1
|
Liu J, Zhang B, Wang L, Li S, Long Q, Xiao X. Bioactive components, pharmacological properties and underlying mechanism of Ganoderma lucidum spore oil: A review. CHINESE HERBAL MEDICINES 2024; 16:375-391. [PMID: 39072196 PMCID: PMC11283234 DOI: 10.1016/j.chmed.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/20/2023] [Accepted: 09/15/2023] [Indexed: 07/30/2024] Open
Abstract
Ganoderma lucidum is a Chinese medicinal fungus with a long history of use in healthcare and disease treatment. G. lucidum spores (GLS) are tiny germ cells released from the mushroom cap during the mature stage of growth. They contain all the genetic active substances of G. lucidum. G. lucidum spore oil (GLSO) is a lipid component extracted from broken-walled Ganoderma spores using supercritical CO2 extraction technology. GLSO contains fatty acids, Ganoderma triterpenes, sterols and other bioactive compounds. Previous studies have demonstrated that GLSO has a wide range of pharmacological properties, including anti-tumor, anti-aging, neuroprotection, immunomodulation, hepatoprotection and modulation of metabolic diseases. This review summarizes the research progress of GLSO over the past two decades in terms of its bioactive components, extraction and processing techniques, pharmacological effects and safety evaluation. This provides a solid foundation for further research and application of GLSO.
Collapse
Affiliation(s)
- Jianying Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Binzhi Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Leqi Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, Guangzhou 510120, China
| | - Shasha Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, Guangzhou 510120, China
- NMPA Key Laboratory for Rapid Testing Technology of Drugs, Guangdong Institute for Drug Control, Guangzhou 510525, China
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xue Xiao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China
- NMPA Key Laboratory for Rapid Testing Technology of Drugs, Guangdong Institute for Drug Control, Guangzhou 510525, China
| |
Collapse
|
2
|
Milovanovic I, Zengin G, Maksimovic S, Tadic V. Supercritical carbon-oxide extracts from cultivated and wild-grown Ganoderma lucidum mushroom: differences in ergosterol and ganoderic acids content, antioxidative and enzyme inhibitory properties. Nat Prod Res 2024; 38:2522-2528. [PMID: 36744699 DOI: 10.1080/14786419.2023.2175355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 02/07/2023]
Abstract
In the present study, we investigated the effect of supercritical carbon-oxide (scCO2) extraction on antioxidant capacity, enzyme inhibitory potential, and levels of ergosterol and ganoderic acid in both cultivated and wild-grown G. lucidum. Extraction yields were slightly higher for wild samples (1.29%) than for cultivated ones (1.13%). The levels of ganoderic acid and ergosterol were higher in cultivated in comparison to wild samples. In addition, the total phenolic content in cultivated samples (13.42 mg GAE g-1) was higher than in wild samples (10.38 mg GAE g-1). In general, cultivated samples exhibited stronger antioxidant potential when compared with wild ones. Regarding enzyme inhibitory properties, it was validated that the wild samples (14.01 mg OE g-1) possessed greater lipase activity in comparison to cultivated samples (5.36 mg OE g-1). Based on our findings, cultivated G. lucidum might be considered a valuable source of natural bioactive agents in the preparation of health-promoting products.
Collapse
Affiliation(s)
- Ivan Milovanovic
- Innovation Center of the Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Gokhan Zengin
- Faculty of Science, Department of Biology, University of Selcuk, Konya, Turkey
| | - Svetolik Maksimovic
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Vanja Tadic
- Institute for Medicinal Plant research 'Dr Josif Pančić', Belgrade, Serbia
| |
Collapse
|
3
|
Sharafinia S, Rashidi A, Tabarkhoon F, Dehghan F, Tabarkhoon F, Bazmi M. Effective adsorption of amoxicillin by using UIO-66@ Cr-MIL-101 nanohybrid: isotherm, kinetic, thermodynamic, and optimization by central composite design. Sci Rep 2023; 13:22689. [PMID: 38114649 PMCID: PMC10730908 DOI: 10.1038/s41598-023-49393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
In this research, the amoxicillin (AMX) removal was studied on a prepared nanosorbent from MOFs. The aim of this research work is to prepare nanohybrids based on metal-organic frameworks (MOFs) as an efficient nanosorbent for the absorption of amoxicillin drug. In this study, UIO-66 nanoparticles (UIO-66 NPs) were prepared from Zirconium (Zr) metal and 1,4-benzene dicarboxylic acid (BDC). Then UIO-66@Cr-MIL-101 nanohybrid was synthesized by hydrothermal method. Structural and physicochemical properties of nanohybrid UIO-66@Cr-MIL-101 were characterized by different analyses such as X-ray diffraction analysis (XRD), fourier transform infrared spectrometer (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), therapeutic goods administration (TGA), and Brunauer-Emmett-Teller (BET). The effect of four fundamental variables effective on adsorption was optimized by the central composite response surface methodology (CCRSM). This parameters including loading percentage of Cr-MIL-101 NPs (10-30%), initial concentration of AMX (20-140 mg L-1), contact time (20-60 min), and pH (20-10). The removal percentage (Re%) of AMX equal to 99.50% was obtained under the following conditions: The loading value of 20% Wt%, the initial concentration of AMX 80 mg L-1, contact time 20 min, and pH = 6. Also, the experimental data were investigated with famous kinetic models and isotherms, and it was observed that AMX removal by nanohybrid is correlated with the PSO kinetic model and Langmuir isotherm.
Collapse
Affiliation(s)
- Soheila Sharafinia
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Alimorad Rashidi
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran.
| | - Farnoush Tabarkhoon
- College of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Fahime Dehghan
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| | - Farnaz Tabarkhoon
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Bazmi
- Faculty of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
4
|
Sharafinia S, Rashidi A, Babaei B, Orooji Y. Nanoporous carbons based on coordinate organic polymers as an efficient and eco-friendly nano-sorbent for adsorption of phenol from wastewater. Sci Rep 2023; 13:13127. [PMID: 37573350 PMCID: PMC10423284 DOI: 10.1038/s41598-023-40243-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023] Open
Abstract
The major part of water pollutants includes of organic such as phenolic pollutant, thus there are every hazardous to environment. Present work is a comparative onto surface chemistry and adsorptive characteristics of coordinate organic polymer (Cop-150) and nanoporous carbon (NPC) prepared using solvothermal method. New NPC was successfully synthesized to remove of phenol. FT-IR, XRD, XPS, SEM, TGA, and BET techniques have been used to characterization and confirm physicochemical variation during preparing Cop-150 and NPC. Box-Behnken response surface methodology (BBRSM) was used to optimize four important factors of the pH (2-10), contact time (1-40 min), temperature (25-60 °C), and initial concentration of phenol (5-50 mg L-1). To analyze the data obtained from the adsorption of phenol by synthesized adsorbents, four linear, 2FI, quadratic and cubic models were examined, which the quadratic model was recognized as the best model. To the NPC the equal adsorption capacity 500 mg g-1 is achieved at the initial concentration of phenol = 49.252 mg L-1, contact time = 15.738 min, temperature = 28.3 °C, and pH 7.042. On the other hand, the adsorption capacity for Cop-150 in pH 4.638, the contact time = 19.695 min, the temperature = 56.8 °C, and the initial concentration of phenol = 6.902 mg L-1 was equal to 50 mg g-1. The experimental data at different conditions were investigated by some famous kinetic and isotherm models, which among them, were corresponded to the pseudo-second-order kinetic model and the Langmuir isotherm. Moreover, based to result of thermodynamics to the both Cop-150 and NPC, the adsorption process is exothermic and spontaneous. According to results the Cop-150 and NPC could be used for up to four and five cycles without significantly reducing their performance, respectively.
Collapse
Affiliation(s)
- Soheila Sharafinia
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Alimorad Rashidi
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran.
| | - Behnam Babaei
- Department of Chemistry, Faculty of Basic Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Yasin Orooji
- Material and Energy Research Center, Karaj, Alborz, Iran
| |
Collapse
|
5
|
Luo H, Li Y. Downstream Processing of Medicinal Mushroom Products. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 184:187-218. [PMID: 35192002 DOI: 10.1007/10_2021_187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Medicinal mushrooms are higher fungi that consist of ascomycetes, basidiomycetes, and imperfect fungi. They have been long used as tonic and traditional medicine in East Asia, Europe, and Africa. Contemporary pharmacological researches have revealed that they possess a wide spectrum of bioactivity due to their production of a variety of bioactive compounds. Some of them have entered into the market; some are ready for industrial trials and further commercialization, while others are in various stages of development. According to the purpose of usage, a variety of medicinal mushroom-based products have been developed, which could be roughly divided into three general categories, i.e., nutraceuticals/functional foods, nutriceuticals/dietary supplements, and pharmaceuticals. Accordingly, the downstream processing of medicinal mushroom products varies greatly. Indeed, a major characteristic of medicinal mushroom is the wide variety of secondary metabolites, due to which a broad spectrum of separation techniques must be employed. In this chapter we will present an overview of the achievements in downstream processing technology for medicinal mushroom products. Examples of separation of products such as bioactive high-molecular-weight products like polysaccharides and low-molecular-weight products like triterpenoids are given. The application of some special separation strategy, e.g., chemical reaction-assisted separation for tackling some analogs with similar physicochemical properties from medicinal mushroom, is also described.
Collapse
Affiliation(s)
- Haiyan Luo
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yingbo Li
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Dat TD, Viet ND, Thanh VH, Linh NTT, Ngan NTK, Nam HM, Phong MT, Hieu NH. Optimization of Triterpenoid Extraction from
Ganoderma lucidum
by Ethanol‐Modified Supercritical Carbon Dioxide andthe Biological Properties of the Extract. ChemistrySelect 2022. [DOI: 10.1002/slct.202103444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tran Do Dat
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Nguyen Duc Viet
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Vuong Hoai Thanh
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Ngo Thi Thuy Linh
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Nguyen Thi Kim Ngan
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Hoang Minh Nam
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Mai Thanh Phong
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Nguyen Huu Hieu
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| |
Collapse
|
7
|
The adsorption of cationic dye onto ACPMG@ZIF-8 core-shell, optimization using central composite response surface methodology (CCRSM). Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Xie C, Yan S, Zhang Z, Gong W, Zhu Z, Zhou Y, Yan L, Hu Z, Ai L, Peng Y. Mapping the metabolic signatures of fermentation broth, mycelium, fruiting body and spores powder from Ganoderma lucidum by untargeted metabolomics. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Shi H, Zhang M, Devahastin S. New Development of Efficient Processing Techniques on Typical Medicinal Fungi: A Review. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1613663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Hui Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan Univiersity, Wuxi, China
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok Thailand
| |
Collapse
|
10
|
Wang C, Duan Z, Fan L, Li J. Supercritical CO₂ Fluid Extraction of Elaeagnus mollis Diels Seed Oil and Its Antioxidant Ability. Molecules 2019; 24:molecules24050911. [PMID: 30841628 PMCID: PMC6429187 DOI: 10.3390/molecules24050911] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 01/19/2023] Open
Abstract
Supercritical fluid carbon dioxide (SF-CO₂) was used to extract oil from Elaeagnus mollis Diels (E. mollis Diels) seed and its antioxidant ability was also investigated. The effect of extraction pressure (20⁻35 MPa), extraction temperature (35⁻65 C), extraction time (90⁻180 min) and seed particle size (40⁻100 mesh) on the oil yield were studied. An orthogonal experiment was conducted to determine the best operating conditions for the maximum extraction oil yield. Based on the optimum conditions, the maximum yield reached 29.35% at 30 MPa, 50 C, 150 min, 80 mesh seed particle size and 40 g/min SF-CO2 flow rate. The E. mollis Diels seed (EDS) oil obtained under optimal SF-CO2 extraction conditions had higher unsaturated fatty acid content (91.89%), higher vitamin E content (96.24 ± 3.01 mg/100 g) and higher total phytosterols content (364.34 ± 4.86 mg/100 g) than that extracted by Soxhlet extraction (SE) and cold pressing (CP) methods. The antioxidant activity of the EDS oil was measured by DPPH and hydroxyl radical scavenging test. EDS oil extracted by different methods exhibited a dose-dependent antioxidant ability, with IC50 values of no significant differences. Based on the results of correlation between bioactive compounds, lupeol and -tocopherol was the most important antioxidant in EDS oil.
Collapse
Affiliation(s)
- Chengxin Wang
- Institute of Food Research, Hezhou University, Hezhou 542899, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Zhenhua Duan
- Institute of Food Research, Hezhou University, Hezhou 542899, China.
| | - Liuping Fan
- Institute of Food Research, Hezhou University, Hezhou 542899, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Jinwei Li
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
11
|
Abstract
Abstract
In China, the rapid development greatly promotes the national economic power and living standard but also inevitably brings a series of environmental problems. In order to resolve these problems fundamentally, Chinese scientists have been undertaking research in the area of green chemical engineering (GCE) for many years and achieved great progresses. In this paper, we reviewed the research progresses related to GCE in China and screened four typical topics related to the Chinese resources characteristics and environmental requirements, i.e. ionic liquids and their applications, biomass utilization and bio-based materials/products, green solvent-mediated extraction technologies, and cold plasmas for coal conversion. Afterwards, the perspectives and development tendencies of GCE were proposed, and the challenges which will be faced while developing available industrial technologies in China were mentioned.
Collapse
|
12
|
Dai Q, Yang Y, Chen K, Cheng Z, Ni Y, Li J. Optimization of Supercritical CO2
Operative Parameters to Simultaneously Increase the Extraction Yield of Oil and Pentacyclic Triterpenes from Artichoke Leaves and Stalks by Response Surface Methodology and Ridge Analysis. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qianqian Dai
- College of Food Science and Nutritional Engineering, China Agricultural University; No. 17 Qinghuadong Road, Haidian District Beijing 100083 China
| | - Yudi Yang
- College of Food Science and Nutritional Engineering, China Agricultural University; No. 17 Qinghuadong Road, Haidian District Beijing 100083 China
| | - Kai Chen
- College of Food Science and Nutritional Engineering, China Agricultural University; No. 17 Qinghuadong Road, Haidian District Beijing 100083 China
| | - Zhan Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University; No. 17 Qinghuadong Road, Haidian District Beijing 100083 China
| | - Yuanying Ni
- College of Food Science and Nutritional Engineering, China Agricultural University; No. 17 Qinghuadong Road, Haidian District Beijing 100083 China
| | - Jingming Li
- College of Food Science and Nutritional Engineering, China Agricultural University; No. 17 Qinghuadong Road, Haidian District Beijing 100083 China
| |
Collapse
|
13
|
Zhang W, Xia Q, Ji Y, Chen H, Pan Y, Chen W, Cao J, Yang H, Huang W, Wang L. Oxidative Stability of Papaya Seed Oil From Hainan/Eksotika Obtained by Subcritical and Supercritical Carbon Dioxide Extraction. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Weimin Zhang
- College of Food Science & Technology; Huazhong Agricultural University; No. 1, Shizishan Street, Hongshan District, Wuhan City, 430070 Hubei Province P.R. China
- College of Food Science; Hainan University; No. 58, Renmin road, Meilan District, Haikou City, 570228 Hainan Province P.R. China
| | - Qiuqi Xia
- College of Food Science; Hainan University; No. 58, Renmin road, Meilan District, Haikou City, 570228 Hainan Province P.R. China
| | - Yanyu Ji
- College of Food Science; Hainan University; No. 58, Renmin road, Meilan District, Haikou City, 570228 Hainan Province P.R. China
| | - Haiming Chen
- College of Food Science; Hainan University; No. 58, Renmin road, Meilan District, Haikou City, 570228 Hainan Province P.R. China
| | - Yonggui Pan
- College of Food Science; Hainan University; No. 58, Renmin road, Meilan District, Haikou City, 570228 Hainan Province P.R. China
| | - Wenxue Chen
- College of Food Science; Hainan University; No. 58, Renmin road, Meilan District, Haikou City, 570228 Hainan Province P.R. China
| | - Jun Cao
- College of Food Science; Hainan University; No. 58, Renmin road, Meilan District, Haikou City, 570228 Hainan Province P.R. China
| | - Hong Yang
- College of Food Science & Technology; Huazhong Agricultural University; No. 1, Shizishan Street, Hongshan District, Wuhan City, 430070 Hubei Province P.R. China
| | - Wuyang Huang
- Institute of Farm Product Processing; Jiangsu Academy of Agricultural Sciences; No. 50, Zhongling Street, Xuanwu District, Nanjing City 210014 Jiangsu Province, P.R. China
| | - Liling Wang
- College of Food Science & Technology; Huazhong Agricultural University; No. 1, Shizishan Street, Hongshan District, Wuhan City, 430070 Hubei Province P.R. China
- College of Life Science; Tarim University; No. 705, Hongqiaonan Road, Alar City 843300 Xinjiang Uyghur Autonomous Region, P.R. China
| |
Collapse
|
14
|
Jurowski K, Kochan K, Walczak J, Barańska M, Piekoszewski W, Buszewski B. Comprehensive review of trends and analytical strategies applied for biological samples preparation and storage in modern medical lipidomics: State of the art. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Fusarithioamide A, a new antimicrobial and cytotoxic benzamide derivative from the endophytic fungus Fusarium chlamydosporium. Biochem Biophys Res Commun 2016; 479:211-216. [PMID: 27634222 DOI: 10.1016/j.bbrc.2016.09.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/09/2016] [Indexed: 11/24/2022]
Abstract
Four secondary metabolites (1-4), including a new benzamide derivative, namely fusarithioamide A (2-(2-aminopropanamido)-N-(1-hydroxy-3-mercaptopropyl) benzamide, 4) and three known compounds; 1-O-acetylglycerol (1), 8-acetylneosolaniol (2), and ergosta-7,22-diene-3β,5α,6β-triol (3) were characterized from the EtOAc extract of Fusarium chlamydosporium isolated from the leaves of Anvillea garcinii (Burm.f.) DC. (Asteraceae). The structures of the isolated metabolites were verified by using 1D and 2D NMR experiments as well as HRESIMS spectral data. Compounds 1-3 were firstly separated from this fungus. Compound 4 has been tested for their antibacterial and antifungal activity against different microorganisms using disc diffusion assay. It showed antibacterial potential towards B. cereus, S. aureus, and E. coli with inhibition zone diameters (IZDs) of 19.0, 14.1, and 22.7 mm, respectively and MICs values of 3.1, 4.4, and 6.9 μg ml-1, respectively. Also, it exhibited the most potent antifungal activity towards C. albicans (IZD 16.2 mm) comparable to clotrimazole (IZD 18.5 mm, positive control). Furthermore, compounds 1-4 were evaluated for their in vitro cytotoxic effect against KB, BT-549, SK-MEL, and SKOV-3 cell lines. Compounds 4 possessed potent and selective activity towards BT-549 and SKOV-3 cell lines with IC50 values of 0.4 and 0.8 μM, respectively compared to doxorubicin (IC50 0.046 and 0.313 μM, respectively). Moreover, 3 exhibited significant activity towards all tested cell lines. Fusarithioamide A may provide new promising candidates for potential antimicrobial and cytotoxic agent.
Collapse
|