting the gums (GA and XG) content and glycerol in the blend films. Moisture content increased with increasing glycerol and XG content, and when 1.5 g of GA was added. Water solubility decreased when glycerol was added at 50% and increased with increasing GA and XG content. FTIR and XRD confirmed strong intermolecular interactions between the different blend film compounds, which were reflected in the shifting, appearance, and disappearance of FTIR bands and XRD peaks, indicating excellent miscibility. DSC results revealed a glass transition temperature (Tg) below room temperature for all prepared blend films, indicating that they are flexible and soft at room temperature. The results corroborated that the addition of glycerol at 30% and the GA to the OFICP increased the stability of the film, making it ideal for different food packaging applications.
Collapse
Affiliation(s)
- Malha Oudir
- Higher School of Food Science and Agri-Food Industry, ESSAIA, Avenue Ahmed Hamidouche Route de Beaulieu, El Harrach, Alger 16200, Algeria; (M.O.); (N.I.)
- Fundamental and Applied Physics Laboratory, FUNDAPL, Faculty of Science, University of Blida 1, P.O. Box 270, Route de Soumâa, Blida 09000, Algeria;
| | - Zohra Ait Mesbah
- Fundamental and Applied Physics Laboratory, FUNDAPL, Faculty of Science, University of Blida 1, P.O. Box 270, Route de Soumâa, Blida 09000, Algeria;
| | - Djahida Lerari
- Center for Scientific and Technical Research in Physical and Chemical Analysis, CRAPC, Zone Industrielle Bou-Ismaïl, P.O. Box 384, Tipaza 42004, Algeria;
| | - Nadia Issad
- Higher School of Food Science and Agri-Food Industry, ESSAIA, Avenue Ahmed Hamidouche Route de Beaulieu, El Harrach, Alger 16200, Algeria; (M.O.); (N.I.)
| | - Djamel Djenane
- Laboratory of Food Quality and Food Safety, Mouloud Mammeri University, P.O. Box 17, Tizi Ouzou 15000, Algeria
| |
Collapse
|
4
|
Hernández MS, Ludueña LN, Flores SK. Citric acid, chitosan and oregano essential oil impact on physical and antimicrobial properties of cassava starch films. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
5
|
Gupta V, Biswas D, Roy S. A Comprehensive Review of Biodegradable Polymer-Based Films and Coatings and Their Food Packaging Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175899. [PMID: 36079280 PMCID: PMC9457097 DOI: 10.3390/ma15175899] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 05/15/2023]
Abstract
Food sectors are facing issues as a result of food scarcity, which is exacerbated by rising populations and demand for food. Food is ordinarily wrapped and packaged using petroleum-based plastics such as polyethylene, polyvinyl chloride, and others. However, the excessive use of these polymers has environmental and health risks. As a result, much research is currently focused on the use of bio-based materials for food packaging. Biodegradable polymers that are compatible with food products are used to make edible packaging materials. These can be ingested with food and provide consumers with additional health benefits. Recent research has shifted its focus to multilayer coatings and films-based food packaging, which can provide a material with additional distinct features. The aim of this review article is to investigate the properties and applications of several bio-based polymers in food packaging. The several types of edible film and coating production technologies are also covered separately. Furthermore, the use of edible films and coatings in the food industry has been examined, and their advantages over traditional materials are also discussed.
Collapse
|
6
|
Hadi A, Nawab A, Alam F, Zehra K. Alginate/aloe vera films reinforced with tragacanth gum. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100105. [PMID: 35769402 PMCID: PMC9235049 DOI: 10.1016/j.fochms.2022.100105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 01/27/2023]
Abstract
The objective of present study was to investigate the effect of incorporation of varying concentrations (2% to 14%) of Tragacanth gum (TG) to alginate/aloe vera composite films to enhance their functional properties. The resulting films were investigated for their mechanical, barrier, optical properties and biodegradability. The WVP, swelling capacity and thickness of films increased significantly by the addition of TG while film solubility was dropped at higher concentration of TG. It was observed that TG acted as an efficient reinforcing agent for enhancing the strength and flexibility of the films. The tensile strength (TS) of films increased more than threefold as compared to control, reaching a maximum value 67.64 N/mm2at 12% concentration of TG. Colour properties were affected by the addition of TG as the higher the concentration, the darker the films.
Collapse
Affiliation(s)
- Alina Hadi
- Department of Food Science & Technology, University of Karachi, Karachi 75270, Pakistan
| | - Anjum Nawab
- Department of Food Science & Technology, University of Karachi, Karachi 75270, Pakistan
| | - Feroz Alam
- Department of Food Science & Technology, University of Karachi, Karachi 75270, Pakistan
| | - Kishwar Zehra
- Department of Food Science & Technology, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
7
|
Hernández V, Ibarra D, Triana JF, Martínez-Soto B, Faúndez M, Vasco DA, Gordillo L, Herrera F, García-Herrera C, Garmulewicz A. Agar Biopolymer Films for Biodegradable Packaging: A Reference Dataset for Exploring the Limits of Mechanical Performance. MATERIALS 2022; 15:ma15113954. [PMID: 35683252 PMCID: PMC9182270 DOI: 10.3390/ma15113954] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023]
Abstract
This article focuses on agar biopolymer films that offer promise for developing biodegradable packaging, an important solution for reducing plastics pollution. At present there is a lack of data on the mechanical performance of agar biopolymer films using a simple plasticizer. This study takes a Design of Experiments approach to analyze how agar-glycerin biopolymer films perform across a range of ingredients concentrations in terms of their strength, elasticity, and ductility. Our results demonstrate that by systematically varying the quantity of agar and glycerin, tensile properties can be achieved that are comparable to agar-based materials with more complex formulations. Not only does our study significantly broaden the amount of data available on the range of mechanical performance that can be achieved with simple agar biopolymer films, but the data can also be used to guide further optimization efforts that start with a basic formulation that performs well on certain property dimensions. We also find that select formulations have similar tensile properties to thermoplastic starch (TPS), acrylonitrile butadiene styrene (ABS), and polypropylene (PP), indicating potential suitability for select packaging applications. We use our experimental dataset to train a neural network regression model that predicts the Young's modulus, ultimate tensile strength, and elongation at break of agar biopolymer films given their composition. Our findings support the development of further data-driven design and fabrication workflows.
Collapse
Affiliation(s)
- Valentina Hernández
- Department of Management, Faculty of Management and Economics, University of Santiago of Chile (USACH), Avenida Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170022, Chile
| | - Davor Ibarra
- Department of Mechanical Engineering, University of Santiago of Chile (USACH), Avenida Libertador Bernardo O'Higgins 3363, Santiago 9170022, Chile
| | - Johan F Triana
- Department of Physics, University of Santiago of Chile (USACH), Avenida Victor Jara 3493, Santiago 9170124, Chile
| | - Bastian Martínez-Soto
- Department of Mathematics and Computer Science, University of Santiago of Chile (USACH), Las Sophoras 173, Santiago 9170124, Chile
| | - Matías Faúndez
- Department of Mechanical Engineering, University of Santiago of Chile (USACH), Avenida Libertador Bernardo O'Higgins 3363, Santiago 9170022, Chile
| | - Diego A Vasco
- Department of Mechanical Engineering, University of Santiago of Chile (USACH), Avenida Libertador Bernardo O'Higgins 3363, Santiago 9170022, Chile
| | - Leonardo Gordillo
- Department of Physics, University of Santiago of Chile (USACH), Avenida Victor Jara 3493, Santiago 9170124, Chile
| | - Felipe Herrera
- Department of Physics, University of Santiago of Chile (USACH), Avenida Victor Jara 3493, Santiago 9170124, Chile
- ANID-Millennium Institute for Research in Optics, Concepción 4030000, Chile
| | - Claudio García-Herrera
- Department of Mechanical Engineering, University of Santiago of Chile (USACH), Avenida Libertador Bernardo O'Higgins 3363, Santiago 9170022, Chile
| | - Alysia Garmulewicz
- Department of Management, Faculty of Management and Economics, University of Santiago of Chile (USACH), Avenida Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170022, Chile
- CABDyN Complexity Centre, University of Oxford, Oxford OX1 2JD, UK
| |
Collapse
|
8
|
Anubha M, Saranya R, Chandrasatheesh C, Jayapriya J. Effect of neem gum on water sorption, biodegradability and mechanical properties of thermoplastic corn starch-based packaging films. Chem Ind 2022. [DOI: 10.1080/00194506.2022.2065368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- M. Anubha
- Department of Biotechnology, Vel Tech High Tech Dr Rangarajan Dr Sakunthala Engineering College, Avadi, Chennai, India
| | - R. Saranya
- Department of Applied Science and Technology, AC Tech, Anna University, Chennai, India
| | - C. Chandrasatheesh
- Department of Applied Science and Technology, AC Tech, Anna University, Chennai, India
| | - J. Jayapriya
- Department of Applied Science and Technology, AC Tech, Anna University, Chennai, India
| |
Collapse
|
9
|
Liu J, Xu J, Chen Q, Ren J, Wang H, Kong B. Fabrication and Characterisation of Poly(vinyl alcohol)/Deacetylated Crab-Shell Particles Biocomposites with Excellent Thermomechanical and Antibacterial Properties as Active Food Packaging Material. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09735-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Thermoprocessed starch-polyester bilayer films as affected by the addition of gellan or xanthan gum. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106509] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Narasagoudr SS, Hegde VG, Chougale RB, Masti SP, Vootla S, Malabadi RB. Physico-chemical and functional properties of rutin induced chitosan/poly (vinyl alcohol) bioactive films for food packaging applications. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106096] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Kaur A, Singh D, Sud D. A review on grafted, crosslinked and composites of biopolymer Xanthan gum for phasing out synthetic dyes and toxic metal ions from aqueous solutions. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02271-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Mohamed SA, El-Sakhawy M, El-Sakhawy MAM. Polysaccharides, Protein and Lipid -Based Natural Edible Films in Food Packaging: A Review. Carbohydr Polym 2020; 238:116178. [DOI: 10.1016/j.carbpol.2020.116178] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 01/21/2023]
|
14
|
Raschip IE, Paduraru‐Mocanu OM, Nita LE, Dinu MV. Antibacterial porous xanthan‐based films containing flavoring agents evaluated by near infrared chemical imaging technique. J Appl Polym Sci 2020. [DOI: 10.1002/app.49111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Irina E. Raschip
- Physical Chemistry Department“Petru Poni” Institute of Macromolecular Chemistry Iasi Romania
| | - Oana M. Paduraru‐Mocanu
- Physical Chemistry Department“Petru Poni” Institute of Macromolecular Chemistry Iasi Romania
| | - Loredana E. Nita
- Physical Chemistry Department“Petru Poni” Institute of Macromolecular Chemistry Iasi Romania
| | - Maria V. Dinu
- Physical Chemistry Department“Petru Poni” Institute of Macromolecular Chemistry Iasi Romania
| |
Collapse
|
15
|
Sapper M, Bonet M, Chiralt A. Wettability of starch-gellan coatings on fruits, as affected by the incorporation of essential oil and/or surfactants. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108574] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Nagar M, Sharanagat VS, Kumar Y, Singh L. Development and characterization of elephant foot yam starch-hydrocolloids based edible packaging film: physical, optical, thermal and barrier properties. Journal of Food Science and Technology 2019; 57:1331-1341. [PMID: 32180629 DOI: 10.1007/s13197-019-04167-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/10/2019] [Accepted: 11/08/2019] [Indexed: 11/24/2022]
Abstract
The study aimed at the development of elephant foot yam starch (EFYS) based edible film through blending of Xanthan (XG) and agar-agar (AA). Film thickness and density increased with increase in concentration of hydrocolloids and the respective highest value 0.199 mm and 2.02 g/cm3 were found for the film possessing 2% AA. The film barrier properties varied with hydrocolloids and the lowest value of water vapour transmission rate (1494.54 g/m2) and oxygen transmission rate (0.020 cm3/m2) was observed for the film with 1% XG and 1.5% AA, respectively. Mechanical and thermal properties also improved upon addition of hydrocolloid. Highest tensile strength (20.14 MPa) and glass transition temperature (150.6 °C) was observed for film containing 2% AA. Fourier transform infrared spectroscopy demonstrated the presence of -OH, C-H, and C=O groups. The change in crystallinity was observed through peak in X-ray diffraction analysis, which increased with increase in the hydrocolloids' concentration.
Collapse
Affiliation(s)
- Mohit Nagar
- 1Department of Food Engineering, NIFTEM, Sonipat, Haryana India
| | | | - Yogesh Kumar
- 1Department of Food Engineering, NIFTEM, Sonipat, Haryana India
| | - Lochan Singh
- 2Department of Agriculture and Environmental Science, NIFTEM, Sonipat, Haryana India
| |
Collapse
|
17
|
Rukmanikrishnan B, Rajasekharan SK, Lee J, Lee J. Biocompatible agar/xanthan gum composite films: Thermal, mechanical, UV, and water barrier properties. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | | | - Jintae Lee
- Department of Chemical EngineeringYeungnam University Gyeongsan South Korea
| | - Jaewoong Lee
- Department of Fiber System EngineeringYeungnam University Gyeongsan South Korea
| |
Collapse
|
18
|
Microbial gums: introducing a novel functional component of edible coatings and packaging. Appl Microbiol Biotechnol 2019; 103:6853-6866. [DOI: 10.1007/s00253-019-09966-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
|
19
|
Improving Functional Properties of Cassava Starch-Based Films by Incorporating Xanthan, Gellan, or Pullulan Gums. INT J POLYM SCI 2019. [DOI: 10.1155/2019/5367164] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The effect of the partial substitution of cassava starch in edible films for 10 and 20 wt% of gellan, xanthan, or pullulan gums was analysed in films obtained by casting. The tensile properties, barrier capacity to water vapour, and oxygen and water sorption isotherms of the samples were analysed. The blend of starch with gellan gum was effective to reduce the moisture sorption capacity of starch films while reducing water vapour permeability, enhancing the film strength and resistance to break and preserving films against starch retrogradation throughout the storage time. Xanthan gum improved the tensile behaviour of the starch films, but did not reduce their water sorption capacity and water vapour permeability. Pullulan did not notably improve the functional properties of the starch films. Gellan gum at 10 and 20 wt% in the blend could be used to obtain starch films with more adequate properties for food packaging purposes.
Collapse
|
20
|
Mlalila N, Hilonga A, Swai H, Devlieghere F, Ragaert P. Antimicrobial packaging based on starch, poly(3-hydroxybutyrate) and poly(lactic-co-glycolide) materials and application challenges. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.01.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Saberi B, Chockchaisawasdee S, Golding JB, Scarlett CJ, Stathopoulos CE. Development of biocomposite films incorporated with different amounts of shellac, emulsifier, and surfactant. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.05.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Singh A, Geveke DJ, Yadav MP. Improvement of rheological, thermal and functional properties of tapioca starch by using gum arabic. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.07.059] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Frazão GGS, Blank AF, de Aquino Santana LCL. Optimisation of edible chitosan coatings formulations incorporating Myrcia ovata Cambessedes essential oil with antimicrobial potential against foodborne bacteria and natural microflora of mangaba fruits. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Effects of the anti-microbial peptide pardaxin plus sodium erythorbate dissolved in different gels on the quality of Pacific white shrimp under refrigerated storage. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Mango kernel starch-gum composite films: Physical, mechanical and barrier properties. Int J Biol Macromol 2017; 98:869-876. [PMID: 28214586 DOI: 10.1016/j.ijbiomac.2017.02.054] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/23/2017] [Accepted: 02/02/2017] [Indexed: 11/21/2022]
Abstract
Composite films were developed by the casting method using mango kernel starch (MKS) and guar and xanthan gums. The concentration of both gums ranged from 0% to 30% (w/w of starch; db). Mechanical properties, oxygen permeability (OP), water vapor permeability (WVP), solubility in water and color parameters of composite films were evaluated. The crystallinity and homogeneity between the starch and gums were also evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The scanning electron micrographs showed homogeneous matrix, with no signs of phase separation between the components. XRD analysis demonstrated diminished crystalline peak. Regardless of gum type the tensile strength (TS) of composite films increased with increasing gum concentration while reverse trend was noted for elongation at break (EAB) which found to be decreased with increasing gum concentration. The addition of both guar and xanthan gums increased solubility and WVP of the composite films. However, the OP was found to be lower than that of the control with both gums. Furthermore, addition of both gums led to changes in transparency and opacity of MKS films. Films containing 10% (w/w) xanthan gum showed lower values for solubility, WVP and OP, while film containing 20% guar gum showed good mechanical properties.
Collapse
|
26
|
Alzate P, Miramont S, Flores S, Gerschenson LN. Effect of the potassium sorbate and carvacrol addition on the properties and antimicrobial activity of tapioca starch - Hydroxypropyl methylcellulose edible films. STARCH-STARKE 2016. [DOI: 10.1002/star.201600261] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Paola Alzate
- Facultad de Ciencias Exactas y Naturales (FCEN); Departamento de Industrias; Universidad de Buenos Aires (UBA); Buenos Aires Argentina
| | - Sofía Miramont
- Facultad de Ciencias Exactas y Naturales (FCEN); Departamento de Industrias; Universidad de Buenos Aires (UBA); Buenos Aires Argentina
| | - Silvia Flores
- Facultad de Ciencias Exactas y Naturales (FCEN); Departamento de Industrias; Universidad de Buenos Aires (UBA); Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Lía Noemí Gerschenson
- Facultad de Ciencias Exactas y Naturales (FCEN); Departamento de Industrias; Universidad de Buenos Aires (UBA); Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| |
Collapse
|
27
|
Tumwesigye K, Oliveira J, -Gallagher MS. Integrated sustainable process design framework for cassava biobased packaging materials: Critical review of current challenges, emerging trends and prospects. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Saberi B, Thakur R, Bhuyan DJ, Vuong QV, Chockchaisawasdee S, Golding JB, Scarlett CJ, Stathopoulos CE. Development of edible blend films with good mechanical and barrier properties from pea starch and guar gum. STARCH-STARKE 2016. [DOI: 10.1002/star.201600227] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bahareh Saberi
- Faculty of Science and Information Technology; School of Environmental and Life Sciences; University of Newcastle; Ourimbah NSW Australia
| | - Rahul Thakur
- Faculty of Science and Information Technology; School of Environmental and Life Sciences; University of Newcastle; Ourimbah NSW Australia
| | - Deep Jyoti Bhuyan
- Faculty of Science and Information Technology; School of Environmental and Life Sciences; University of Newcastle; Ourimbah NSW Australia
| | - Quan V. Vuong
- Faculty of Science and Information Technology; School of Environmental and Life Sciences; University of Newcastle; Ourimbah NSW Australia
| | - Suwimol Chockchaisawasdee
- Faculty of Science and Information Technology; School of Environmental and Life Sciences; University of Newcastle; Ourimbah NSW Australia
| | - John B. Golding
- Faculty of Science and Information Technology; School of Environmental and Life Sciences; University of Newcastle; Ourimbah NSW Australia
- NSW Department of Primary Industries; Ourimbah NSW Australia
| | - Christopher J. Scarlett
- Faculty of Science and Information Technology; School of Environmental and Life Sciences; University of Newcastle; Ourimbah NSW Australia
| | - Costas E. Stathopoulos
- Division of Food and Drink, School of Science, Engineering and Technology; University of Abertay; Dundee UK
| |
Collapse
|
29
|
Nur Hazirah M, Isa M, Sarbon N. Effect of xanthan gum on the physical and mechanical properties of gelatin-carboxymethyl cellulose film blends. Food Packag Shelf Life 2016. [DOI: 10.1016/j.fpsl.2016.05.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
García-Betanzos CI, Hernández-Sánchez H, Quintanar-Guerrero D, Del Real L A, de la Luz Zambrano-Zaragoza M. The Evaluation of Mechanical, Thermal, Optical and Microstructural Properties of Edible Films with Solid Lipid Nanoparticles-Xanthan Gum Stored at Different Temperatures and Relative Humidities. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1757-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Loubes MA, Flores SK, Tolaba MP. Effect of formulation on rice noodle quality: Selection of functional ingredients and optimization by mixture design. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.01.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Ebrahimi SE, Koocheki A, Milani E, Mohebbi M. Interactions between Lepidium perfoliatum seed gum – Grass pea (Lathyrus sativus) protein isolate in composite biodegradable film. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.10.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Tumwesigye SK, Montañez JC, Oliveira JC, Sousa-Gallagher MJ. Novel Intact Bitter Cassava: Sustainable Development and Desirability Optimisation of Packaging Films. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-015-1665-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Improvement of water solubility and humidity stability of tapioca starch film by incorporating various gums. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.05.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Azevedo AN, Buarque PR, Cruz EMO, Blank AF, Alves PB, Nunes ML, Santana LCLDA. Response surface methodology for optimisation of edible chitosan coating formulations incorporating essential oil against several foodborne pathogenic bacteria. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.02.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|