1
|
Liang B, Xing D. The Current and Future Perspectives of Postbiotics. Probiotics Antimicrob Proteins 2023; 15:1626-1643. [PMID: 36763279 PMCID: PMC9913028 DOI: 10.1007/s12602-023-10045-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 02/11/2023]
Abstract
With the emphasis on intestinal health, probiotics have exploded into a vast market potential. However, new scientific evidence points out that the beneficial health benefits of probiotics are not necessarily directly related to viable bacteria. However, the metabolites or bacterial components of the live bacteria are the driving force behind health promotion. Therefore, scientists gradually noticed that the beneficial effects of probiotics are based on bacteria itself, metabolites, or cell lysates, and these factors are officially named "postbiotics" by the ISAPP. Postbiotic components are diverse and outperform live probiotics in terms of technology, safety, and cost due to their good absorption, metabolism, and organismal distribution. Postbiotics have been shown to have bioactivities such as antimicrobial, antioxidant, anti-inflammatory, anti-proliferative, and immunomodulation. Moreover, numerous studies have revealed the significant potential of postbiotics for disease treatment. This paper first presents the production and classification of postbiotics with examples from lactic acid bacteria (LAB), followed by the mechanisms of action with the most recent pre-clinical and clinical studies and the wide range of non-clinical and clinical applications of postbiotics. Furthermore, the current and future prospects of the postbiotic market with commercial available products are discussed. Finally, we comment on the knowledge gaps and future clinical applications with several examples.
Collapse
Affiliation(s)
- Bing Liang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
- Cancer Institute, Qingdao University, Qingdao, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Cancer Institute, Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Wang J, Xu L, Gu L, Lv Y, Li J, Yang Y, Meng X. Cell-Free Supernatant of Lactiplantibacillus plantarum 90: A Clean Label Strategy to Improve the Shelf Life of Ground Beef Gel and Its Bacteriostatic Mechanism. Foods 2023; 12:4053. [PMID: 38002111 PMCID: PMC10670453 DOI: 10.3390/foods12224053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Lactic acid bacteria metabolites can be used as a clean-label strategy for meat products due to their "natural" and antibacterial properties. In this study, the feasibility of using cell-free supernatant of Lactiplantibacillus plantarum 90 (LCFS) as a natural antibacterial agent in ground beef was investigated. The sensitivity of LCFS to pH, heat and protease, as well as the changes of enzyme activities of alkaline phosphatase (AKP) and Na+/K+-ATP together with the morphology of indicator bacteria after LCFS treatment, were analyzed to further explore the antibacterial mechanism of LCFS. The results showed that the addition of 0.5% LCFS inhibited the growth of microorganisms in the ground beef gel and extended its shelf-life without affecting the pH, cooking loss, color and texture characteristics of the product. In addition, the antibacterial effect of LCFS was the result of the interaction of organic acids and protein antibacterial substances in destroying cell structures (cell membrane, etc.) to achieve the purpose of bacteriostasis. This study provides a theoretical basis for the application of LCFS in meat products and a new clean-label strategy for the food industry.
Collapse
Affiliation(s)
- Jing Wang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China;
| | - Lilan Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Luping Gu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.G.); (Y.L.); (J.L.)
| | - Yuanqi Lv
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.G.); (Y.L.); (J.L.)
| | - Junhua Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.G.); (Y.L.); (J.L.)
| | - Yanjun Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.G.); (Y.L.); (J.L.)
| | - Xiangren Meng
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China;
- Chinese Cuisine Promotion and Research Base, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
3
|
Unraveling the antibacterial mechanism of Lactiplantibacillus plantarum MY2 cell-free supernatants against Aeromonas hydrophila ST3 and potential application in raw tuna. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Sun X, Sun L, Su L, Wang H, Wang D, Liu J, Sun E, Hu G, Liu C, Gao A, Jin Y, Zhao L. Effects of Microbial Communities on Volatile Profiles and Biogenic Amines in Beef Jerky from Inner Mongolian Districts. Foods 2022; 11:foods11172659. [PMID: 36076844 PMCID: PMC9455903 DOI: 10.3390/foods11172659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Beef jerky is a traditional fermented meat product from Inner Mongolia, handcrafted by artisans. We investigated the bacteria of the microbial community, volatile flavor components, and biogenic amines of Inner Mongolia beef jerky via high-throughput sequencing, solid-phase microextraction with gas chromatography−mass spectrometry, and high-performance liquid chromatography, respectively. Thirty-three bacteria were identified, predominantly from the genera Pseudomonas (45.4%), Ralstonia (13.4%), and Acinetobacter (7.3%). Fifty-nine volatile flavor compounds and eight biogenic amines were detected. Based on Spearman’s correlation coefficient, 20 bacterial genera were significantly associated with the dominant volatile compounds in the beef jerky samples (p < 0.05). The results demonstrated that beef jerky may be toxic due to cadaverine, putrescine, and histamine; moreover, the amounts of putrescine and cadaverine were positively correlated with the abundance of unclassified_f_Enterobacteriaceae (p < 0.05). These findings shed light on the formation of the microbial community, flavor components, and biogenic amines of beef jerky, thereby providing a basis for improving its quality.
Collapse
|
5
|
Mani-López E, Arrioja-Bretón D, López-Malo A. The impacts of antimicrobial and antifungal activity of cell-free supernatants from lactic acid bacteria in vitro and foods. Compr Rev Food Sci Food Saf 2021; 21:604-641. [PMID: 34907656 DOI: 10.1111/1541-4337.12872] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 01/12/2023]
Abstract
Lactic acid bacteria (LAB) are distinguished by their ability to produce lactic acid, among other interesting metabolites with antimicrobial activity. A cell-free supernatant (CFS) is a liquid containing the metabolites resulting from microbial growth and the residual nutrients of the medium used. CFS from LAB can have antimicrobial activity due to organic acids, fatty acids, and proteinaceous compounds, among other compounds. This review aims to summarize the information about CFS production, CFS composition, and the antimicrobial (antibacterial and antifungal) activity of CFS from LAB in vitro, on foods, and in active packaging. In addition, the mechanisms of action of CFS on cells, the stability of CFS during storage, CFS cytotoxicity, and the safety of CFS are reviewed. The main findings are that CFS's antibacterial and antifungal activity in vitro has been widely studied, particularly in members of the genus Lactobacillus. CFS has produced strong inhibition of bacteria and molds on foods when applied directly or in active packaging. In most studies, the compounds responsible for antimicrobial activity are identified. A few studies indicate that CFSs are stable for 1 to 5 months at temperatures ranging from 4 to 35°C. The cytotoxicity of CFS on human cells has not been well studied. However, the studies that have been performed reported no toxicity of CFS. Therefore, it is necessary to investigate novel growth mediums for CFS preparation that are compatible with food sensory properties. More studies into CFS stability and cytotoxic effects are also needed.
Collapse
Affiliation(s)
- Emma Mani-López
- Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas Puebla, Cholula, Puebla, Mexico
| | - Daniela Arrioja-Bretón
- Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas Puebla, Cholula, Puebla, Mexico
| | - Aurelio López-Malo
- Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas Puebla, Cholula, Puebla, Mexico
| |
Collapse
|
6
|
Inhibitory mechanism of cell-free supernatants of Lactobacillus plantarum on Proteus mirabilis and influence of the expression of histamine synthesis-related genes. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Wang H, Xia P, Lu Z, Su Y, Zhu W. Metabolome-Microbiome Responses of Growing Pigs Induced by Time-Restricted Feeding. Front Vet Sci 2021; 8:681202. [PMID: 34239912 PMCID: PMC8258120 DOI: 10.3389/fvets.2021.681202] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/20/2021] [Indexed: 01/25/2023] Open
Abstract
Time-restricted feeding (TRF) mode is a potential strategy in improving the health and production of farm animals. However, the effect of TRF on microbiota and their metabolism in the large intestine of the host remains unclear. Therefore, the present study aimed to investigate the responses of microbiome and metabolome induced by TRF based on a growing-pig model. Twelve crossbred growing barrows were randomly allotted into two groups with six replicates (1 pig/pen), namely, the free-access feeding group (FA) and TRF group. Pigs in the FA group were fed free access while the TRF group were fed free access within a regular time three times per day at 07:00–08:00, 12:00–13:00, and 18:00–19:00, respectively. Results showed that the concentrations of NH4-N, putrescine, cadaverine, spermidine, spermine, total biogenic amines, isobutyrate, butyrate, isovalerate, total SCFA, and lactate were increased while the pH value in the colonic digesta and the concentration of acetate was decreased in the TRF group. The Shannon index was significantly increased in the TRF group; however, no significant effects were found in the Fisher index, Simpson index, ACE index, Chao1 index, and observed species between the two groups. In the TRF group, the relative abundances of Prevotella 1 and Eubacterium ruminantium group were significantly increased while the relative abundances of Clostridium sensu sticto 1, Lactobacillus, and Eubacterium coprostanoligenes group were decreased compared with the FA group. PLS-DA analysis revealed an obvious and regular variation between the FA and TRF groups, further pathway enrichment analysis showed that these differential features were mainly enriched in pyrimidine metabolism, nicotinate and nicotinamide metabolism, glycerolipid metabolism, and fructose and mannose metabolism. In addition, Pearson's correlation analysis indicated that the changes in the microbial genera were correlated with the colonic metabolites. In conclusion, these results together indicated that although the overall microbial composition in the colon was not changed, TRF induced the gradient changes of the nutrients and metabolites which were correlated with certain microbial genera including Lactobacillus, Eubacterium_ruminantium group, Eubacterium coprostanoligenes group, Prevotella 1, and Clostridium sensu sticto 1. However, more studies are needed to understand the impacts of TRF on the health and metabolism of growing pigs.
Collapse
Affiliation(s)
- Hongyu Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Pengke Xia
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Zhiyang Lu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
The inhibition of cell-free supernatants of several lactic acid bacteria on the selected psychrophilic spoilage bacteria in liquid whole egg. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
The impact of cell-free supernatants of Lactococcus lactis subsp. lactis strains on the tyramine formation of Lactobacillus and Lactiplantibacillus strains isolated from cheese and beer. Food Microbiol 2021; 99:103813. [PMID: 34119100 DOI: 10.1016/j.fm.2021.103813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/24/2020] [Accepted: 04/12/2021] [Indexed: 11/23/2022]
Abstract
Tyramine is one of the most toxic biogenic amines and it is produced commonly by lactic acid bacteria in fermented food products. In present study, we investigated the influence of selected nisin-producing Lactococcus lactis subsp. lactis strains and their cell-free supernatants (CFSs) on tyramine production by four Lactobacillus and two Lactiplantibacillus strains isolated from cheese and beer. Firstly, we examined the antimicrobial effect of the CFSs from twelve Lactococcus strains against tested tyramine producers by agar-well diffusion assay. Six Lactococcus strains whose CFSs showed the highest antimicrobial effect on tyramine producers were further studied. Secondly, we investigated the influence of the selected six Lactococcus strains and their respective CFSs on tyramine production by tested Lactobacillus and Lactiplantibacillus strains in MRS broth supplemented with 2 g.L-1 of l-tyrosine. Tyramine production was monitored by HPLC-UV. The tyramine formation of all tested Lactobacillus and Lactiplantibacillus strains was not detected in the presence of Lc. lactis subsp. lactis CCDM 71 and CCDM 702, and their CFSs. Moreover, the remainder of the investigated Lactococcus strains (CCDM 670, CCDM 686, CCDM 689 and CCDM 731) and their CFSs decreased tyramine production significantly (P < 0.05) - even suppressing it completely in some cases - in four of the six tested tyramine producing strains.
Collapse
|
10
|
De Simone N, Capozzi V, de Chiara MLV, Amodio ML, Brahimi S, Colelli G, Drider D, Spano G, Russo P. Screening of Lactic Acid Bacteria for the Bio-Control of Botrytis cinerea and the Potential of Lactiplantibacillus plantarum for Eco-Friendly Preservation of Fresh-Cut Kiwifruit. Microorganisms 2021; 9:microorganisms9040773. [PMID: 33917211 PMCID: PMC8068009 DOI: 10.3390/microorganisms9040773] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 01/12/2023] Open
Abstract
Botrytis cinerea, responsible for grey mold, represents the first biological cause of fruit and vegetable spoilage phenomena in post-harvest. Kiwifruit is a climacteric fruit particularly prone to this mold infestation during storage. Lactic acid bacteria (LAB) are food-grade bacteria that can synthesize several metabolites with antimicrobial activity and are, therefore, suggested as promising and eco-friendly resources for the bio-control of molds on fruits and vegetables. In this work, we propose the screening of a collection of 300 LAB previously isolated from traditional sourdoughs for their ability to counteract in vitro the growth of Botrytis cinerea CECT 20973. Only 2% of tested LAB strains belonging to Lactiplantibacillus plantarum species, exerted a strong antagonism against B. cinerea. The cell-free supernatants were partially characterized and results clearly indicated that high levels of lactic acid contributed to the antagonistic activity. PAN01 and UFG 121 cell-free supernatants were investigated as potential bio-control agents in a preliminary in vivo assay using freshly cut kiwifruits as a food model. The application of cell-free supernatants allowed to delay the growth of B. cinerea on artificially contaminated kiwifruits until two weeks. The antagonistic activity was greatly affected by the storage temperature (25 °C and 4 °C) selected for the processed fruits, suggesting the importance to include microbial-based solution in a broader framework of hurdle technologies.
Collapse
Affiliation(s)
- Nicola De Simone
- Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (N.D.S.); (M.L.V.d.C.); (M.L.A.); (G.C.); (G.S.)
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy;
| | - Maria Lucia Valeria de Chiara
- Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (N.D.S.); (M.L.V.d.C.); (M.L.A.); (G.C.); (G.S.)
| | - Maria Luisa Amodio
- Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (N.D.S.); (M.L.V.d.C.); (M.L.A.); (G.C.); (G.S.)
| | - Samira Brahimi
- Laboratory of Applied Microbiology, Department of Biology, Faculty of Natural Sciences and Life, University of Oran 1 Ahmed Ben Bella, Bp1524 El M’ Naouer, Oran 31000, Algeria;
| | - Giancarlo Colelli
- Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (N.D.S.); (M.L.V.d.C.); (M.L.A.); (G.C.); (G.S.)
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV-Institut Charles Viollette, 59000 Lille, France;
| | - Giuseppe Spano
- Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (N.D.S.); (M.L.V.d.C.); (M.L.A.); (G.C.); (G.S.)
| | - Pasquale Russo
- Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (N.D.S.); (M.L.V.d.C.); (M.L.A.); (G.C.); (G.S.)
- Correspondence:
| |
Collapse
|
11
|
Carbon dots-assisted degradation of some common biogenic amines: An in vitro study. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Moradi M, Molaei R, Guimarães JT. A review on preparation and chemical analysis of postbiotics from lactic acid bacteria. Enzyme Microb Technol 2020; 143:109722. [PMID: 33375981 DOI: 10.1016/j.enzmictec.2020.109722] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/20/2022]
Abstract
Postbiotics may be defined as soluble metabolites released by food-grade microorganisms during the growth and fermentation in complex microbiological culture, food or gut. It is rich in high and low molecular weight biologically active metabolites. There are still gaps concerning these substances, mainly how to use them for food applications. Although the most recent work on preparation and application of postbiotics from several probiotics are very encouraging, the suitability of postbiotics to combat microorganisms that deal with food safety should be tested mainly by analyzing the chemical composition and conducting antagonistic tests. Consequently, foods can effectively benefit from an identified postbiotic with a defined effect. This review approached the recent advances in relation to the preparation of postbiotics from lactic acid bacteria. The function of different instrumental analysis techniques and factors affecting the chemical composition of postbiotics were also comprehensively reviewed.
Collapse
Affiliation(s)
- Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Rahim Molaei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary Medicine, Federal Fluminense University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Moradi M, Kousheh SA, Almasi H, Alizadeh A, Guimarães JT, Yılmaz N, Lotfi A. Postbiotics produced by lactic acid bacteria: The next frontier in food safety. Compr Rev Food Sci Food Saf 2020; 19:3390-3415. [PMID: 33337065 DOI: 10.1111/1541-4337.12613] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/04/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022]
Abstract
There are many critical challenges in the use of primary and secondary cultures and their biological compounds in food commodities. An alternative is the application of postbiotics from the starter and protective lactic acid bacteria (LAB). The concept of postbiotics is relatively new and there is still not a recognized definition for this term. The word "postbiotics" is currently used to refer to bioactive compounds, which did not fit to the traditional definitions of probiotics, prebiotics, and paraprobiotics. Therefore, the postbiotics may be presently defined as bioactive soluble factors (products or metabolic byproducts), produced by some food-grade microorganisms during the growth and fermentation in complex microbiological culture (in this case named cell-free supernatant), food, or gut, which exert some benefits to the food or the consumer. Many LAB are considered probiotic and their postbiotic compounds present similar or additional health benefits to the consumer; however, this review aimed to address the most recent applications of the postbiotics with food safety purposes. The potential applications of postbiotics in food biopreservation, food packaging, and biofilm control were reviewed. The current uses of postbiotics in the reduction and biodegradation of some food safety-related chemical contaminants (e.g., biogenic amines) were considered. We also discussed the safety aspects, the obstacles, and future perspectives of using postbiotics in the food industry. This work will open up new insights for food applications of postbiotics prepared from LAB.
Collapse
Affiliation(s)
- Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Seyedeh Alaleh Kousheh
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Arash Alizadeh
- Division of Pharmacology and Toxicology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary Medicine, Federal Fluminense University (UFF), Niterói, Brazil
| | - Nurten Yılmaz
- Department of Animal Science, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Anita Lotfi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
14
|
Antilisterial and physical properties of polysaccharide-collagen films embedded with cell-free supernatant of Lactococcus lactis. Int J Biol Macromol 2020; 145:1031-1038. [DOI: 10.1016/j.ijbiomac.2019.09.195] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/15/2019] [Accepted: 09/22/2019] [Indexed: 12/20/2022]
|
15
|
Özogul F, Hamed I. The importance of lactic acid bacteria for the prevention of bacterial growth and their biogenic amines formation: A review. Crit Rev Food Sci Nutr 2017; 58:1660-1670. [PMID: 28128651 DOI: 10.1080/10408398.2016.1277972] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Foodborne pathogens (FBP) represent an important threat to the consumers' health as they are able to cause different foodborne diseases. In order to eliminate the potential risk of those pathogens, lactic acid bacteria (LAB) have received a great attention in the food biotechnology sector since they play an essential function to prevent bacterial growth and reduce the biogenic amines (BAs) formation. The foodborne illnesses (diarrhea, vomiting, and abdominal pain, etc.) caused by those microbial pathogens is due to various reasons, one of them is related to the decarboxylation of available amino acids that lead to BAs production. The formation of BAs by pathogens in foods can cause the deterioration of their nutritional and sensory qualities. BAs formation can also have toxicological impacts and lead to different types of intoxications. The growth of FBP and their BAs production should be monitored and prevented to avoid such problems. LAB is capable of improving food safety by preventing foods spoilage and extending their shelf-life. LAB are utilized by the food industries to produce fermented products with their antibacterial effects as bio-preservative agents to extent their storage period and preserve their nutritive and gustative characteristics. Besides their contribution to the flavor for fermented foods, LAB secretes various antimicrobial substances including organic acids, hydrogen peroxide, and bacteriocins. Consequently, in this paper, the impact of LAB on the growth of FBP and their BAs formation in food has been reviewed extensively.
Collapse
Affiliation(s)
- Fatih Özogul
- a Department of Seafood Processing Technology, Faculty of Fisheries , Cukurova University , Adana , Turkey
| | - Imen Hamed
- b Biotechnology Centre , Cukurova University , Adana , Turkey
| |
Collapse
|
16
|
Purevdorj K, Maršálková K, Březinová I, Žalková A, Pleva P, Buňková L. Antimicrobial effect of selected lactic acid bacteria against microorganisms with decarboxylase activity. POTRAVINARSTVO 2017. [DOI: 10.5219/740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The main purpose of this study was to evaluate the antimicrobial activity of twenty-one bacteriocinogenic lactic acid bacteria (12 strains of Lactococcus lactis subsp. lactis, 4 strains of Lactobacillus gasseri, 3 strains of Lb. helveticus and 2 strains of Lb. acidophilus, LAB) against 28 Staphylococcus and 33 Enterococcus strains able to produce tyramine, putrescine, 2-phenylethylamine and cadaverine. The antimicrobial activity of cell-free supernatants (CFS) from tested LAB was examined by an agar-well diffusion assay. Nine out of twenty-one strains (33%) showed the inhibitory effect on tested enterococci and staphylococci, namely 9 strains of Lactococcus lactis subsp. lactis. The diameters of inhibition zones ranged between 7 mm and 14 mm. The biggest diameter of 14 mm inhibition was obtained with the CFS's from strains CCDM 670 and CCDM 731 on Enterococcus sp. E16 and E28. The cell-free supernatants from Lactococcus lactis subsp. lactis CCDM 71 and from Lactococcus lactis subsp. lactis CCDM 731 displayed the broadest antibacterial activity (52% inhibition of all tested strains). On the other hand, the cell-free supernatants from the screened Lactobacillus strains did not show any inhibitory effect on the tested Staphylococcus and Enterococcus strains. Nowadays, the great attention is given to the antibacterial substances produced by lactic acid bacteria. With the ability to produce a variety of metabolites displaying inhibitory effect, the LAB have great potential in biopreservation of food.
Collapse
|