1
|
Rus-Fernández P, Fuentes A. Fermentation starters and bacteriocins as biocontrol strategies for table olives preservation: a mini-review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39248037 DOI: 10.1002/jsfa.13874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
Biopreservation is a powerful strategy to prolong the shelf life of food products by applying naturally occurring microorganisms and/or their metabolites. Current food trends emphasise the need to develop alternatives for chemical or thermal preservation methods. In this line, different fermentation starters from table olives present the potential to control spoilage or pathogen-occurring microorganism in table olives storage. One of the most interesting family used as biopreservative culture is Lactobacillaceae and it has also been used in combination with yeasts as olive fermentation starter. Lactic acid bacteria, from Lactobacillaceae family, are characterised by the production of bacteriocins, proteins with the potential for preserving food by changing the organisation of the membrane of spoilage microorganisms. These bacteriocins-producing bacteria can be directly inoculated, although nanosystem technology is the most promising incorporation strategy. In table olives, the most commonly used starters are Lactiplantibacillus plantarum, Lactiplantibacillus pentosus, Saccharomyces cerevisiae, Wickerhamomyces anomalus, among others. These strains with biopreservation characteristics, inoculated alone or in mixed cultures, ensure food safety by conferring the product added value and prolonging product shelf life. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Patricia Rus-Fernández
- Instituto de Ingeniería de Alimentos - FoodUPV, Universitat Politècnica de València, Valencia, Spain
| | - Ana Fuentes
- Instituto de Ingeniería de Alimentos - FoodUPV, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
2
|
Gurtler JB, Garner CM. A Review of Essential Oils as Antimicrobials in Foods with Special Emphasis on Fresh Produce. J Food Prot 2022; 85:1300-1319. [PMID: 35588157 DOI: 10.4315/jfp-22-017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Consumer safety concerns over established fresh produce washing methods and the demand for organic and clean-label food has led to the exploration of novel methods of produce sanitization. Essential oils (EOs), which are extracted from plants, have potential as clean-label sanitizers because they are naturally derived and act as antimicrobials and antioxidants. In this review, the antimicrobial effects of EOs are explored individually and in combination, as emulsions, combined with existing chemical and physical preservation methods, incorporated into films and coatings, and in vapor phase. We examined combinations of EOs with one another, with EO components, with surfactants, and with other preservatives or preservation methods to increase sanitizing efficacy. Components of major EOs were identified, and the chemical mechanisms, potential for antibacterial resistance, and effects on organoleptic properties were examined. Studies have revealed that EOs can be equivalent or better sanitizing agents than chlorine; nevertheless, concentrations must be kept low to avoid adverse sensory effects. For this reason, future studies should address the maximum permissible EO concentrations that do not negatively affect organoleptic properties. This review should be beneficial to food scientists or industry personnel interested in the use of EOs for sanitization and preservation of foods, including fresh produce. HIGHLIGHTS
Collapse
Affiliation(s)
- Joshua B Gurtler
- U.S. Department of Agriculture, Agricultural Research Service, Residue Chemistry and Predictive Microbiology Research Unit, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038-8551, USA
| | - Christina M Garner
- U.S. Department of Agriculture, Agricultural Research Service, Residue Chemistry and Predictive Microbiology Research Unit, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038-8551, USA
| |
Collapse
|
3
|
Sánchez R, Martín-Tornero E, Lozano J, Arroyo P, Meléndez F, Martín-Vertedor D. Evaluation of the olfactory pattern of black olives stuffed with flavored hydrocolloids. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Xia Q, Liu Q, Denoya GI, Yang C, Barba FJ, Yu H, Chen X. High Hydrostatic Pressure-Based Combination Strategies for Microbial Inactivation of Food Products: The Cases of Emerging Combination Patterns. Front Nutr 2022; 9:878904. [PMID: 35634420 PMCID: PMC9131044 DOI: 10.3389/fnut.2022.878904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
The high demand for fresh-like characteristics of vegetables and fruits (V&F) boosts the industrial implementation of high hydrostatic pressure (HHP), due to its capability to simultaneously maintain original organoleptic characteristics and to achieve preservative effect of the food. However, there remains great challenges for assuring complete microbial inactivation only relying on individual HHP treatments, including pressure-resistant strains and regrowth of injured microbes during the storage process. Traditional HHP-assisted thermal processing may compromise the nutrition and functionalities due to accelerated chemical kinetics under high pressure conditions. This work summarizes the recent advances in HHP-based combination strategies for microbial safety, as exemplified by several emerging non-thermally combined patterns with high inactivation efficiencies. Considerations and requirements about future process design and development of HHP-based combination technologies are also given.
Collapse
Affiliation(s)
- Qiang Xia
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Qianqian Liu
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, China
| | - Gabriela I. Denoya
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto Tecnología de Alimentos, Buenos Aires, Argentina
- Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables, UEDD INTA CONICET, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Caijiao Yang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Valencia, Spain
| | - Huaning Yu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| |
Collapse
|
5
|
Sánchez R, Martín-Tornero E, Lozano J, Fernández A, Arroyo P, Meléndez F, Martín-Vertedor D. Electronic nose application for the discrimination of sterilization treatments applied to Californian-style black olive varieties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2232-2241. [PMID: 34622476 DOI: 10.1002/jsfa.11561] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Olive oil continues to be the main destination for olives. The production of table olives is increasing. 'Californian-style' processes are among the most frequently employed to produce oxidized olives. Sensory evaluation requires the development of an instrumental detection method that can be used as an adjunct to traditional tasting panels. RESULTS An electronic nose (E-nose) was used to classify two varieties of olives following exposure to different sterilization. Principal component analysis (PCA) revealed that both varieties had different volatile profiles. Sensory panel evaluations were similar for both. Partial least squares-discriminant analysis (PLS-DA) obtained from the E-nose was able to separate the two varieties and explained 82% of total variance. Moreover, volatile profiles correctly classified olives according to sterilization times recorded up to 121 °C . The only exception was at F0 ≥ 22 min, at which a plot of PCA outcomes failed to differentiate scores. E-nose data showed similar results to those produced from the volatile analysis when grouping samples were sterilized to F0 ≥ 18 min, at the same time distinguishing these samples from those subjected to less intense thermal treatments. A partial least squares (PLS) chemometric approach was evaluated for quantifying important olive quality parameters. With regards to validation parameters, R P 2 pertaining to perceived defect was 0.88, whilst R P 2 pertaining to overall assessment was 0.78. CONCLUSIONS E-nose offers a fast, inexpensive and non-destructive method for discriminating between varieties and thermal treatments up to a point at which cooking defects are highly similar (from F0 = 18 onwards). © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ramiro Sánchez
- Technological Institute of Food and Agriculture CICYTEX-INTAEX. Junta of Extremadura, Badajoz, Spain
| | - Elísabet Martín-Tornero
- Department of Agricultural and Forestry Engineering, School of Agrarian Engineering, University of Extremadura, Badajoz, Spain
| | - Jesús Lozano
- Industrial Engineering School, University of Extremadura, Badajoz, Spain
- Research Institute of Agricultural Resources (INURA), Campus Universitario, Badajoz, Spain
| | - Antonio Fernández
- Technological Institute of Food and Agriculture CICYTEX-INTAEX. Junta of Extremadura, Badajoz, Spain
| | - Patricia Arroyo
- Industrial Engineering School, University of Extremadura, Badajoz, Spain
| | - Félix Meléndez
- Industrial Engineering School, University of Extremadura, Badajoz, Spain
| | - Daniel Martín-Vertedor
- Technological Institute of Food and Agriculture CICYTEX-INTAEX. Junta of Extremadura, Badajoz, Spain
- Research Institute of Agricultural Resources (INURA), Campus Universitario, Badajoz, Spain
| |
Collapse
|
6
|
Martín-Vertedor D, Schaide T, Boselli E, Martínez M, García-Parra J, Pérez-Nevado F. Effect of High Hydrostatic Pressure in the Storage of Spanish-Style Table Olive Fermented with Olive Leaf Extract and Saccharomyces cerevisiae. Molecules 2022; 27:molecules27062028. [PMID: 35335389 PMCID: PMC8950053 DOI: 10.3390/molecules27062028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Olives treated according to the Spanish-style are firstly treated with caustic soda and then fermented in brine to reduce phenols. Next, olives are packed and subjected to pasteurization. The effect of different high hydrostatic pressure treatments (400 MPa, 4 and 6 min) was evaluated in Spanish-style table olives fermented with olive leaf extract (OLE) and S. cerevisiae compared with thermal pasteurization (P) at 80 °C for 15 min. HHP and P led to a significant reduction in yeast and aerobic mesophiles after the conservation treatment and during storage (300 days). The physical-chemical properties changed slightly during storage, except for olive hardness; olives treated with HHP presented a higher hardness than pasteurized ones. The CIELAB parameter L* decreased until day 300 in most of the treatments, as well as phenols. The HHP treatment led to significantly higher contents of phenolics (even during storage) than olives submitted to P. Some sensory attributes (colour, aspect, hardness, and overall evaluation) decreased during storage. P treatment caused a decrease in appearance, aroma, hardness, and overall evaluation compared to olives treated with HHP. Thus, the application of HHP in table olives to increase the shelf-life can be considered a valid alternative to P.
Collapse
Affiliation(s)
- Daniel Martín-Vertedor
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain;
- Research Institute of Agricultural Resources (INURA), Avda. de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain; (T.S.); (M.M.); (F.P.-N.)
- Correspondence: ; Tel.: +34-924-012-664
| | - Thais Schaide
- Research Institute of Agricultural Resources (INURA), Avda. de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain; (T.S.); (M.M.); (F.P.-N.)
- Área de Nutrición y Bromatología, Departamento de Producción Animal y Ciencia de los Alimentos, Escuela de Ingenierías Agrarias, Universidad de Extremadura, 06007 Badajoz, Spain
| | - Emanuele Boselli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy;
| | - Manuel Martínez
- Research Institute of Agricultural Resources (INURA), Avda. de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain; (T.S.); (M.M.); (F.P.-N.)
- Área de Producción Vegetal, Departamento de Ingeniería del Medio Agronómico y Forestal, Escuela de Ingenierías Agrarias, Universidad de Extremadura, 06007 Badajoz, Spain
| | - Jesús García-Parra
- Technological Institute of Food and Agriculture (CICYTEX-INTAEX), Junta of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain;
| | - Francisco Pérez-Nevado
- Research Institute of Agricultural Resources (INURA), Avda. de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain; (T.S.); (M.M.); (F.P.-N.)
- Área de Nutrición y Bromatología, Departamento de Producción Animal y Ciencia de los Alimentos, Escuela de Ingenierías Agrarias, Universidad de Extremadura, 06007 Badajoz, Spain
| |
Collapse
|
7
|
Bay Laurel (Laurus nobilis L.) Essential Oil as a Food Preservative Source: Chemistry, Quality Control, Activity Assessment and Applications to Olive Industry Products. Foods 2022; 11:foods11050752. [PMID: 35267385 PMCID: PMC8909149 DOI: 10.3390/foods11050752] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Essential oils (EOs) find application as flavoring agents in the food industry and are also desirable ingredients as they possess preservative properties. The Mediterranean diet involves the use of a lot of herbs and spices and their products (infusions, EOs) as condiments and for the preservation of foods. Application of EOs has the advantage of homogeneous dispersion in comparison with dry leaf use in small pieces or powder. Among them, Laurus nobilis (bay laurel) L. EO is an interesting source of volatiles, such as 1,8-cineole and eugenol, which are known for their preservative properties. Its flavor suits cooked red meat, poultry, and fish, as well as vegetarian dishes, according to Mediterranean recipes. The review is focused on its chemistry, quality control aspects, and recent trends in methods of analysis and activity assessment with a focus on potential antioxidant activity and applications to olive industry products. Findings indicate that this EO is not extensively studied in comparison with those from other Mediterranean plants, such as oregano EO. More work is needed to establish authenticity and activity methods, whereas the interest for using it for the preparation of flavored olive oil or for the aromatization and preservation of table oils must be further encouraged.
Collapse
|
8
|
Ballester E, Ribes S, Barat JM, Fuentes A. Spoilage yeasts in fermented vegetables: conventional and novel control strategies. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Impact of thermal sterilization on the physicochemical-sensory characteristics of Californian-style black olives and its assessment using an electronic tongue. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Behera SS, El Sheikha AF, Hammami R, Kumar A. Traditionally fermented pickles: How the microbial diversity associated with their nutritional and health benefits? J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103971] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
11
|
Campus M, Değirmencioğlu N, Comunian R. Technologies and Trends to Improve Table Olive Quality and Safety. Front Microbiol 2018; 9:617. [PMID: 29670593 PMCID: PMC5894437 DOI: 10.3389/fmicb.2018.00617] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/16/2018] [Indexed: 12/17/2022] Open
Abstract
Table olives are the most widely consumed fermented food in the Mediterranean countries. Peculiar processing technologies are used to process olives, which are aimed at the debittering of the fruits and improvement of their sensory characteristics, ensuring safety of consumption at the same time. Processors demand for novel techniques to improve industrial performances, while consumers' attention for natural and healthy foods has increased in recent years. From field to table, new techniques have been developed to decrease microbial load of potential spoilage microorganisms, improve fermentation kinetics and ensure safety of consumption of the packed products. This review article depicts current technologies and recent advances in the processing technology of table olives. Attention has been paid on pre processing technologies, some of which are still under-researched, expecially physical techniques, such ad ionizing radiations, ultrasounds and electrolyzed water solutions, which are interesting also to ensure pesticide decontamination. The selections and use of starter cultures have been extensively reviewed, particularly the characterization of Lactic Acid Bacteria and Yeasts to fasten and safely drive the fermentation process. The selection and use of probiotic strains to address the request for functional foods has been reported, along with salt reduction strategies to address health concerns, associated with table olives consumption. In this respect, probiotics enriched table olives and strategies to reduce sodium intake are the main topics discussed. New processing technologies and post packaging interventions to extend the shelf life are illustrated, and main findings in modified atmosphere packaging, high pressure processing and biopreservaton applied to table olive, are reported and discussed.
Collapse
Affiliation(s)
- Marco Campus
- Agris Sardegna, Agricultural Research Agency of Sardinia, Sassari, Italy
| | - Nurcan Değirmencioğlu
- Department of Food Processing, Bandirma Vocational High School, Bandirma Onyedi Eylül University, Bandirma, Turkey
| | - Roberta Comunian
- Agris Sardegna, Agricultural Research Agency of Sardinia, Sassari, Italy
| |
Collapse
|
12
|
Randazzo CL, Todaro A, Pino A, Pitino I, Corona O, Caggia C. Microbiota and metabolome during controlled and spontaneous fermentation of Nocellara Etnea table olives. Food Microbiol 2017; 65:136-148. [DOI: 10.1016/j.fm.2017.01.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/12/2017] [Accepted: 01/28/2017] [Indexed: 01/25/2023]
|
13
|
Gottardi D, Bukvicki D, Prasad S, Tyagi AK. Beneficial Effects of Spices in Food Preservation and Safety. Front Microbiol 2016; 7:1394. [PMID: 27708620 PMCID: PMC5030248 DOI: 10.3389/fmicb.2016.01394] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/23/2016] [Indexed: 01/04/2023] Open
Abstract
Spices have been used since ancient times. Although they have been employed mainly as flavoring and coloring agents, their role in food safety and preservation have also been studied in vitro and in vivo. Spices have exhibited numerous health benefits in preventing and treating a wide variety of diseases such as cancer, aging, metabolic, neurological, cardiovascular, and inflammatory diseases. The present review aims to provide a comprehensive summary of the most relevant and recent findings on spices and their active compounds in terms of targets and mode of action; in particular, their potential use in food preservation and enhancement of shelf life as a natural bioingredient.
Collapse
Affiliation(s)
- Davide Gottardi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of BolognaCesena, Italy
| | - Danka Bukvicki
- Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, University of BelgradeBelgrade, Serbia
| | - Sahdeo Prasad
- Division of Cancer Medicine, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Amit K. Tyagi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of BolognaCesena, Italy
- Division of Cancer Medicine, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| |
Collapse
|
14
|
Lactobacillus pentosus is the dominant species in spoilt packaged Aloreña de Málaga table olives. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.02.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Modeling of Listeria monocytogenes inactivation by combined high-pressure and mild-temperature treatments in model soup. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2539-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Nonthermal pasteurization of fermented green table olives by means of high hydrostatic pressure processing. BIOMED RESEARCH INTERNATIONAL 2014; 2014:515623. [PMID: 25243146 PMCID: PMC4151865 DOI: 10.1155/2014/515623] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/26/2014] [Indexed: 11/17/2022]
Abstract
Green fermented olives cv. Halkidiki were subjected to different treatments of high hydrostatic pressure (HHP) processing (400, 450, and 500 MPa for 15 or 30 min). Total viable counts, lactic acid bacteria and yeasts/moulds, and the physicochemical characteristics of the product (pH, colour, and firmness) were monitored right after the treatment and after 7 days of storage at 20°C to allow for recovery of injured cells. The treatments at 400 MPa for 15 and 30 min, 450 MPa for 15 and 30 min, and 500 MPa for 15 min were found insufficient as a recovery of the microbiota was observed. The treatment at 500 MPa for 30 min was effective in reducing the olive microbiota below the detection limit of the enumeration method after the treatment and after 1 week of storage and was chosen as being more appropriate for storing olives for an extended time period (5 months). After 5 months of storage at 20°C, no microbiota was detected in treated samples, while significant changes for both HHP treated and untreated olives were observed for colour parameters only (minor degradation). In conclusion, HHP treatment may introduce a reliable nonthermal pasteurization method to extend the microbiological shelf-life of fermented table olives.
Collapse
|