1
|
Montagano F, Dell'Orco F, Prete R, Corsetti A. Health benefits of fermented olives, olive pomace and their polyphenols: a focus on the role of lactic acid bacteria. Front Nutr 2024; 11:1467724. [PMID: 39360269 PMCID: PMC11444980 DOI: 10.3389/fnut.2024.1467724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Fermented foods have regained popularity in Western diets for their health-promoting potential, mainly related to the role of lactic acid bacteria (LAB) during the fermentation process. Nowadays, there is an increasing demand for vegetable-based fermented foods, representing an environmentally sustainable options to overcome the limitations of lactose intolerance, vegetarian, or cholesterol-restricted diets. Among them, table olives and their co-products (i.e., olive pomace) represent important plant-origin matrices, whose exploitation is still limited. Olives are an important source of fiber and bioactive molecules such as phenolic compounds with recognized health-promoting effects. Based on that, this minireview offer a brief overview about the potential beneficial role of fermented table olives/olive pomace, with a particular focus on the role of LAB to obtain healthy and/or probiotic-enriched fermented foods.
Collapse
Affiliation(s)
- Federica Montagano
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Francesca Dell'Orco
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Roberta Prete
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Aldo Corsetti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
2
|
Rus-Fernández P, Fuentes A. Fermentation starters and bacteriocins as biocontrol strategies for table olives preservation: a mini-review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39248037 DOI: 10.1002/jsfa.13874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
Biopreservation is a powerful strategy to prolong the shelf life of food products by applying naturally occurring microorganisms and/or their metabolites. Current food trends emphasise the need to develop alternatives for chemical or thermal preservation methods. In this line, different fermentation starters from table olives present the potential to control spoilage or pathogen-occurring microorganism in table olives storage. One of the most interesting family used as biopreservative culture is Lactobacillaceae and it has also been used in combination with yeasts as olive fermentation starter. Lactic acid bacteria, from Lactobacillaceae family, are characterised by the production of bacteriocins, proteins with the potential for preserving food by changing the organisation of the membrane of spoilage microorganisms. These bacteriocins-producing bacteria can be directly inoculated, although nanosystem technology is the most promising incorporation strategy. In table olives, the most commonly used starters are Lactiplantibacillus plantarum, Lactiplantibacillus pentosus, Saccharomyces cerevisiae, Wickerhamomyces anomalus, among others. These strains with biopreservation characteristics, inoculated alone or in mixed cultures, ensure food safety by conferring the product added value and prolonging product shelf life. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Patricia Rus-Fernández
- Instituto de Ingeniería de Alimentos - FoodUPV, Universitat Politècnica de València, Valencia, Spain
| | - Ana Fuentes
- Instituto de Ingeniería de Alimentos - FoodUPV, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
3
|
Doukaki A, Papadopoulou OS, Tzavara C, Mantzara AM, Michopoulou K, Tassou C, Skandamis P, Nychas GJ, Chorianopoulos N. Monitoring the Bioprotective Potential of Lactiplantibacillus pentosus Culture on Pathogen Survival and the Shelf-Life of Fresh Ready-to-Eat Salads Stored under Modified Atmosphere Packaging. Pathogens 2024; 13:557. [PMID: 39057784 PMCID: PMC11280402 DOI: 10.3390/pathogens13070557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Globally, fresh vegetables or minimally processed salads have been implicated in several foodborne disease outbreaks. This work studied the effect of Lactiplantibacillus pentosus FMCC-B281 cells (F) and its supernatant (S) on spoilage and on the fate of Listeria monocytogenes and Escherichia coli O157:H7 on fresh-cut ready-to-eat (RTE) salads during storage. Also, Fourier transform infrared (FTIR) and multispectral imaging (MSI) analysis were used as rapid and non-destructive techniques to estimate the microbiological status of the samples. Fresh romaine lettuce, rocket cabbage, and white cabbage were used in the present study and were inoculated with L. pentosus and the two pathogens. The strains were grown at 37 °C for 24 h in MRS and BHI broths, respectively, and then were centrifuged to collect the supernatant and the pellet (cells). Cells (F, ~5 log CFU/g), the supernatant (S), and a control (C, broth) were used to spray the leaves of each fresh vegetable that had been previously contaminated (sprayed) with the pathogen (3 log CFU/g). Subsequently, the salads were packed under modified atmosphere packaging (10%CO2/10%O2/80%N2) and stored at 4 and 10 °C until spoilage. During storage, microbiological counts and pH were monitored in parallel with FTIR and MSI analyses. The results showed that during storage, the population of the pathogens increased for lettuce and rocket independent of the treatment. For cabbage, pathogen populations remained stable throughout storage. Regarding the spoilage microbiota, the Pseudomonas population was lower in the F samples, while no differences in the populations of Enterobacteriaceae and yeasts/molds were observed for the C, F, and S samples stored at 4 °C. According to sensory evaluation, the shelf-life was shorter for the control samples in contrast to the S and F samples, where their shelf-life was elongated by 1-2 days. Initial pH values were ca. 6.0 for the three leafy vegetables. An increase in the pH of ca. 0.5 values was recorded until the end of storage at both temperatures for all cases of leafy vegetables. FTIR and MSI analyses did not satisfactorily lead to the estimation of the microbiological quality of salads. In conclusion, the applied bioprotective strain (L. pentosus) can elongate the shelf-life of the RTE salads without an effect on pathogen growth.
Collapse
Affiliation(s)
- Angeliki Doukaki
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.D.); (C.T.); (A.-M.M.); (K.M.); (G.-J.N.)
| | - Olga S. Papadopoulou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization–DIMITRA, S. Venizelou 1, Lycovrissi, 14123 Athens, Greece; (O.S.P.); (C.T.)
| | - Chrysavgi Tzavara
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.D.); (C.T.); (A.-M.M.); (K.M.); (G.-J.N.)
| | - Aikaterini-Malevi Mantzara
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.D.); (C.T.); (A.-M.M.); (K.M.); (G.-J.N.)
| | - Konstantina Michopoulou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.D.); (C.T.); (A.-M.M.); (K.M.); (G.-J.N.)
| | - Chrysoula Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization–DIMITRA, S. Venizelou 1, Lycovrissi, 14123 Athens, Greece; (O.S.P.); (C.T.)
| | - Panagiotis Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - George-John Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.D.); (C.T.); (A.-M.M.); (K.M.); (G.-J.N.)
| | - Nikos Chorianopoulos
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.D.); (C.T.); (A.-M.M.); (K.M.); (G.-J.N.)
| |
Collapse
|
4
|
Gounari Z, Bonatsou S, Ferrocino I, Cocolin L, Papadopoulou OS, Panagou EZ. Exploring yeast diversity of dry-salted naturally black olives from Greek retail outlets with culture dependent and independent molecular methods. Int J Food Microbiol 2023; 398:110226. [PMID: 37120943 DOI: 10.1016/j.ijfoodmicro.2023.110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
In the present study, the physicochemical (pH, water activity, moisture content, salt concentration) classical plate counts (total viable counts, yeasts, lactic acid bacteria, Staphylococcus aureus, Pseudomonas spp., Enterobacteriaceae) and amplicon sequencing of naturally black dry-salted olives obtained from different retail outlets of the Greek market were investigated. According to the results, the values of the physicochemical characteristics presented great variability among the samples. Specifically, pH and water activity (aw) values ranged between 4.0 and 5.0, as well as between 0.58 and 0.91, respectively. Moisture content varied between 17.3 and 56.7 % (g Η2Ο/100 g of olive pulp), whereas salt concentration ranged from 5.26 to 9.15 % (g NaCl/100 g of olive pulp). No lactic acid bacteria, S. aureus, Pseudomonas spp. and Enterobacteriaceae were detected. The mycobiota consisted of yeasts that were further characterized and identified by culture-dependent (rep-PCR, ITS-PCR, and RFLP) and amplicon target sequencing (ATS). Pichia membranifaciens, Candida sorbosivorans, Citeromyces nyonsensis, Candida etchelsii, Wickerhamomyces subpelliculosus, Candida apicola, Wickerhamomyces anomalus, Torulaspora delbrueckii and Candida versatilis were the dominant species according to ITS sequencing (culture-dependent), while ATS revealed the dominance of C. etchelsii, Pichia triangularis, P. membranifaciens, and C. versatilis among samples. The results of this study demonstrated considerable variability in quality attributes among the different commercial samples of dry-salted olives, reflecting a lack of standardization in the processing of this commercial style. However, the majority of the samples were characterized by satisfactory microbiological and hygienic quality and complied with the requirements of the trade standard for table olives of the International Olive Council (IOC) for this processing style in terms of salt concentration. In addition, the diversity of yeast species was elucidated for the first time in commercially available products, increasing our knowledge on the microbial ecology of this traditional food. Further investigation into the technological and multifunctional traits of the dominant yeast species may result in better control during dry-salting and enhance the quality and shelf-life of the final product.
Collapse
Affiliation(s)
- Zoe Gounari
- Agricultural University of Athens, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Laboratory of Microbiology and Biotechnology of Foods, Iera Odos 75, Athens 11855, Greece
| | - Stamatoula Bonatsou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Laboratory of Microbiology and Biotechnology of Foods, Iera Odos 75, Athens 11855, Greece
| | - Ilario Ferrocino
- University of Turin, Department of Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Luca Cocolin
- University of Turin, Department of Agricultural, Forestry and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Olga S Papadopoulou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, S. Venizelou 1, Lycovrissi 14123, Attiki, Greece
| | - Efstathios Z Panagou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Laboratory of Microbiology and Biotechnology of Foods, Iera Odos 75, Athens 11855, Greece.
| |
Collapse
|
5
|
Tzamourani AP, Kasimati A, Karagianni E, Manthou E, Panagou EZ. Exploring microbial communities of Spanish-style green table olives of Conservolea and Halkidiki cultivars during modified atmosphere packaging in multi-layered pouches through culture-dependent techniques and metataxonomic analysis. Food Microbiol 2022; 107:104063. [DOI: 10.1016/j.fm.2022.104063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022]
|
6
|
Michailidou S, Trikka F, Pasentsis K, Petrovits GE, Kyritsi M, Argiriou A. Insights into the evolution of Greek style table olives microbiome stored under modified atmosphere: Biochemical implications on the product quality. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Pimentel TC, Gomes de Oliveira LI, de Lourdes Chaves Macedo E, Costa GN, Dias DR, Schwan RF, Magnani M. Understanding the potential of fruits, flowers, and ethnic beverages as valuable sources of techno-functional and probiotics strains: Current scenario and main challenges. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
A Review on Adventitious Lactic Acid Bacteria from Table Olives. Foods 2020; 9:foods9070948. [PMID: 32709144 PMCID: PMC7404733 DOI: 10.3390/foods9070948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/18/2022] Open
Abstract
Spontaneous fermentation constitutes the basis of the chief natural method of processing of table olives, where autochthonous strains of lactic acid bacteria (LAB) play a dominant role. A thorough literature search has unfolded 197 reports worldwide, published in the last two decades, that indicate an increasing interest in table olive-borne LAB, especially in Mediterranean countries. This review attempted to extract extra information from such a large body of work, namely, in terms of correlations between LAB strains isolated, manufacture processes, olive types, and geographical regions. Spain produces mostly green olives by Spanish-style treatment, whereas Italy and Greece produce mainly green and black olives, respectively, by both natural and Spanish-style. More than 40 species belonging to nine genera of LAB have been described; the genus most often cited is Lactobacillus, with L. plantarum and L. pentosus as most frequent species—irrespective of country, processing method, or olive type. Certain LAB species are typically associated with cultivar, e.g., Lactobacillus parafarraginis with Spanish Manzanilla, or L. paraplantarum with Greek Kalamata and Conservolea, Portuguese Galega, and Italian Tonda di Cagliari. Despite the potential of native LAB to serve as starter cultures, extensive research and development efforts are still needed before this becomes a commercial reality in table olive fermentation.
Collapse
|
9
|
Perpetuini G, Prete R, Garcia-Gonzalez N, Khairul Alam M, Corsetti A. Table Olives More than a Fermented Food. Foods 2020; 9:E178. [PMID: 32059387 PMCID: PMC7073621 DOI: 10.3390/foods9020178] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
Table olives are one of the oldest vegetable fermented foods in the Mediterranean area. Beside their economic impact, fermented table olives represent also an important healthy food in the Mediterranean diet, because of their high content of bioactive and health-promoting compounds. However, olive fermentation is still craft-based following traditional processes, which can lead to a not fully predictable final product with the risk of spontaneous alterations. Nowadays, food industries have to face consumer demands for safe and healthy products. This review offers an overview about the main technologies used for olive fermentation and the role of lactic acid bacteria and yeasts characterizing this niche during the fermentation. Particular attention is offered to the selection and use of microorganisms as starter cultures to fasten and improve the safety of table olives. The development and implementation of multifunctional starter cultures in order to obtain heath-oriented table olives is also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Aldo Corsetti
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, 641000 Teramo, Italy; (G.P.); (R.P.); (N.G.-G.); (M.K.A.)
| |
Collapse
|
10
|
Babich O, Dyshlyuk L, Sukhikh S, Prosekov A, Ivanova S, Pavsky V, Chaplygina T, Kriger O. Effects of Biopreservatives Combined with Modified Atmosphere Packaging on the Quality of Apples and Tomatoes. POL J FOOD NUTR SCI 2019. [DOI: 10.31883/pjfns/110564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Camacho F, Macedo A, Malcata F. Potential Industrial Applications and Commercialization of Microalgae in the Functional Food and Feed Industries: A Short Review. Mar Drugs 2019; 17:E312. [PMID: 31141887 PMCID: PMC6628611 DOI: 10.3390/md17060312] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 12/23/2022] Open
Abstract
Bioactive compounds, e.g., protein, polyunsaturated fatty acids, carotenoids, vitamins and minerals, found in commercial form of microalgal biomass (e.g., powder, flour, liquid, oil, tablet, or capsule forms) may play important roles in functional food (e.g., dairy products, desserts, pastas, oil-derivatives, or supplements) or feed (for cattle, poultry, shellfish, and fish) with favorable outcomes upon human health, including antioxidant, anti-inflammatory, antimicrobial, and antiviral effects, as well as prevention of gastric ulcers, constipation, anemia, diabetes, and hypertension. However, scale up remains a major challenge before commercial competitiveness is attained. Notwithstanding the odds, a few companies have already overcome market constraints, and are successfully selling extracts of microalgae as colorant, or supplement for food and feed industries. Strong scientific evidence of probiotic roles of microalgae in humans is still lacking, while scarce studies have concluded on probiotic activity in marine animals upon ingestion. Limitations in culture harvesting and shelf life extension have indeed constrained commercial viability. There are, however, scattered pieces of evidence that microalgae play prebiotic roles, owing to their richness in oligosaccharides-hardly fermented by other members of the intestinal microbiota, or digested throughout the gastrointestinal tract of humans/animals for that matter. However, consistent applications exist only in the dairy industry and aquaculture. Despite the underlying potential in formulation of functional food/feed, extensive research and development efforts are still required before microalgae at large become a commercial reality in food and feed formulation.
Collapse
Affiliation(s)
- Franciele Camacho
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| | - Angela Macedo
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
- UNICES-ISMAI-University Institute of Maia, Av. Carlos Oliveira Campos, 4475-690 Maia, Portugal.
| | - Francisco Malcata
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
12
|
Lee HL, Park SY, An DS, Lee DS. A novel kimchi
container with an atmosphere actively controlled by time-programmed vacuumizing and CO2
flushing. J FOOD PROCESS ENG 2018. [DOI: 10.1111/jfpe.12820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hye Lim Lee
- Department of Food Science and Biotechnology; Kyungnam University, 7 Kyungnamdaehak-ro; Masanhappo-gu Changwon 51767 South Korea
| | - Su Yeon Park
- Department of Food Science and Biotechnology; Kyungnam University, 7 Kyungnamdaehak-ro; Masanhappo-gu Changwon 51767 South Korea
| | - Duck Soon An
- Department of Food Science and Biotechnology; Kyungnam University, 7 Kyungnamdaehak-ro; Masanhappo-gu Changwon 51767 South Korea
| | - Dong Sun Lee
- Department of Food Science and Biotechnology; Kyungnam University, 7 Kyungnamdaehak-ro; Masanhappo-gu Changwon 51767 South Korea
| |
Collapse
|
13
|
López-López A, Moreno-Baquero JM, Rodríguez-Gómez F, García-García P, Garrido-Fernández A. Sensory Assessment by Consumers of Traditional and Potentially Probiotic Green Spanish-Style Table Olives. Front Nutr 2018; 5:53. [PMID: 29998110 PMCID: PMC6028594 DOI: 10.3389/fnut.2018.00053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/04/2018] [Indexed: 11/13/2022] Open
Abstract
This work presents the sensory characterization by consumers of traditionally and potentially probiotic green Spanish-style table olives. To this aim, green Manzanilla olives from the same lot were debittered, washed, and brined in the same way; then, one sub-lot was allowed fermenting spontaneously while another one was inoculated with a putative probiotic bacterium (Lactobacillus pentosus TOMC-LAB2). After fermentation, the olives from both sub-lots were packed with fresh brine to reach 5.5 g/100 mL NaCl and 0.6 g lactic acid/100 mL in the equilibrium. The stabilized olives were then subjected to sensory evaluation by 200 consumers, and the results were analyzed by ANOVA and multivariate statistical techniques. In a first approach, consumers perceived the spontaneously fermented olives as similar to the potentially probiotic product. However, a biplot based on Canonical Variate Analysis (CVA) showed differences between them in the Salty and Overall score. When data from the consumer test were assessed by PLS analysis, regardless of the fermentation system, Overall score, and Buying predisposition were significantly driven by Appearance, Odor, Salty (negatively), Hardness, and Crispness.
Collapse
Affiliation(s)
- Antonio López-López
- Food Biotechnology Deparment, Instituto de la Grasa (Consejo Superior de Investigaciones Científicas), Sevilla, Spain
| | - José M Moreno-Baquero
- Food Biotechnology Deparment, Instituto de la Grasa (Consejo Superior de Investigaciones Científicas), Sevilla, Spain
| | - Francisco Rodríguez-Gómez
- Food Biotechnology Deparment, Instituto de la Grasa (Consejo Superior de Investigaciones Científicas), Sevilla, Spain
| | - Pedro García-García
- Food Biotechnology Deparment, Instituto de la Grasa (Consejo Superior de Investigaciones Científicas), Sevilla, Spain
| | - Antonio Garrido-Fernández
- Food Biotechnology Deparment, Instituto de la Grasa (Consejo Superior de Investigaciones Científicas), Sevilla, Spain
| |
Collapse
|
14
|
Lavermicocca P, Angiolillo L, Lonigro SL, Valerio F, Bevilacqua A, Perricone M, Del Nobile MA, Corbo MR, Conte A. Lactobacillus plantarum 5BG Survives During Refrigerated Storage Bio-Preserving Packaged Spanish-Style Table Olives (cv. Bella di Cerignola). Front Microbiol 2018; 9:889. [PMID: 29867802 PMCID: PMC5949355 DOI: 10.3389/fmicb.2018.00889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/18/2018] [Indexed: 11/13/2022] Open
Abstract
This paper proposes bio-preservation as a tool to assure quality and safety of Spanish-style table olives cv. Bella di Cerignola. Lactobacillus plantarum 5BG was inoculated in ready to sell olives packaged in an industrial plant by using a half-volume brine (4% NaCl; 2% sucrose). The samples were stored at 4°C. The survival of the inoculated strain, the microbiological quality, the sensory scores and the survival of a strain of Listeria monocytogenes inoculated in brines were evaluated. The persistence of the Lb. plantarum bio-preserving culture was confirmed on olives (≥6.5 Log CFU/g) and in brine (≥7 Log CFU/ml). Bio-preserved olives (SET1) showed a better sensory profile than chemically acidified control olives (SET2) and the texture was the real discriminative parameter among samples. Bio-preserved olives recorded better scores during storage because of their ability to retain good hardness, crunchiness, and fibrousness without cracks. The inoculation of Lb. plantarum positively acted on the safety of olives, as the D-value of L. monocytogenes was reduced from 40 (SET2) to 5 days (SET1). In conclusion, Lb. plantarum 5BG and the physico-chemical conditions achieved in the settled procedure are suitable for the industrial packaging of Bella di Cerignola table olives, improving the process by halving brining volumes and avoiding chemical stabilizers, and significantly reducing the salt concentration. The final product is also safely preserved for almost 5 months as suggested by the reduction of the survival rate of L. monocytogenes.
Collapse
Affiliation(s)
- Paola Lavermicocca
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Luisa Angiolillo
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Stella L. Lonigro
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Francesca Valerio
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Antonio Bevilacqua
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Marianne Perricone
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Matteo A. Del Nobile
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Maria R. Corbo
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Amalia Conte
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| |
Collapse
|
15
|
Campus M, Değirmencioğlu N, Comunian R. Technologies and Trends to Improve Table Olive Quality and Safety. Front Microbiol 2018; 9:617. [PMID: 29670593 PMCID: PMC5894437 DOI: 10.3389/fmicb.2018.00617] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/16/2018] [Indexed: 12/17/2022] Open
Abstract
Table olives are the most widely consumed fermented food in the Mediterranean countries. Peculiar processing technologies are used to process olives, which are aimed at the debittering of the fruits and improvement of their sensory characteristics, ensuring safety of consumption at the same time. Processors demand for novel techniques to improve industrial performances, while consumers' attention for natural and healthy foods has increased in recent years. From field to table, new techniques have been developed to decrease microbial load of potential spoilage microorganisms, improve fermentation kinetics and ensure safety of consumption of the packed products. This review article depicts current technologies and recent advances in the processing technology of table olives. Attention has been paid on pre processing technologies, some of which are still under-researched, expecially physical techniques, such ad ionizing radiations, ultrasounds and electrolyzed water solutions, which are interesting also to ensure pesticide decontamination. The selections and use of starter cultures have been extensively reviewed, particularly the characterization of Lactic Acid Bacteria and Yeasts to fasten and safely drive the fermentation process. The selection and use of probiotic strains to address the request for functional foods has been reported, along with salt reduction strategies to address health concerns, associated with table olives consumption. In this respect, probiotics enriched table olives and strategies to reduce sodium intake are the main topics discussed. New processing technologies and post packaging interventions to extend the shelf life are illustrated, and main findings in modified atmosphere packaging, high pressure processing and biopreservaton applied to table olive, are reported and discussed.
Collapse
Affiliation(s)
- Marco Campus
- Agris Sardegna, Agricultural Research Agency of Sardinia, Sassari, Italy
| | - Nurcan Değirmencioğlu
- Department of Food Processing, Bandirma Vocational High School, Bandirma Onyedi Eylül University, Bandirma, Turkey
| | - Roberta Comunian
- Agris Sardegna, Agricultural Research Agency of Sardinia, Sassari, Italy
| |
Collapse
|
16
|
Guo Z, Jia X, Zheng Z, Lu X, Zheng Y, Zheng B, Xiao J. Chemical composition and nutritional function of olive (Olea europaea L.): a review. PHYTOCHEMISTRY REVIEWS 2017. [DOI: 10.1007/s11101-017-9526-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Evaluation of Olive Preservation Methods on Bioactive Constituents and Antioxidant Properties of Olive Oils. J AM OIL CHEM SOC 2017. [DOI: 10.1007/s11746-017-2971-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Romero-Gil V, Rejano-Zapata L, Garrido-Fernández A, Arroyo-López FN. Effect of zinc formulations, sodium chloride, and hydroxytyrosol on the growth/no-growth boundaries of table olive related yeasts. Food Microbiol 2016; 57:71-80. [PMID: 27052704 DOI: 10.1016/j.fm.2016.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/02/2015] [Accepted: 01/22/2016] [Indexed: 11/19/2022]
Abstract
This study uses a mathematical approach to assessing the inhibitory effect of Zn(2)(+)(0-10 mM, obtained from ZnCl2 and ZnSO4) in presence of NaCl (0-8%) and hydroxytyrosol (0-2588 mg/L), on a yeast cocktail formed by species Pichia galeiformis, Pichia kudriavzevii, Pichia manshurica and Candida thaimueangensis obtained from spoilt green olive packages. The logistic/probabilistic models were built in laboratory medium using a total of 1980 responses (1188 for NaCl and 792 for hydroxytyrosol). ZnCl2 showed significantly higher inhibitory effect than ZnSO4 in the presence of both NaCl (p < 0.033) and hydroxytyrosol (p < 0.009). NaCl did not interfere the effect of Zn(2)(+)while hydroxytyrosol, at high levels, had a slight antagonistic effect. According to models, Zn(2)(+)inhibits (p = 0.01) the yeast cocktail in the range 4.5-5.0 mM for ZnCl2, or 8.5-9.5 mM for ZnSO4. Therefore, this work confirms the fungicidal activity of zinc compounds (mainly ZnCl2) in synthetic medium, and also shows that the loss of zinc effectiveness in real green Spanish-style olive packaging is not due to the presence of NaCl or hydroxytyrosol, two of the most abundant chemical compounds in the product.
Collapse
Affiliation(s)
- V Romero-Gil
- Food Biotechnology Department, Instituto de la Grasa (Agencia Estatal Consejo Superior de Investigaciones Científicas, CSIC), Campus Universitario Pablo de Olavide, Building 46, Ctra. Utrera, km 1, 41013 Seville, Spain
| | - L Rejano-Zapata
- AgroSevilla SCA, Paseo de Castellmadama s/n, 41590 La Roda de Andalucia, Seville, Spain
| | - A Garrido-Fernández
- Food Biotechnology Department, Instituto de la Grasa (Agencia Estatal Consejo Superior de Investigaciones Científicas, CSIC), Campus Universitario Pablo de Olavide, Building 46, Ctra. Utrera, km 1, 41013 Seville, Spain
| | - F N Arroyo-López
- Food Biotechnology Department, Instituto de la Grasa (Agencia Estatal Consejo Superior de Investigaciones Científicas, CSIC), Campus Universitario Pablo de Olavide, Building 46, Ctra. Utrera, km 1, 41013 Seville, Spain.
| |
Collapse
|
19
|
Blana VA, Polymeneas N, Tassou CC, Panagou EZ. Survival of potential probiotic lactic acid bacteria on fermented green table olives during packaging in polyethylene pouches at 4 and 20 °C. Food Microbiol 2015; 53:71-5. [PMID: 26678132 DOI: 10.1016/j.fm.2015.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 11/25/2022]
Abstract
The survival of selected lactic acid bacteria (LAB) with in vitro probiotic potential was studied during storage of cv. Halkidiki green olives previously subjected to inoculated Spanish-style fermentation. After fermentation olives were packed in polyethylene pouches, covered with freshly prepared brine (9%, w/v, NaCl), acidified with 2‰ (w/v) citric acid and 1.5‰ (w/v) ascorbic acid, and stored at 4 and 20 °C for 357 days. Four packing treatments were studied, namely olives previously fermented by (i) the indigenous microbiota (control); (ii) Lactobacillus pentosus B281; (iii) Lactobacillus plantarum B282; and (iv) a co-culture of both LAB strains. Microbiological analyses were performed on the olives in parallel with physicochemical changes (pH, titratable acidity, salt content, aw and colour) at the early (day 1), middle (day 197) and final stage (day 357) of storage, as well as sensory evaluation at the end of the storage. The survival of probiotic strains was confirmed by Pulsed Field Gel Electrophoresis (PFGE). LAB decreased throughout storage reaching a final population of ca. 3.5-4.0 log CFU/g and 4.5-5.0 log CFU/g at 4 and 20 °C, respectively. The pH values ranged between 3.90 and 4.61 during storage depending on packaging condition. PFGE analysis revealed that L. pentosus B281 and L. plantarum B282 showed a high survival rate with a recovery of 100 and 96%, respectively, at 4 °C, and less than 20% for both strains at 20 °C. Finally, in the packing treatment with a co-culture of both strains, L. pentosus dominated over L. plantarum throughout storage at both temperatures.
Collapse
Affiliation(s)
- Vasiliki A Blana
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Napoleon Polymeneas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Chrysoula C Tassou
- Hellenic Agricultural Organization - DEMETER, Institute of Technology of Agricultural Products, Sof. Venizelou 1, Lycovrissi, 14123 Athens, Greece
| | - Efstathios Z Panagou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
| |
Collapse
|