1
|
Milan AM, Menting GGA, Barnett MPG, Liu Y, McNabb WC, Roy NC, Hutchings SC, Mungure T, Weeks M, Li S, Hort J, Calder S, O'Grady G, Mithen RF. The impact of heat-set milk protein gel textures modified by pH on circulating amino acid appearance and gastric function in healthy female adults: a randomised controlled trial. Food Funct 2024; 15:5613-5626. [PMID: 38722062 DOI: 10.1039/d3fo04474b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Modification of dairy proteins during processing impacts structural assemblies, influencing textural and nutritional properties of dairy products, and release and availability of amino acids during digestion. By modifying only pH, acid heat-set bovine dairy gels with divergent textural properties were developed to alter protein digestion. In vitro assay confirmed faster digestion of protein from a firm gel (pH 5.65) versus a soft gel (pH 6.55). We hypothesised that firm gel (FIRM-G; pH 5.6) would result in greater indispensable amino acid (IAA) appearance in circulation over 5 h and corresponding differences in gastric myoelectrical activity relative to soft gel (SOFT-G; pH 6.2). In a randomised, single-blind cross-over trial, healthy females (n = 20) consumed 150 g of each gel; plasma amino acid appearance was assessed over 5 hours. Iso-nitrogenous, iso-caloric gels were prepared from identical mixtures of bovine milk and whey protein concentrates; providing 17.7 g (FIRM-G) and 18.9 g (SOFT-G) of protein per serving. Secondary outcomes included gastric myoelectrical activity measured by body surface gastric mapping, glycaemic, triglyceridaemic, and subjective appetite and digestive responses. Overall plasma IAA (area under the curve) did not differ between gels. However, plasma IAA concentrations were higher, and increased more rapidly over time after SOFT-G compared with FIRM-G (1455 ± 53 versus 1350 ± 62 μmol L-1 at 30 min, p = 0.024). Similarly, total, branched-chain and dispensable amino acids were higher at 30 min with SOFT-G than FIRM-G (total: 3939 ± 97 versus 3702 ± 127 μmol L-1, p = 0.014; branched-chain: 677 ± 30 versus 619 ± 34 μmol L-1, p = 0.047; dispensable: 2334 ± 53 versus 2210 ± 76 μmol L-1, p = 0.032). All other measured parameters were similar between gels. Peak postprandial aminoacidaemia was higher and faster following ingestion of SOFT-G. Customised plasma amino acid appearance from dairy is achievable by altering gel coagulum structure using pH during processing and may have minimal influence on related postprandial responses, with implications for targeting food design for optimal health. The Clinical Trial Registry number is ACTRN12622001418763 (https://www.anzctr.org.au) registered November 7, 2022.
Collapse
Affiliation(s)
- Amber M Milan
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.
- AgResearch Limited, Palmerston North, New Zealand.
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | | | - Matthew P G Barnett
- AgResearch Limited, Palmerston North, New Zealand.
- The Riddet Institute, Palmerston North, New Zealand.
| | - Yutong Liu
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.
| | - Warren C McNabb
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand
- The Riddet Institute, Palmerston North, New Zealand.
| | - Nicole C Roy
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand
- The Riddet Institute, Palmerston North, New Zealand.
- Department of Human Nutrition, The University of Otago, Otago, New Zealand.
| | | | - Tanyaradzwa Mungure
- AgResearch Limited, Palmerston North, New Zealand.
- The University of Melbourne, Melbourne, Australia.
| | - Mike Weeks
- AgResearch Limited, Palmerston North, New Zealand.
| | - Siqi Li
- The Riddet Institute, Palmerston North, New Zealand.
| | - Joanne Hort
- The Riddet Institute, Palmerston North, New Zealand.
- Food Experience and Sensory Testing Lab, Massey University, Palmerston North, New Zealand.
| | - Stefan Calder
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Greg O'Grady
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Richard F Mithen
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand
- The Riddet Institute, Palmerston North, New Zealand.
| |
Collapse
|
2
|
Liu Z, Fu Y, Azarpazhooh E, Ajami M, Li W, Rui X. Lactic acid bacteria modulate the gastrointestinal digestive behavior of soy glycinin and correlation with its immunoreactivity: a peptidomic study. Food Funct 2024; 15:2524-2535. [PMID: 38345089 DOI: 10.1039/d3fo04375d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Lactic acid bacterial fermentation helps reduce the immunoreactivity of soy protein. Nevertheless, the effect of lactic acid bacterial fermentation on a particular soy allergen and the consequent dynamic change of epitopes during gastrointestinal digestion are unclear. In this study, soy glycinin was isolated and an in vitro dynamic gastrointestinal model was established to investigate the dynamic change in the immunoreactivity and peptide profile of unfermented (UG) and fermented glycinin (FG) digestates. The results demonstrated that the FG intestinal digestate had a lower antigenicity (0.08%-0.12%) and IgE-binding capacity (1.49%-3.61%) towards glycinin at the early (I-5) and middle (I-30) stages of gastrointestinal digestion, especially those prepared at 2% (w/v) protein concentration. Peptidomic analysis showed that the glycinin subunits G1 and G2 were the preferred ones to release the most abundant peptides, whereas G2, G4, and G5 had an elevated epitope-cleavage rate in FG at stages I-5 and I-30. Three-dimensional modeling revealed that fermentation-induced differential degradation epitopes in gastrointestinal digestion were predominantly located in the α-helix and β-sheet structures. They were closely correlated with the reduced immunoreactivity of soy glycinin.
Collapse
Affiliation(s)
- Zhen Liu
- College of Food Science and Technology, Nanjing Agricultural, University, 1 Weigang Road, Nanjing, Jiangsu Province, P R China.
| | - Yumeng Fu
- College of Food Science and Technology, Nanjing Agricultural, University, 1 Weigang Road, Nanjing, Jiangsu Province, P R China.
| | - Elham Azarpazhooh
- Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Iran
| | - Marjan Ajami
- National Nutrition and Food Technology Research Institute, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Wei Li
- College of Food Science and Technology, Nanjing Agricultural, University, 1 Weigang Road, Nanjing, Jiangsu Province, P R China.
| | - Xin Rui
- College of Food Science and Technology, Nanjing Agricultural, University, 1 Weigang Road, Nanjing, Jiangsu Province, P R China.
| |
Collapse
|
3
|
Degirmenci A, Yildiz O, Boyraci GM, Er Kemal M, Simsek O. The process of pollen transformation into bee bread: changes in bioactivity, bioaccessibility, and microbial dynamics. Food Funct 2024; 15:2550-2562. [PMID: 38348773 DOI: 10.1039/d3fo04466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Bee pollen and bee bread go hand in hand with health-promoting functional food consumption. Although many studies report high bioactivities of those products, the biotransformation of pollen into bee bread has not been fully understood. Limited findings are available about polyphenol bioaccessibility and microbiological interactions during the fermentation process. This study evaluated the microbial flora, antioxidant properties, and polyphenol and soluble protein bioaccessibility of pollen and bee bread harvested from the same apiary over a certain timeline. Total phenolic content, antioxidant activity and soluble protein content were reported using an in vitro digestion model involving post-gastric, serum-available, and colon-available fractions. The results obtained with the in vitro digestion model refer to the effect of the harvesting period on greater bioaccessibility of polyphenols in bee bread than in pollen at the same apiary. Lactic acid bacteria and yeast found in the samples were mostly identified as Lactobacillus kunkeei, Leuconostoc pseudomesenteroides, and Candida magnoliae using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). The discrimination between the pollen and bee bread samples collected in the same apiary and at different harvesting periods was also revealed by Principal Component Analysis (PCA). A harvesting time-based approach was applied to the biotransformation process of pollen and bee bread, and insights into microbial dynamics and bioaccessibility were revealed for the first time under the same beehive conditions.
Collapse
Affiliation(s)
- Atiye Degirmenci
- Department of Food Processing, Maçka Vocational School, Karadeniz Technical University, 61750, Macka, Trabzon, Turkey
| | - Oktay Yildiz
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, 61080, Trabzon, Turkey.
- Okta Natural R&D Engineering Services Inc., 61080, Trabzon, Turkey
| | - Gulsum Merve Boyraci
- Department of Food Processing, Maçka Vocational School, Karadeniz Technical University, 61750, Macka, Trabzon, Turkey
| | - Mehtap Er Kemal
- Department of Food Processing, Maçka Vocational School, Karadeniz Technical University, 61750, Macka, Trabzon, Turkey
| | - Omer Simsek
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34210, İstanbul, Turkey
| |
Collapse
|
4
|
Lavoisier A, Morzel M, Chevalier S, Henry G, Jardin J, Harel-Oger M, Garric G, Dupont D. In vitro digestion of two protein-rich dairy products in the ageing gastrointestinal tract. Food Funct 2023; 14:9377-9390. [PMID: 37789767 DOI: 10.1039/d3fo02693k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
It is still unclear if changes in protein digestibility and absorption kinetics in old age may affect the anabolic effect of high-protein foods. The objective of this study was to investigate the digestion of two high-protein (10% w/w) dairy products in vitro: a fermented dairy product formulated with a ratio of whey proteins to caseins of 80 to 20% (WBD) and a Skyr containing mainly caseins. The new static in vitro digestion model adapted to the general older adult population (≥65 years) proposed by the INFOGEST international consortium was implemented to investigate the digestion of these products and compared with the standard version of the protocol. Kinetics of proteolysis was compared between both models for each product, in the gastric and intestinal phases of digestion. Protein hydrolysis was studied by the OPA method, SDS-PAGE, and LC-MS/MS, and amino acids were quantified by HPLC. Protein hydrolysis by pepsin was slower with the older adult model than with the young adult model, and consequently, in spite of a longer gastric phase duration, the degree of proteolysis (DH) at the end of the gastric phase was lower. Two different scenarios were observed depending on the type of dairy product studied: -10 and -40% DH for Skyr and WBD, respectively. In the intestinal phase, lower concentrations of free leucine were observed in older adult conditions (approx. -10%), but no significant differences in proteolysis were observed overall between the models. Therefore, the digestion conditions used influenced significantly the rate and extent of proteolysis in the gastric phase but not in the intestinal phase.
Collapse
|
5
|
Sumi K, Tagawa R, Yamazaki K, Nakayama K, Ichimura T, Sanbongi C, Nakazato K. Nutritional Value of Yogurt as a Protein Source: Digestibility/Absorbability and Effects on Skeletal Muscle. Nutrients 2023; 15:4366. [PMID: 37892442 PMCID: PMC10609537 DOI: 10.3390/nu15204366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Yogurt is a traditional fermented food that is accepted worldwide for its high palatability and various health values. The milk protein contained in yogurt exhibits different physical and biological properties from those of non-fermented milk protein due to the fermentation and manufacturing processes. These differences are suggested to affect the time it takes to digest and absorb milk protein, which in turn will influence the blood levels of amino acids and/or hormones, such as insulin, and thereby, the rate of skeletal muscle protein synthesis via the activation of intracellular signaling, such as the mTORC1 pathway. In addition, based on the relationship between gut microbiota and skeletal muscle conditions, yogurt, including lactic acid bacteria and its metabolites, has been evaluated for its role as a protein source. However, the substantial value of yogurt as a protein source and the additional health benefits on skeletal muscle are not fully understood. The purpose of this review is to summarize the research to date on the digestion and absorption characteristics of yogurt protein, its effect on skeletal muscle, and the contribution of lactic acid bacterial fermentation to these effects.
Collapse
Affiliation(s)
- Koichiro Sumi
- Nutrition and Food Function Research Department, Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Nanakuni, Hachioji 192-0919, Japan
| | - Ryoichi Tagawa
- Nutrition and Food Function Research Department, Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Nanakuni, Hachioji 192-0919, Japan
| | - Kae Yamazaki
- Nutrition and Food Function Research Department, Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Nanakuni, Hachioji 192-0919, Japan
| | - Kyosuke Nakayama
- Nutrition and Food Function Research Department, Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Nanakuni, Hachioji 192-0919, Japan
| | - Takefumi Ichimura
- Next Generation Monozukuri Research Department, Food Science & Technology Research Laboratories, R&D Division, Meiji Co., Ltd., Nanakuni, Hachioji 192-0919, Japan
| | - Chiaki Sanbongi
- Nutrition and Food Function Research Department, Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Nanakuni, Hachioji 192-0919, Japan
| | - Koichi Nakazato
- Department of Exercise Physiology, Nippon Sports Science University, 7-1-1 Fukasawa, Setagaya-ku, Tokyo 158-8508, Japan;
| |
Collapse
|
6
|
Rinaldi S, Di Giovanni S, Palocci G, Contò M, Steri R, Tripaldi C. Impact of Milk Storage and Heat Treatments on In Vitro Protein Digestibility of Soft Cheese. Foods 2023; 12:foods12081735. [PMID: 37107530 PMCID: PMC10137698 DOI: 10.3390/foods12081735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Cheese is an important source of protein in the human diet, and its digestibility depends on its macro and microstructure. This study investigated the effect of milk heat pre-treatment and pasteurization level on the protein digestibility of produced cheese. An in vitro digestion method was used considering cheeses after 4 and 21 days of storage. The peptide profile and amino acids (AAs) released in digestion were analyzed to evaluate the level of protein degradation following in vitro digestion. The results showed the presence of shorter peptides in the digested cheese from pre-treated milk and 4-day ripening while this trend was not observed after 21 days of storage, showing the effect of storage period. A significantly higher content of AAs was found in digested cheese produced from milk subjected to a higher temperature of pasteurization, and there was a significant increase in total AA content in the cheese after 21 days of storage, confirming the positive effect of ripening on protein digestibility. From these results emerges the importance of the management of heat treatments on the digestion of proteins in soft cheese.
Collapse
Affiliation(s)
- Simona Rinaldi
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura, Via Salaria, 31, 00015 Rome, Italy
| | - Sabrina Di Giovanni
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura, Via Salaria, 31, 00015 Rome, Italy
| | - Giuliano Palocci
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura, Via Salaria, 31, 00015 Rome, Italy
| | - Michela Contò
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura, Via Salaria, 31, 00015 Rome, Italy
| | - Roberto Steri
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura, Via Salaria, 31, 00015 Rome, Italy
| | - Carmela Tripaldi
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura, Via Salaria, 31, 00015 Rome, Italy
| |
Collapse
|
7
|
Sun Y, Wang R, Li Q, Ma Y. Influence of storage time on protein composition and simulated digestion of UHT milk and centrifugation presterilized UHT milk in vitro. J Dairy Sci 2023; 106:3109-3122. [PMID: 37002142 DOI: 10.3168/jds.2022-22602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/06/2022] [Indexed: 03/31/2023]
Abstract
The centrifugation presterilizing UHT (C-UHT) sterilization method removes 90% of the microorganism and somatic cells from raw milk using high-speed centrifugation following UHT treatment. This study aimed to study the changes in protein composition and plasmin in the UHT and C-UHT milk. The digestive characteristics, composition, and peptide spectrum of milk protein sterilized with the 2 technologies were studied using a dynamic digestive system of a simulated human stomach. The Pierce bicinchoninic acid assay, laser scanning confocal microscope, liquid chromatography-tandem mass spectrometry, and AA analysis were used to study the digestive fluid at different time points of gastric digestion in vitro. The results demonstrated that C-UHT milk had considerably higher protein degradation than UHT milk. Different processes resulted during the cleavage of milk proteins at different sites during digestion, resulting in different derived peptides. The results showed there was no significant effect of UHT and C-UHT on the peptide spectrum of milk proteins, but C-UHT could release relatively more bioactive peptides and free AA.
Collapse
Affiliation(s)
- Yue Sun
- Department of Food Nutrition and Health, School of Medicine and Nutrition, Harbin Institute of Technology, Harbin, China, 150001
| | - Rongchun Wang
- Department of Food Nutrition and Health, School of Medicine and Nutrition, Harbin Institute of Technology, Harbin, China, 150001; Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China, 450001.
| | - Qiming Li
- New Hope Dairy Co. Ltd., Chengdu, Sichuan, China, 610063; Dairy Nutrition and Function, Key Laboratory of Sichuan Province, Chengdu, China, 610000
| | - Ying Ma
- Department of Food Nutrition and Health, School of Medicine and Nutrition, Harbin Institute of Technology, Harbin, China, 150001; Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China, 450001
| |
Collapse
|
8
|
Qu Y, Kim BJ, Koh J, Dallas DC. Comparison of Solid-Phase Extraction Sorbents for Monitoring the In Vivo Intestinal Survival and Digestion of Kappa-Casein-Derived Caseinomacropeptide. Foods 2023; 12:foods12020299. [PMID: 36673392 PMCID: PMC9858392 DOI: 10.3390/foods12020299] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Kappa-casein-derived caseinomacropeptide (CMP)-a 64-amino-acid peptide-is released from kappa-casein after rennet treatment and is one of the major peptides in whey protein isolate (WPI). CMP has anti-inflammatory and antibacterial activities. It also has two major amino acid sequences with different modifications, including glycosylation, phosphorylation, and oxidation. To understand the potential biological role of CMP within the human body, there is a need to examine the extent to which CMP and CMP-derived fragments survive across the digestive tract, where they can exert these functions. In this study, three solid-phase extraction (SPE) methods-porous graphitized carbon (PGC), hydrophilic interaction liquid chromatography (HILIC), and C18 chromatography-were evaluated to determine which SPE sorbent is the most efficient to extract intact CMP and CMP-derived peptides from WPI and intestinal digestive samples prior to LC-MS/MS acquisition. The C18 SPE sorbent was the most efficient in extracting intact CMP and CMP-derived peptides from WPI, whereas the PGC SPE sorbent was the most efficient in extracting CMP-derived peptides from intestinal digesta samples.
Collapse
Affiliation(s)
- Yunyao Qu
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Bum-Jin Kim
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Jeewon Koh
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - David C. Dallas
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
- Correspondence:
| |
Collapse
|
9
|
Yang J, Sun J, Yan J, Zhang X, Ma Y, Liu C, Du P, Li A. Impact of Potentilla anserine polysaccharide on storage properties of probiotic yak yoghurt. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Impact of Flaxseed Gums on the Colloidal Changes and In Vitro Digestibility of Milk Proteins. Foods 2022; 11:foods11244096. [PMID: 36553838 PMCID: PMC9778069 DOI: 10.3390/foods11244096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Flaxseed (Linum usitatissimum L.) mucilage is one of the most studied plant seed gums in terms of its techno-functional and health-promoting properties. Nonetheless, the interplay of flaxseed gum (FG) with other food biopolymers, such as milk proteins, under in vitro digestion conditions remains underexplored. The aim of the present work was to investigate the colloidal interplay between flaxseed gum (golden or brown) and milk proteins (sodium caseinate or whey protein isolate) under simulated in vitro digestion conditions and its relationship with the attained in vitro protein digestibility. The presence of flaxseed gum in the milk protein food models and in the oral food boluses obtained was associated with the occurrence of segregative microphase separation. Flaxseed gum exhibited a prominent role in controlling the acid-mediated protein aggregation phenomena, particularly in the sodium caseinate gastric chymes. The addition of FG in the food models was associated with a higher amount of intact total caseins and β-lactoglobulin at the end of the gastric processing step. Monitoring of the intestinal processing step revealed a very advanced cleavage of the whey proteins (>98%) and caseins (>90%). The degree of the milk protein hydrolysis achieved at the end of the intestinal processing was significantly higher in the systems containing flaxseed gum (i.e., 59−62%) than their gum-free protein counterparts (i.e., 46−47%). It was postulated that the electrostatic milk protein complexation capacity and, to a lesser extent, the thickening effect of flaxseed gum influenced the in vitro digestibility of the milk proteins.
Collapse
|
11
|
Wang Y, Sun W, Zhang Y, Li W, Zhang Q, Rui X. Assessment of dynamic digestion fate of soy protein gel induced by lactic acid bacteria: A protein digestomics research. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Hellebois T, Gaiani C, Soukoulis C. Impact of alfalfa (Medicago sativa L.) galactomannan on the microstructural and physicochemical changes of milk proteins under static in-vitro digestion conditions. Food Chem X 2022; 14:100330. [PMID: 35615260 PMCID: PMC9125660 DOI: 10.1016/j.fochx.2022.100330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/04/2022] [Accepted: 05/15/2022] [Indexed: 12/04/2022] Open
Abstract
The impact of alfalfa galactomannan (AAG) on the digestibility of milk proteins was studied. AAG mediated the intragastric aggregation of both sodium caseinate and whey protein isolate. AAG affected only the peptic cleavage of caseins and β-lactoglobulin in the gastric chymes. AAG enhanced the free amino acids release in the gastric chymes regardless of the protein type. The free amino acids release rate in the intestinal chymes were adversely related to AAG content.
This paper reports on the impact of alfalfa galactomannan (AAG, 0.1, 0.5 or 1% wt.) on the colloidal changes and digestibility of sodium caseinate (NaCN) and whey protein isolate (WPI) dispersions (10% wt.) under static in-vitro digestion conditions. Static laser light scattering and confocal laser scanning microscopy-assisted assessment of the NaCN-based gastric chymes confirmed the ability of AAG to control the acid-induced protein coagulation phenomena. Contrarily, the presence of AAG in the WPI-based gastric chymes was associated with the formation of larger aggregates due to the occurrence of segregative microphase separation. The kinetic modelling of the SDS-PAGE densitometric data showed that the intragastric peptic cleavage rates were higher for caseins than whey proteins (β-lactoglobulin, α-lactalbumin). However, free amino acid (FAA) release rates did not exceed 12% under intragastric conditions, whilst notably higher release rates were achieved in the intestinal digesta (36–52%). In all cases, the FAA release rates significantly increased in the presence of AAG.
Collapse
|
13
|
Alternatives to Cow’s Milk-Based Infant Formulas in the Prevention and Management of Cow’s Milk Allergy. Foods 2022; 11:foods11070926. [PMID: 35407012 PMCID: PMC8997926 DOI: 10.3390/foods11070926] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/27/2022] Open
Abstract
Cow’s milk-based infant formulas are the most common substitute to mother’s milk in infancy when breastfeeding is impossible or insufficient, as cow’s milk is a globally available source of mammalian proteins with high nutritional value. However, cow’s milk allergy (CMA) is the most prevalent type of food allergy among infants, affecting up to 3.8% of small children. Hypoallergenic infant formulas based on hydrolysed cow’s milk proteins are commercially available for the management of CMA. Yet, there is a growing demand for more options for infant feeding, both in general but especially for the prevention and management of CMA. Milk from other mammalian sources than the cow, such as goat, sheep, camel, donkey, and horse, has received some attention in the last decade due to the different protein composition profile and protein amino acid sequences, resulting in a potentially low cross-reactivity with cow’s milk proteins. Recently, proteins from plant sources, such as potato, lentil, chickpeas, quinoa, in addition to soy and rice, have gained increased interest due to their climate friendly and vegan status as well as potential lower allergenicity. In this review, we provide an overview of current and potential future infant formulas and their relevance in CMA prevention and management.
Collapse
|
14
|
Diep TT, Yoo MJY, Rush E. Effect of In Vitro Gastrointestinal Digestion on Amino Acids, Polyphenols and Antioxidant Capacity of Tamarillo Yoghurts. Int J Mol Sci 2022; 23:ijms23052526. [PMID: 35269670 PMCID: PMC8910476 DOI: 10.3390/ijms23052526] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Laird’s Large tamarillo powder is high in protein (10%) essential amino acids (EAAs), gamma-aminobutyric acid (GABA) and polyphenols (0.6% phenolics plus anthocyanins) and fibre 25%. This study aimed to investigate, using a standardized static in vitro digestion model, the stability of amino acids and antioxidant capacity of polyphenols in yoghurt fortified with 5, 10 and 15% tamarillo powder either before (PRE) or after (POS) fermentation. Compared to plain yoghurt, the fruit polyphenols (rutinosides and glycosides) were retained and substantial increases in FEAAs (free essential amino acids), total phenolic content (TPC) and antioxidant activity were observed particularly at the end of intestinal phase of digestion. Together with SDS-PAGE results, peptides and proteins in tamarillo yoghurts were more easily digested and therefore may be better absorbed in the small intestine compared to the control. TPC and antioxidant activity of fortified yoghurts increased significantly after in vitro digestion. Relatively high bioaccessibilty of chlorogenic acid and kaempferol-3-rutinoside in digested PRE samples was observed. The results suggest that the yoghurt matrix might protect some compounds from degradation, increasing bioaccessibility and in the small intestine allow increased absorption and utilization possible. Fortification would deliver intact polyphenols and fibre to the large intestine and improve gut health. Further research of acceptability, shelf life, and then trials for health effects should be implemented.
Collapse
Affiliation(s)
- Tung Thanh Diep
- School of Science, Faculty of Health and Environment Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand;
- Riddet Institute, Centre of Research Excellence, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand;
| | - Michelle Ji Yeon Yoo
- School of Science, Faculty of Health and Environment Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand;
- Riddet Institute, Centre of Research Excellence, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand;
- Correspondence: ; Tel.: +64-9921-9999 (ext. 6456)
| | - Elaine Rush
- Riddet Institute, Centre of Research Excellence, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand;
- School of Sport and Recreation, Faculty of Health and Environment Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| |
Collapse
|
15
|
|
16
|
|
17
|
Ge G, Zhao J, Zheng J, Zhao M, Sun W. Pepsin Diffusivity and In Vitro Gastric Digestion of Soymilk as Affected by Binding of Tea Polyphenols to Soy Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11043-11052. [PMID: 34499500 DOI: 10.1021/acs.jafc.1c04705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the effect of tea polyphenol extract (TPE) on the in vitro gastric digestion of soymilk. Fluorescence recovery after photobleaching was applied to measure pepsin diffusivity in soymilk. The characteristics of soymilk digesta were evaluated by gel electrophoresis, degree of hydrolysis (DH), molecular weight distribution, free amino acid analysis, particle size, antioxidant capacity, and trypsin/chymotrypsin inhibitor activity (TIA/CIA). The binding between soy proteins and tea polyphenols could significantly impair in vitro gastric digestion of soymilk by decreasing pepsin diffusivity from 91.3 to 70.3 μm2/s and DH from 17.13 to 13.93% with 1.2 mg/g TPE addition. Soymilk with 0.6 mg/g TPE addition exhibited low TIA/CIA and a strong antioxidant capacity in gastric digesta, which might be good for the following intestinal digestion. A better understanding of the effect of polyphenol on the digestion of protein-based food may be beneficial to innovation in food manufacturing.
Collapse
Affiliation(s)
- Ge Ge
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jie Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jiabao Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| |
Collapse
|
18
|
Dong L, Wu K, Cui W, Fu D, Han J, Liu W. Tracking the digestive performance of different forms of dairy products using a dynamic artificial gastric digestive system. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Aalaei K, Khakimov B, De Gobba C, Ahrné L. Gastric Digestion of Milk Proteins in Adult and Elderly: Effect of High-Pressure Processing. Foods 2021; 10:786. [PMID: 33917309 PMCID: PMC8067359 DOI: 10.3390/foods10040786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Reduced physiological capability of the human gastrointestinal tract with increasing age has recently attracted considerable attention to the potential of novel technologies to modify food digestion. Thus, the aim of this study was to investigate gastric digestion of milk proteins after application of high-pressure processing (HPP) at 400 MPa 15 min, 600 MPa 5 min and 600 MPa 15 min using two static in vitro models of adults (INFOGEST) and the elderly in comparison to a fresh untreated raw milk. Peptides distribution classified based on the number of amino acids (AA) (<10, 11-15, 16-20, 21-30, >30 AA) were investigated after 0, 5, 10 and 30 min of digestion using LC-MS and multivariate data analysis. Our results show significantly less efficient protein digestion of all investigated milks in the elderly model indicated by higher percentages of longer peptides during digestion, except for the HPP milk 400 MPa 15 min, which indicated an improved and comparable digestion in the elderly as in the adult model. Furthermore, increasing the pressurization time at 600 MPa did not have a significant effect on the peptides profile during the digestion. More efficient digestion of whey proteins in HPP milks, with the majority of peptides in the 16-20 AA range, compared to fresh milk was also noticed. According to the findings of this study, HPP at 400 MPa 15 min showed the most efficient digestion of major milk proteins and thus may be considered a suitable process to improve bioaccessibility of milk proteins, especially in products intended for the elderly.
Collapse
Affiliation(s)
- Kataneh Aalaei
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark; (B.K.); (C.D.G.); (L.A.)
| | | | | | | |
Collapse
|
20
|
Aalaei K, Khakimov B, De Gobba C, Ahrné L. Digestion patterns of proteins in pasteurized and ultra-high temperature milk using in vitro gastric models of adult and elderly. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110305] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Bavaro SL, Mamone G, Picariello G, Callanan MJ, Chen Y, Brodkorb A, Giblin L. Thermal or membrane processing for Infant Milk Formula: Effects on protein digestion and integrity of the intestinal barrier. Food Chem 2021; 347:129019. [PMID: 33484955 DOI: 10.1016/j.foodchem.2021.129019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/18/2020] [Accepted: 01/03/2021] [Indexed: 11/19/2022]
Abstract
Infant Milk Formula (IMF) is designed as a breastmilk substitute to satisfy the nutritional requirements during the first months of life. This study investigates the effects of two IMF processing technologies on cow milk protein digestion using an infant static in vitro gastrointestinal model. The degree of protein hydrolysis at the end of the gastric phase was 3.7-fold higher for IMF produced by high temperature (IMF-HT), compared to IMF produced by cascade membrane filtration (IMF-CMF), as assessed by free N-terminal group analysis. The processing type also influenced the panel of bioavailable peptides detected in basolateral compartments of Caco-2 monolayers exposed to gastrointestinal digested IMFs. In addition, IMF-CMF significantly increased tight junction protein, claudin 1, whilst IMF-HT significantly reduced tight junction integrity. In conclusion, producing IMF by CMF may preserve intestinal barrier integrity and can deliver its own unique inventory of bioavailable peptides with potential bioactivity.
Collapse
Affiliation(s)
- Simona L Bavaro
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Gianfranco Mamone
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | | | - Michael J Callanan
- School of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Yihong Chen
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; School of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - André Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
22
|
Wang J, Aalaei K, Skibsted LH, Ahrné LM. Lime Juice Enhances Calcium Bioaccessibility from Yogurt Snacks Formulated with Whey Minerals and Proteins. Foods 2020; 9:foods9121873. [PMID: 33339103 PMCID: PMC7765558 DOI: 10.3390/foods9121873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
Yogurt-based snacks originally with a calcium content between 0.10 and 0.17 mmol/g dry matter were enriched with a whey mineral concentrate and whey protein isolate or hydrolysate. Whey mineral concentrate was added to increase the total amount of calcium by 0.030 mmol/g dry matter. Calcium bioaccessibility was determined following an in vitro protocol including oral, gastric, and intestinal digestion, with special focus on the effect of lime juice quantifying calcium concentration and activity. Calcium bioaccessibility, defined as soluble calcium divided by total calcium after intestinal digestion amounted to between 17 and 25% for snacks without lime juice. For snacks with lime juice, the bioaccessibility increased to between 24 and 40%, an effect attributed to the presence of citric acid. Citric acid increased the calcium solubility both from whey mineral concentrate and yogurt, and the citrate anion kept supersaturated calcium soluble in the chyme. The binding of calcium in the chyme from snacks with or without lime juice was compared electrochemically, showing that citrate increased the amount of bound calcium but with lower affinity. The results indicated that whey minerals, a waste from cheese production, may be utilized in snacks enhancing calcium bioaccessibility when combined with lime juice.
Collapse
|
23
|
SOUZA MWSD, LOPES EDSO, COSENZA GP, ALVARENGA VO, LABANCA RA, ARAÚJO RLBD, LACERDA ICA. Effect of inulin, medium-chain triglycerides and whey protein isolate on stability and in vitro digestibility of enteral nutrition formulas. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.23619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Hernández-Olivas E, Muñoz-Pina S, Sánchez-García J, Andrés A, Heredia A. Understanding the role of food matrix on the digestibility of dairy products under elderly gastrointestinal conditions. Food Res Int 2020; 137:109454. [DOI: 10.1016/j.foodres.2020.109454] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 11/26/2022]
|
25
|
Li X, Gu Y, He S, Dudu OE, Li Q, Liu H, Ma Y. Influence of Pasteurization and Storage on Dynamic In Vitro Gastric Digestion of Milk Proteins: Quantitative Insights Based on Peptidomics. Foods 2020; 9:foods9080998. [PMID: 32722405 PMCID: PMC7466191 DOI: 10.3390/foods9080998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/16/2022] Open
Abstract
It is important to evaluate the nutritional quality of milk during the shelf-life, especially during home storage, from a consumer viewpoint. In this study, we investigated the impact of pasteurization (85 °C/15 s) and subsequent storage (at 4 °C for 7 days) on the coagulation behavior of milk and protein digestibility in a dynamic in vitro gastric digestion test. A high level of hydration in curd formed in pasteurized milk upon 7-day cold storage compared to raw and pasteurized milk, indicating fast pepsin diffusion in the interior of curds, increasing the hydrolysis rate. The digesta collected at various time points throughout the gastric digestion were studied using o-phthaldialdehyde (OPA), sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), liquid chromatography tandem mass spectrometry (LC-MS/MS), and amino acid analysis. These results showed that milk proteins were hydrolyzed quickly upon a long period of cold storage. Additionally, qualitative and quantitative results obtained using LC-MS/MS exhibited significant differences between samples, especially in pasteurized milk upon cold storage. Processing and storage played a decisive role in bioactive peptide generation. Such knowledge could provide insights into and directions for the storage of pasteurized milk for further clinical studies on protein bioavailability and the generation of bioactive peptides for desired health outcomes.
Collapse
Affiliation(s)
- Xing Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China; (X.L.); (Y.G.); (O.E.D.); (H.L.)
| | - Yuxiang Gu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China; (X.L.); (Y.G.); (O.E.D.); (H.L.)
| | - Shudong He
- School of Food and Biological Engineering, Engineering Research Center of Bio-Process of Ministry of Education, Hefei University of Technology, Hefei 230009, China;
| | - Olayemi Eyituoyo Dudu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China; (X.L.); (Y.G.); (O.E.D.); (H.L.)
| | - Qiming Li
- New Hope Dairy Co, Ltd., Chengdu 610063, China;
- Dairy Nutrition and Function, Key Laboratory of Sichuan Province, Chengdu 610000, China
| | - Haiyan Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China; (X.L.); (Y.G.); (O.E.D.); (H.L.)
- New Hope Dairy Co, Ltd., Chengdu 610063, China;
- Dairy Nutrition and Function, Key Laboratory of Sichuan Province, Chengdu 610000, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China; (X.L.); (Y.G.); (O.E.D.); (H.L.)
- Correspondence: ; Tel./Fax: +86-0451-86282906
| |
Collapse
|
26
|
Wang J, Aalaei K, Skibsted LH, Ahrné LM. Bioaccessibility of calcium in freeze-dried yogurt based snacks. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Simulated oral processing, in vitro digestibility and sensory perception of low fat Cheddar cheese containing sodium alginate. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Zenker HE, van Lieshout GAA, van Gool MP, Bragt MCE, Hettinga KA. Lysine blockage of milk proteins in infant formula impairs overall protein digestibility and peptide release. Food Funct 2020; 11:358-369. [DOI: 10.1039/c9fo02097g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High levels of blocked lysine in infant formula lead to increasing average peptide length after in vitro digestion in infants.
Collapse
Affiliation(s)
- Hannah E. Zenker
- Food Quality & Design Group
- Wageningen University & Research Centre
- Wageningen
- the Netherlands
| | | | | | | | - Kasper A. Hettinga
- Food Quality & Design Group
- Wageningen University & Research Centre
- Wageningen
- the Netherlands
| |
Collapse
|
29
|
Hiolle M, Lechevalier V, Floury J, Boulier-Monthéan N, Prioul C, Dupont D, Nau F. In vitro digestion of complex foods: How microstructure influences food disintegration and micronutrient bioaccessibility. Food Res Int 2019; 128:108817. [PMID: 31955773 DOI: 10.1016/j.foodres.2019.108817] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 12/21/2022]
Abstract
Digestion is a mechanical and chemical process that is only partly understood, and even less so for complex foods. In particular, the issue of the impact of food structure on the digestion process is still unresolved. In this study, the fate of four micronutrient-enriched foods with identical compositions but different microstructures (Custard, Pudding, Sponge cake, Biscuit) was investigated using the 3-phase in vitro model of human digestion developed by the INFOGEST network. Matrix disintegration and hydrolysis of macronutrients (proteins, lipids and carbohydrates) were monitored during the three phases of digestion using biochemical techniques, size-exclusion chromatography, thin-layer chromatography and gas chromatography. Micronutrient release (vitamin B9 and lutein) was monitored using reverse-phase chromatography. Food structure did not greatly influence macronutrient hydrolysis, except for lipolysis that was four-times higher for Biscuit compared to Custard. However, the bioaccessibility of both micronutrients depended on the food structure and on the micronutrient. Vitamin B9 release was faster for Biscuit and Sponge cake during the gastric phase, whereas lutein release was higher for Custard during the intestinal step. Extensive statistical analysis highlighted the impact of food structure on the digestion process, with different digestion pathways depending on the food matrix. It also made it possible to characterise the gastric step as a predominantly macronutrient solubilisation phase, and the intestinal step as a predominantly hydrolysis phase.
Collapse
Affiliation(s)
- M Hiolle
- STLO, INRA, Agrocampus Ouest, 35042 Rennes, France.
| | | | - J Floury
- STLO, INRA, Agrocampus Ouest, 35042 Rennes, France.
| | | | - C Prioul
- Liot SAS, 86450 Pleumartin, France.
| | - D Dupont
- STLO, INRA, Agrocampus Ouest, 35042 Rennes, France.
| | - F Nau
- STLO, INRA, Agrocampus Ouest, 35042 Rennes, France.
| |
Collapse
|
30
|
van Lieshout GAA, Lambers TT, Bragt MCE, Hettinga KA. How processing may affect milk protein digestion and overall physiological outcomes: A systematic review. Crit Rev Food Sci Nutr 2019; 60:2422-2445. [PMID: 31437019 DOI: 10.1080/10408398.2019.1646703] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dairy is one of the main sources for high quality protein in the human diet. Processing may, however, cause denaturation, aggregation, and chemical modifications of its amino acids, which may impact protein quality. This systematic review covers the effect of milk protein modifications as a result of heating, on protein digestion and its physiological impact. A total of 5363 records were retrieved through the Scopus database of which a total of 102 were included. Although the degree of modification highly depends on the exact processing conditions, heating of milk proteins can modify several amino acids. In vitro and animal studies demonstrate that glycation decreases protein digestibility, and hinders amino acid availability, especially for lysine. Other chemical modifications, including oxidation, racemization, dephosphorylation and cross-linking, are less well studied, but may also impact protein digestion, which may result in decreased amino acid bioavailability and functionality. On the other hand, protein denaturation does not affect overall digestibility, but can facilitate gastric hydrolysis, especially of β-lactoglobulin. Protein denaturation can also alter gastric emptying of the protein, consequently affecting digestive kinetics that can eventually result in different post-prandial plasma amino acid appearance. Apart from processing, the kinetics of protein digestion depend on the matrix in which the protein is heated. Altogether, protein modifications may be considered indicative for processing severity. Controlling dairy processing conditions can thus be a powerful way to preserve protein quality or to steer gastrointestinal digestion kinetics and subsequent release of amino acids. Related physiological consequences mainly point towards amino acid bioavailability and immunological consequences.
Collapse
Affiliation(s)
| | | | | | - Kasper A Hettinga
- Food Quality & Design Group, Wageningen University & Research Centre, Wageningen, the Netherlands
| |
Collapse
|
31
|
Whey-based cheese provides more postprandial plasma leucine than casein-based cheese: A pig study. Food Chem 2019; 277:63-69. [DOI: 10.1016/j.foodchem.2018.10.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 11/22/2022]
|
32
|
Rui X, Zhang Q, Huang J, Li W, Chen X, Jiang M, Dong M. Does lactic fermentation influence soy yogurt protein digestibility: a comparative study between soymilk and soy yogurt at different pH. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:861-867. [PMID: 30006936 DOI: 10.1002/jsfa.9256] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Lactic acid bacteria fermentation allows soymilk to form a yogurt-like product accompanied by protein acidic coagulation. It is not known whether the coagulation of soy protein during fermentation influences protein digestibility when ingested. In the present study, soymilk (pH 6.3) and soy yogurt (SY) at different pH (6.0, 5.7, 5.4 and 5.1) were subjected to in vitro gastrointestinal digestion (GIS) and a comparison study was conducted. RESULTS Lactic fermentation allowed the pH of soymilk to reduce gradually to 5.1 in 330.0 min. A decline in pH resulted in the volume-weighted mean diameters D[4,3] and D[v,90] increasing from 0.81 to 97 µm and 1.82 to 273 µm, respectively. Predominant proteins lost their solubility between pH 6.0 and 5.7. Application of GIS allowed SY samples, especially SY-5.7, SY-5.4 and SY-5.1, to reveal particles with a predominant peak at approximately 10 µm and also lower soluble proteins compared to soymilk, with reduction percentages of 18%, 28% and 43%. The cleavage pattern of soy protein during GIS was scarcely affected by the sample pH. However, a lower quantity of the band at 33.9 kDa was found in SY-5.7, SY-5.4 and SY-5.1. CONCLUSION The results of the present study demonstrate that lactic fermentation altered soy protein digestibility. With the process of protein coagulation, SY-5.7, 5.4 and 5.1 had a lower bioaccessible protein content compared to that of soymilk. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Rui
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Qiuqin Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Jin Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Wei Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Xiaohong Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Mei Jiang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
33
|
Kung B, Turgeon SL, Rioux LE, Anderson GH, Wright AJ, Goff HD. Correlating in vitro digestion viscosities and bioaccessible nutrients of milks containing enhanced protein concentration and normal or modified protein ratio to human trials. Food Funct 2019; 10:7687-7696. [DOI: 10.1039/c9fo01994d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In vitro digestion of cereal with high protein milks reflects the appearance of in vivo biomarkers of starch and protein digestion.
Collapse
Affiliation(s)
- Bonnie Kung
- Department of Food Science
- University of Guelph
- Canada N1G 2W1
| | - Sylvie L. Turgeon
- Department of Food Science
- STELA Dairy Research Centre
- Institute of Nutrition and Functional Foods
- Université Laval
- Quebec City
| | - Laurie-Eve Rioux
- Department of Food Science
- STELA Dairy Research Centre
- Institute of Nutrition and Functional Foods
- Université Laval
- Quebec City
| | - G. Harvey Anderson
- Department of Nutritional Sciences
- Faculty of Medicine
- University of Toronto
- Canada M5S 3E2
| | - Amanda J. Wright
- Department of Human Health and Nutritional Sciences
- University of Guelph
- Canada N1G 2W1
| | - H. Douglas Goff
- Department of Food Science
- University of Guelph
- Canada N1G 2W1
| |
Collapse
|
34
|
Qing S, Zhang Q, Li W, Azarpazhooh E, Simpson BK, Rui X. Effects of different satiety levels on the fate of soymilk protein in gastrointestinal digestion and antigenicity assessed by an in vitro dynamic gastrointestinal model. Food Funct 2019; 10:7855-7864. [DOI: 10.1039/c9fo01965k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of different satiety levels on soymilk protein digestion and antigenicity have been evaluated by an in vitro dynamic gastrointestinal model.
Collapse
Affiliation(s)
- Shuting Qing
- College of Food Science and Technology
- Nanjing Agricultural University
- P R China
| | - Qiuqin Zhang
- College of Food Science and Technology
- Nanjing Agricultural University
- P R China
| | - Wei Li
- College of Food Science and Technology
- Nanjing Agricultural University
- P R China
| | - Elham Azarpazhooh
- Khorasan Razavi Agricultural and Natural Resources Research and Education Center
- AREEO
- Mashhad
- Iran
| | - Benjamin K. Simpson
- Department of Food Science and Agricultural Chemistry
- Macdonald Campus
- McGill University
- QC
- Canada
| | - Xin Rui
- College of Food Science and Technology
- Nanjing Agricultural University
- P R China
| |
Collapse
|
35
|
Lorieau L, Halabi A, Ligneul A, Hazart E, Dupont D, Floury J. Impact of the dairy product structure and protein nature on the proteolysis and amino acid bioaccessiblity during in vitro digestion. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.04.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
36
|
Fardet A, Dupont D, Rioux LE, Turgeon SL. Influence of food structure on dairy protein, lipid and calcium bioavailability: A narrative review of evidence. Crit Rev Food Sci Nutr 2018; 59:1987-2010. [PMID: 29393659 DOI: 10.1080/10408398.2018.1435503] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Beyond nutrient composition matrix plays an important role on food health potential, notably acting on the kinetics of nutrient release, and finally on their bioavailability. This is particularly true for dairy products that present both solid (cheeses), semi-solid (yogurts) and liquid (milks) matrices. The main objective of this narrative review has been to synthesize available data in relation with the impact of physical structure of main dairy matrices on nutrient bio-accessibility, bioavailability and metabolic effects, in vitro, in animals and in humans. Focus has been made on dairy nutrients the most studied, i.e., proteins, lipids and calcium. Data collected show different kinetics of bioavailability of amino acids, fatty acids and calcium according to the physicochemical parameters of these matrices, including compactness, hardness, elasticity, protein/lipid ratio, P/Ca ratio, effect of ferments, size of fat globules, and possibly other qualitative parameters yet to be discovered. This could be of great interest for the development of innovative dairy products for older populations, sometimes in protein denutrition or with poor dentition, involving the development of dairy matrices with optimized metabolic effects by playing on gastric retention time and thus on the kinetics of release of the amino acids within bloodstream.
Collapse
Affiliation(s)
- Anthony Fardet
- a Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne , F Clermont-Ferrand , France
| | - Didier Dupont
- b Science and Technology of Milk and Eggs, STLO, Agrocampus Ouest, French National Institute for Agricultural Research (INRA) , Rennes , France
| | - Laurie-Eve Rioux
- c STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval , Québec City , Qc , Canada
| | - Sylvie L Turgeon
- c STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval , Québec City , Qc , Canada
| |
Collapse
|
37
|
Characterisation of in vitro gastrointestinal digests from low fat caprine kefir enriched with inulin. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2017.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Rivera-Ciprian JP, Aceituno-Medina M, Guillen K, Hernández E, Toledo J. Midgut Protease Activity During Larval Development of Anastrepha obliqua (Diptera: Tephritidae) Fed With Natural and Artificial Diet. JOURNAL OF INSECT SCIENCE 2017. [PMCID: PMC5710601 DOI: 10.1093/jisesa/iex090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this study, we examined the activity of two serine proteases (chymotrypsin and trypsin) and two metalloproteases (carboxypeptidases A and B) during larval development in Anastrepha obliqua fed natural (mango fruit) and artificial (formulation used in mass-rearing) diets. Proteolytic activity of chymotrypsin, trypsin, carboxypeptidase A, and carboxypeptidase B was detected in the midgut of different instars of A. obliqua and was strongly affected by the pH and diet type. The protein content of the natural and artificial diets was similar. Enzymatic activity was higher in the midgut of the larvae fed the natural diet than in larvae fed the artificial diet. The activity of the endopeptidases (chymotrypsin and trypsin) was lower than those of the exopeptidases (carboxypeptidases A and B). The pH of the midgut varied from acidic to neutral. The results indicate that in the midgut of the larvae reared on both types of diet, the level of carboxypeptidase activity was approximately 100-fold greater than the level of chymotrypsin activity and 10,000-fold greater than the level of trypsin. In conclusion, carboxypeptidase A and B are the main proteases involved in the digestion of proteins in the larvae of A. obliqua. The natural diet showed a high bioaccessibility. A clear tendency to express high activities of chymotrypsin and trypsin was observed by the third instar. Our research contributes to the planning and development of novel bioaccessibility assays to understand the nutrition processing of A. obliqua larvae under mass-rearing conditions for sterile insect technique.
Collapse
Affiliation(s)
- José Pedro Rivera-Ciprian
- Subdirección de Desarrollo de Métodos, Programa Moscafrut, SENASICA-SAGARPA Camino a Cacaotales, S/N. C.P. 30860, Metapa de Domínguez, Chiapas, México
- Departamento de Agricultura, Sociedad y Ambiente. El Colegio de la Frontera Sur., Carretera Antiguo Aeropuerto, Km 2.5. C.P. 30700, Tapachula, Chiapas, México
| | - Marysol Aceituno-Medina
- Subdirección de Desarrollo de Métodos, Programa Moscafrut, SENASICA-SAGARPA Camino a Cacaotales, S/N. C.P. 30860, Metapa de Domínguez, Chiapas, México
| | - Karina Guillen
- Departamento de Agricultura, Sociedad y Ambiente. El Colegio de la Frontera Sur., Carretera Antiguo Aeropuerto, Km 2.5. C.P. 30700, Tapachula, Chiapas, México
| | - Emilio Hernández
- Subdirección de Desarrollo de Métodos, Programa Moscafrut, SENASICA-SAGARPA Camino a Cacaotales, S/N. C.P. 30860, Metapa de Domínguez, Chiapas, México
| | - Jorge Toledo
- Departamento de Agricultura, Sociedad y Ambiente. El Colegio de la Frontera Sur., Carretera Antiguo Aeropuerto, Km 2.5. C.P. 30700, Tapachula, Chiapas, México
- Correspondence author, e-mail:
| |
Collapse
|
39
|
Strategies for the discovery and identification of food protein-derived biologically active peptides. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.03.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
40
|
Hernández-Galán L, Cattenoz T, Le Feunteun S, Canette A, Briandet R, Le-Guin S, Guedon E, Castellote J, Delettre J, Dugat Bony E, Bonnarme P, Spinnler HE, Martín del Campo ST, Picque D. Effect of dairy matrices on the survival of Streptococcus thermophilus , Brevibacterium aurantiacum and Hafnia alvei during digestion. Food Res Int 2017; 100:477-488. [DOI: 10.1016/j.foodres.2017.07.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022]
|
41
|
Modulating fat digestion through food structure design. Prog Lipid Res 2017; 68:109-118. [DOI: 10.1016/j.plipres.2017.10.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 01/21/2023]
|
42
|
Thévenot J, Cauty C, Legland D, Dupont D, Floury J. Pepsin diffusion in dairy gels depends on casein concentration and microstructure. Food Chem 2017; 223:54-61. [DOI: 10.1016/j.foodchem.2016.12.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 01/23/2023]
|
43
|
Lamothe S, Rémillard N, Tremblay J, Britten M. Influence of dairy matrices on nutrient release in a simulated gastrointestinal environment. Food Res Int 2017; 92:138-146. [DOI: 10.1016/j.foodres.2016.12.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/21/2016] [Accepted: 12/24/2016] [Indexed: 01/15/2023]
|
44
|
Xing G, Rui X, Jiang M, Xiao Y, Guan Y, Wang D, Dong M. In vitro gastrointestinal digestion study of a novel bio-tofu with special emphasis on the impact of microbial transglutaminase. PeerJ 2016; 4:e2754. [PMID: 27994970 PMCID: PMC5162802 DOI: 10.7717/peerj.2754] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/04/2016] [Indexed: 11/23/2022] Open
Abstract
We have developed a novel bio-tofu, made from mixed soy and cow milk (MSCM), using Lactobacillus helveticus MB2-1 and Lactobacillus plantarum B1-6 incorporated with microbial transglutaminase (MTGase) as coagulant. MTGase was added to improve the textural properties and suit for cooking. However, the effect of MTGase on the digestion of mixed-protein fermented by lactic acid bacteria was unclear. This study aimed at evaluating the effect of MTGase on protein digestion of bio-tofu under simulated gastrointestinal digestion condition. The results showed that addition of MTGase could affect the particle size distribution, degree of hydrolysis, the content of soluble proteins and free amino acids. Based on the electrophoresis data, MTGase addition enhanced protein polymerization. During gastric and intestinal digestion process, proteins from bio-tofu were degraded into low molecular mass peptides. Our results suggested that incorporation of MTGase could lead to enzymatic modification of proteins of bio-tofu which may help in controlling energy intake and decrease the chance of food allergy.
Collapse
Affiliation(s)
- Guangliang Xing
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing , P. R. China
| | - Xin Rui
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing , P. R. China
| | - Mei Jiang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China; Huai'an Academy of Nanjing Agricultural University, Huai'an, P. R. China
| | - Yu Xiao
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing , P. R. China
| | - Ying Guan
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing , P. R. China
| | - Dan Wang
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing , P. R. China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing , P. R. China
| |
Collapse
|
45
|
Rui X, Xing G, Zhang Q, Zare F, Li W, Dong M. Protein bioaccessibility of soymilk and soymilk curd prepared with two Lactobacillus plantarum strains as assessed by in vitro gastrointestinal digestion. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.09.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Fang X, Rioux LE, Labrie S, Turgeon SL. Disintegration and nutrients release from cheese with different textural properties during in vitro digestion. Food Res Int 2016. [DOI: 10.1016/j.foodres.2016.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
Rui X, Fu Y, Zhang Q, Li W, Zare F, Chen X, Jiang M, Dong M. A comparison study of bioaccessibility of soy protein gel induced by magnesiumchloride, glucono-δ-lactone and microbial transglutaminase. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.03.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Hernández-Galán L, Cardador-Martínez A, López-del-Castillo M, Picque D, Spinnler HE, Martín del Campo ST. Antioxidant and angiotensin-converting enzyme inhibitory activity in fresh goat cheese prepared without starter culture: a preliminary study. CYTA - JOURNAL OF FOOD 2016. [DOI: 10.1080/19476337.2016.1202325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Fang X, Rioux LE, Labrie S, Turgeon SL. Commercial cheeses with different texture have different disintegration and protein/peptide release rates during simulated in vitro digestion. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.01.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Norton JE, Gonzalez Espinosa Y, Watson RL, Spyropoulos F, Norton IT. Functional food microstructures for macronutrient release and delivery. Food Funct 2016; 6:663-78. [PMID: 25553863 DOI: 10.1039/c4fo00965g] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is a need to understand the role of fat, protein and carbohydrate in human health, and also how foods containing and/or structured using these macronutrients can be designed so that they can have a positive impact on health. This may include a reduction in fat, salt or sugar, the protection and targeted release of micronutrients or active ingredients from/to particular parts of the digestive system, improvement of gastrointestinal health or satiety enhancing properties. Such foods can be designed with various macro- and microstructures that will impact on macronutrient release and delivery. These include simple and double emulsions, the use of Pickering particles and shells, nanoparticles, liposomes, gelled networks, fluid gels and gel particles, foams, self-assembled structures, and encapsulated systems. In order to design foods that deliver these benefits understanding of how these structures behave in the gastrointestinal tract is also required, which should involve utilising both in vitro and in vivo studies. This review aims to draw together research in these areas, by focusing on the current state of the art, but also exciting possibilities for future research and food development.
Collapse
Affiliation(s)
- J E Norton
- University of Birmingham, Birmingham, West Midlands, UK.
| | | | | | | | | |
Collapse
|