1
|
Su XN, Khan MF, Xin-Ai, Liu DL, Liu XF, Zhao QL, Cheong KL, Zhong SY, Li R. Fabrication, modification, interaction mechanisms, and applications of fish gelatin: A comprehensive review. Int J Biol Macromol 2024; 288:138723. [PMID: 39672411 DOI: 10.1016/j.ijbiomac.2024.138723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Fish gelatin (FG) is an essential natural biopolymer isolated from aquatic sources and has been considered as a feasible substitute for mammalian gelatins. However, its inferior mechanical and gelling properties limit its applications. Consequently, FG has been modified using various methods. This review summarizes the extraction techniques (including traditional acid and alkaline methods, as well as newer technologies such as ultrasonic-assisted and microwave-assisted extraction), modification strategies (mechanical treatments, physical mixing with polysaccharides, utilization of the Hofmeister effect, chemical modifications, etc.), along with their mechanisms of action. Additionally, we discussed the applications of FG and its modified products. Furthermore, this review highlights the safety and prospects for FG and its derivatives. The mechanical properties and biological functions of FGs are enhanced after modification. Thus, modified FG composites exhibit diverse applications in areas such as foaming agents and emulsifiers, food packaging, three-dimensional printing, drug delivery systems and tissue engineering. This paper aims to provide comprehensive information for future research on FG with the intention of broadening its applicability within the industries of food, cosmetics, and pharmaceuticals. Nevertheless, the development of tough gels, aerogels, and stimuli-responsive hydrogels based on FG requires further investigation.
Collapse
Affiliation(s)
- Xian-Ni Su
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Muhammad Fahad Khan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Xin-Ai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China.
| | - Dan-Lei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Xiao-Fei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Qiao-Li Zhao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China.
| | - Sai-Yi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China; Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China.
| | - Rui Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China.
| |
Collapse
|
2
|
Song X, Wei X, Liu L, Liu Y. Gelatin/agar pH-indicator film based on cranberry extract loaded with linalool nanoparticle: Survey on physical, antimicrobial, and antioxidant properties. Int J Biol Macromol 2024; 268:131767. [PMID: 38657918 DOI: 10.1016/j.ijbiomac.2024.131767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/08/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
In this study, linalool-nanoparticles (L-NPs) were prepared (encapsulation efficiency was 68.54 %) and introduced pH-indicator film based on cranberry-extract (CEF) to develop multifunctional smart films. XRD analysis and FTIR spectroscopy indicated that cranberry-extract (CE) and L-NPs were uniformly distributed in the gelatin/agar matrix and could change the intermolecular structure of the film. Color change of smart films showed that CE endowed the film with pH-sensitive property. As CE and L-NPs were added to the film, the water contact angle (WCA) was increased from 57.03° to 117.73°, the elongation at break (EAB) was increased from 12.30 % to 34.60 %. Additionally, the introduction of L-NPs enhanced the antioxidant activity (DPPH free radical scavenging rate increased from 26.80 % to 36.35 %) and antibacterial activity (against S. aureus and E. coli) of the smart film, which were verified by its retarding effect on pork spoilage.
Collapse
Affiliation(s)
- Xueying Song
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xingyan Wei
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Liu Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| |
Collapse
|
3
|
Ibrahim MA, Nasr GM, Ahmed RM, Kelany NA. Physical characterization, biocompatibility, and antimicrobial activity of polyvinyl alcohol/sodium alginate blend doped with TiO 2 nanoparticles for wound dressing applications. Sci Rep 2024; 14:5391. [PMID: 38443415 PMCID: PMC10915162 DOI: 10.1038/s41598-024-55818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
The ability of wound dressing materials to tackle skin pathogens colonization that is associated with open wound infections is limited. Recently, green-synthesized metal oxide nanoparticles has received a lot of attention to overcome this limitation. However, titanium dioxide nanoparticles (TiO2-NPs) exhibit exceptional antibacterial properties. In this work, several concentrations (0, 1, 3, and 5 wt.%) of TiO2 NPs prepared using Aloe vera leaf extract were added to a blend of polyvinyl alcohol and sodium alginate (PVA:SA). This nanocomposite was designed to enhance the healing process of wounds. The interaction between the PVA:SA composite and the TiO2 NPs was confirmed by FTIR. The thermal behavior of the nanocomposite films was investigated using DSC and TGA. The experimental results indicate that the glass transition temperatures of the nanocomposites increased by increasing the added amount of TiO2 NPs to be 53.7 °C (1 wt.%), 55.8 °C (3 wt.%), and 60.6 °C (5 wt.%), which were consistently lower than the glass transition temperature of the matrix material (69.6 °C). The Dynamic Mechanical Analysis was examined. The nanocomposite doped with 5 wt.% of TiO2 NPs detected a high storage modulus (21.6 × 108). Based on swelling and degradation studies, the prepared PVA:SA:TiO2 nanocomposite films have an excellent swelling rate, and the inclusion of TiO2 NPs increases the stability of the polymeric matrix. The PVA:SA:TiO2 nanocomposite films exhibited a superior antibacterial efficacy against Gram-positive bacteria such as Bacillus cereus and Staphylococcus aureus, compared to their effectiveness against Gram-negative bacteria like Escherichia coli. Moreover, the nanocomposite films were biocompatible with Human Skin Fibroblast. Therefore, the developed PVA:SA:TiO2 nanocomposite films suit wound dressing applications.
Collapse
Affiliation(s)
- Manar A Ibrahim
- Physics Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - G M Nasr
- Physics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - R M Ahmed
- Physics Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Nermeen A Kelany
- Physics Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
4
|
Momtaz M, Momtaz E, Mehrgardi MA, Momtaz F, Narimani T, Poursina F. Preparation and characterization of gelatin/chitosan nanocomposite reinforced by NiO nanoparticles as an active food packaging. Sci Rep 2024; 14:519. [PMID: 38177381 PMCID: PMC10767100 DOI: 10.1038/s41598-023-50260-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
Food packaging with antibacterial properties has attracted much attention recently. In this study, nickel oxide nanoparticles (NiONPs) were synthesized by co-precipitation and then gelatin/chitosan polymer films (GEL/CS) with different percentages of NiONPs, bio-nanocomposites, were prepared by casting. Morphology, crystal microstructure, molecular interactions and thermal stabilities of the NPs and the composite films were characterized by FESEM, XRD, FTIR and TGA, respectively. The bio-nanocomposite films exhibited excellent barrier, thermal and mechanical properties by addition of an optimized content of NPs. For example, the tensile strength (TS) of the GEL/CS film without NPs was 23.83 MPa and increased to 30.13 MPa by incorporation of 1% NPs. The antibacterial properties and toxicity of the films were investigated. These films show good antibacterial behavior against Gram-positive (Staphylococcus aureus) bacteria compared to Gram-negative (Escherichia coli) bacteria. Furthermore, the films were found to be non-toxic to fibroblast cells that came into contact with the films, with a survival rate of more than 88%. Therefore, these films can be applied for food packaging due to their excellent mechanical, barrier, and antibacterial properties.
Collapse
Affiliation(s)
- Mahdieh Momtaz
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Elham Momtaz
- Department of Chemistry, University of Isfahan, Isfahan, 8174673441, Iran
| | - Masoud A Mehrgardi
- Department of Chemistry, University of Isfahan, Isfahan, 8174673441, Iran.
| | - Fatemeh Momtaz
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Tahmineh Narimani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.
| | - Farkhondeh Poursina
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| |
Collapse
|
5
|
Yi F, Hou F, Zhan S, Song L, Zhang R, Han X, Sun X, Liu Z. Preparation, characterization and application of pH-responsive smart film based on chitosan/zein and red radish anthocyanin. Int J Biol Macromol 2023; 253:127037. [PMID: 37742899 DOI: 10.1016/j.ijbiomac.2023.127037] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
This research was aimed at developing a novel pH-responsive smart film made of chitosan, zein and red radish anthocyanin (RRA). The morphology, interaction, crystallization, thermal stability, physiochemical properties and pH sensitivity of films were analyzed. The smart film was applied to monitor the freshness of mushroom (Agaricus bisporus). The results of morphology (SEM) and spectrum (FT-IR and XRD) indicated that the incorporation of RRA could enhance the interaction between polymer matrix. The addition of RRA had no significant effect on the thermal stability of films. The chitosan/zein/red radish anthocyanin (C/Z/R) films exhibited higher tensile strength, Young's modulus, hydrophobicity, antioxidant activity and lower elongation at break. The C/Z/R films had stronger water vapor and gas barrier capacity. The C/Z/R films showed a pH-sensitive color variation from red (pH 2) to green (pH 12) and good reversibility under alkaline and acidic environment. The prepared smart film could be successfully used for the quality monitoring of mushroom.
Collapse
Affiliation(s)
- Fangxuan Yi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, PR China
| | - Fanyun Hou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, PR China
| | - Shouqing Zhan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, PR China
| | - Lisha Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, PR China
| | - Rongfei Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, PR China
| | - Xiangbo Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, PR China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, PR China
| | - Zhanli Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, PR China.
| |
Collapse
|
6
|
Ali A, Bairagi S, Ganie SA, Ahmed S. Polysaccharides and proteins based bionanocomposites as smart packaging materials: From fabrication to food packaging applications a review. Int J Biol Macromol 2023; 252:126534. [PMID: 37640181 DOI: 10.1016/j.ijbiomac.2023.126534] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Food industry is the biggest and rapidly growing industries all over the world. This sector consumes around 40 % of the total plastic produced worldwide as packaging material. The conventional packaging material is mainly petrochemical based. However, these petrochemical based materials impose serious concerns towards environment after its disposal as they are nondegradable. Thus, in search of an appropriate replacement for conventional plastics, biopolymers such as polysaccharides (starch, cellulose, chitosan, natural gums, etc.), proteins (gelatin, collagen, soy protein, etc.), and fatty acids find as an option but again limited by its inherent properties. Attention on the initiatives towards the development of more sustainable, useful, and biodegradable packaging materials, leading the way towards a new and revolutionary green era in the food sector. Eco-friendly packaging materials are now growing dramatically, at a pace of about 10-20 % annually. The recombination of biopolymers and nanomaterials through intercalation composite technology at the nanoscale demonstrated some mesmerizing characteristics pertaining to both biopolymer and nanomaterials such as rigidity, thermal stability, sensing and bioactive property inherent to nanomaterials as well as biopolymers properties such as flexibility, processability and biodegradability. The dramatic increase of scientific research in the last one decade in the area of bionanocomposites in food packaging had reflected its potential as a much-required and important alternative to conventional petroleum-based material. This review presents a comprehensive overview on the importance and recent advances in the field of bionanocomposite and its application in food packaging. Different methods for the fabrication of bionanocomposite are also discussed briefly. Finally, a clear perspective and future prospects of bionanocomposites in food packaging were presented.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry, Kargil Campus, University of Ladakh, Kargil 194103, India.
| | - Satyaranjan Bairagi
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow G128QQ, UK
| | - Showkat Ali Ganie
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile of Biomass Science, Southwest University, 400715 Chongqing, PR China
| | - Shakeel Ahmed
- Department of Chemistry, Government Degree College Mendhar, Jammu & Kashmir 185211, India; Higher Education Department, Government of Jammu & Kashmir, Jammu 180001, India; University Centre of Research & Development (UCRD), Chandigarh University, Mohali, Punjab 140413, India.
| |
Collapse
|
7
|
Jiang K, Li J, Brennan M, Brennan C, Chen H, Qin Y, Yuan M. Smart Indicator Film Based on Sodium Alginate/Polyvinyl Alcohol/TiO 2 Containing Purple Garlic Peel Extract for Visual Monitoring of Beef Freshness. Polymers (Basel) 2023; 15:4308. [PMID: 37959988 PMCID: PMC10649262 DOI: 10.3390/polym15214308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study was to prepare a novel pH-sensitive smart film based on the addition of purple garlic peel extract (PGE) and TiO2 nanoparticles in a sodium alginate (SA)/polyvinyl alcohol (PVA) matrix to monitor the freshness of beef. FT-IR spectroscopy revealed the formation of stronger interaction forces between PVA/SA, PGE, and TiO2 nanoparticles, which showed good compatibility. In addition, the addition of PGE improved the tensile strength and elongation at break of the composite film, especially in different pH environments, and the color response was obvious. The addition of 1% TiO2 nanoparticles significantly improved the mechanical properties of the film, as well as the light barrier properties of the film. PGE could effectively be uniformly dispersed into the composite film, but it also had a certain slow-release effect on the release of PGE. PGE had high sensitivity under different pH conditions with rich color changes, and the color showed a clear color change from red to yellow-green when the pH increased from 1 to 14. The same change was observed when it was added to the film. In particular, by applying this film to the process of beef preservation, we judged the freshness of beef by monitoring the changes in the TVB-N value and pH value during the storage process of beef and found that the film showed obvious color changes during the storage process of beef, from blue (indicating freshness) to red (indicating non-freshness), and finally to yellow-green (indicating deterioration), which indicated that the color change of the film and the freshness of the beef maintained a highly consistent.
Collapse
Affiliation(s)
- Kai Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; (K.J.); (J.L.); (H.C.)
| | - Jiang Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; (K.J.); (J.L.); (H.C.)
| | - Margaret Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne 3000, Australia; (M.B.); (C.B.)
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne 3000, Australia; (M.B.); (C.B.)
| | - Haiyan Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; (K.J.); (J.L.); (H.C.)
| | - Yuyue Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; (K.J.); (J.L.); (H.C.)
| | - Mingwei Yuan
- Green Preparation Technology of Biobased Materials National & Local Joint Engineering Research Center, Yunnan Minzu University, Kunming 650500, China
| |
Collapse
|
8
|
Bukhari NTM, Rawi NFM, Hassan NAA, Saharudin NI, Kassim MHM. Seaweed polysaccharide nanocomposite films: A review. Int J Biol Macromol 2023; 245:125486. [PMID: 37355060 DOI: 10.1016/j.ijbiomac.2023.125486] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/29/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
A million tonnes of plastic produced each year are disposed of after single use. Biodegradable polymers have become a promising material as an alternative to petroleum-based polymers. Utilising biodegradable polymers will promote environmental sustainability which has emerged with potential features and performances for various applications in different sectors. Seaweed-derived polysaccharides-based composites have been the focus of numerous studies due to the composites' renewability and sustainability for industries (food packaging and medical fields like tissue engineering and drug delivery). Due to their biocompatibility, abundance, and gelling ability, seaweed derivatives such as alginate, carrageenan, and agar are commonly used for this purpose. Seaweed has distinct film-forming characteristics, but its mechanical and water vapour barrier qualities are weak. Thus, modifications are necessary to enhance the seaweed properties. This review article summarises and discusses the effect of incorporating seaweed films with different types of nanoparticles on their mechanical, thermal, and water barrier properties.
Collapse
Affiliation(s)
- Nur Thohiroh Md Bukhari
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Nurul Fazita Mohammad Rawi
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Nur Adilah Abu Hassan
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Nur Izzaati Saharudin
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Mohamad Haafiz Mohamad Kassim
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
9
|
Adeyemi JO, Fawole OA. Metal-Based Nanoparticles in Food Packaging and Coating Technologies: A Review. Biomolecules 2023; 13:1092. [PMID: 37509128 PMCID: PMC10377377 DOI: 10.3390/biom13071092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Food security has continued to be a topic of interest in our world due to the increasing demand for food. Many technologies have been adopted to enhance food supply and narrow the demand gap. Thus, the attempt to use nanotechnology to improve food security and increase supply has emerged due to the severe shortcomings of conventional technologies, which have made them insufficient to cater to the continuous demand for food products. Hence, nanoparticles have been identified to play a major role in areas involving food production, protection, and shelf-life extensions. Specifically, metal-based nanoparticles have been singled out to play an important role in manufacturing materials with outstanding properties, which can help increase the shelf-life of different food materials. The physicochemical and biological properties of metal-based nanoparticles, such as the large surface area and antimicrobial properties, have made them suitable and adequately useful, not just as a regular packaging material but as a functional material upon incorporation into biopolymer matrices. These, amongst many other reasons, have led to their wide synthesis and applications, even though their methods of preparation and risk evaluation remain a topic of concern. This review, therefore, briefly explores the available synthetic methods, physicochemical properties, roles, and biological properties of metal-based nanoparticles for food packaging. Furthermore, the associated limitations, alongside quality and safety considerations, of these materials were summarily explored. Although this area of research continues to garner attention, this review showed that metal-based nanoparticles possess great potential to be a leading material for food packaging if the problem of migration and toxicity can be effectively modulated.
Collapse
Affiliation(s)
- Jerry O Adeyemi
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Olaniyi A Fawole
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| |
Collapse
|
10
|
Yuan S, Xue Z, Zhang S, Wu C, Feng Y, Kou X. The characterization of antimicrobial nanocomposites based on chitosan, cinnamon essential oil, and TiO 2 for fruits preservation. Food Chem 2023; 413:135446. [PMID: 36764159 DOI: 10.1016/j.foodchem.2023.135446] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/12/2022] [Accepted: 01/07/2023] [Indexed: 01/21/2023]
Abstract
The freshness and safety of fruits have always been crucial issues in the development of the industry. However, the existing fresh-keeping methods have limited effect, meanwhile, the preservation mechanism of different materials. In this study, Cinnamon essential oil (CEO), TiO2, and chitosan (CS) were compounded to prepare safe and renewable nanocomposites (CS-T-C) for fruit preservation. The results showed that CEO mainly destroyed the bacterial cell wall through penetration, while TiO2 is through destruction. The strawberry coated with CS-T-C showed better hardness, lower weight loss and mildew rate, and the shelf-life at 20℃ was extended for four days compared with the control. And all four nanocomposites were not cytotoxic. In summary, nanocomposites can deal with many problems through different mechanisms to maximize the fresh-keeping effect, and the nanocomposites developed in this work might be a good choice for fruit preservation.
Collapse
Affiliation(s)
- Shuai Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Shengli Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yuan Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
11
|
Bassi A, Kanungo K, Koo BH, Hasan I. Cellulose nanocrystals doped silver nanoparticles immobilized agar gum for efficient photocatalytic degradation of malachite green. Int J Biol Macromol 2023:125221. [PMID: 37295693 DOI: 10.1016/j.ijbiomac.2023.125221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
The present study involves the synthesis of green functional material based on the silver nanoparticle (Ag NPs) doped cellulose nanocrystals (CNC) immobilized agar gum (AA) biopolymer using chemical coprecipitation method. The stabilization of Ag NPs in cellulose matrix and functionalization of the synthesized material through agar gum was analyzed using various spectroscopic techniques such as Fourier Transform Infrared (FTIR), Scanning electron microscope (SEM), Energy X-Ray diffraction (EDX), Photoelectron X-ray (XPS), Transmission electron microscope (TEM), Selected area energy diffraction (SAED) and ultraviolet visible (UV-Vis) spectroscopy. The XRD results suggested that the synthesized AA-CNC@Ag BNC material is composed of 47 % crystalline and 53 % amorphous nature having distorted hexagonal structure due to capping of Ag NPs by amorphous biopolymer matrix. The Debye-Scherer crystallite sized was calculated as 18 nm which is found in close agreement with TEM analysis (19 nm). The SAED yellow fringes simulates the miller indices values with XRD patterns and supported the surface functionalization of Ag NPs by biopolymer blend of AA-CNC. The XPS data supported the presence of Ag0 as indexed by Ag3d orbital corresponding to Ag3d3/2 at 372.6 eV and Ag3d5/2 at 366.6 eV. The surface morphological results revealed a flaky surface of the resultant material having well distributed Ag NPs in the matrix. The EDX and atomic concentration results given by XPS supported the presence if C, O and Ag in the bionanocomposite material. The UV-Vis results suggested that the material is both UV and visible light active having multiple SPR effects with anisotropy. The material was explored as a photocatalyst for remediation of wastewater contaminated by malachite green (MG) using advance oxidation process (AOP). Photocatalytic experiments were performed in order to optimize various reaction parameters such as irradiation time, pH, catalyst dose and MG concentration. The obtained results showed that almost 98.85 % of MG was degraded by using 20 mg of catalyst at pH 9 for 60 min of irradiation. The trapping experiments revealed that •O2- radicals played primary role in MG degradation. This study will provide new possible strategies for the remediation of wastewater contaminated by MG.
Collapse
Affiliation(s)
- Akshara Bassi
- Environmental Research Lab, Department of Chemistry, Chandigarh University, Mohali, Punjab 140413, India
| | - Kushal Kanungo
- Environmental Research Lab, Department of Chemistry, Chandigarh University, Mohali, Punjab 140413, India
| | - Bon Heun Koo
- School of Materials Science and Engineering, Changwon National University, Changwon 51140, Gyeongnam, South Korea.
| | - Imran Hasan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
12
|
Candra A, Tsai HC, Saragi IR, Hu CC, Yu WT, Krishnamoorthi R, Hong ZX, Lai JY. Fabrication and characterization of hybrid eco-friendly high methoxyl pectin/gelatin/TiO 2/curcumin (PGTC) nanocomposite biofilms for salmon fillet packaging. Int J Biol Macromol 2023; 232:123423. [PMID: 36716833 DOI: 10.1016/j.ijbiomac.2023.123423] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023]
Abstract
Hybrid eco-friendly nanocomposite films were fabricated by blending high-methoxyl pectin, gelatin, TiO2, and curcumin through the solution casting method. Various concentrations (0-5 wt%) of TiO2 nanoparticles (TNPs) and curcumin as an organic filler were added to the blend solutions. A high TNP concentration affected the surface morphology, roughness, and compactness of the films. Additionally, 3D mapping revealed the nanoparticle distribution in the film layers. Moisture content, water solubility, and light transmittance reduced dramatically with increasing TNP content, in accordance with the water vapor and oxygen permeabilities. X-ray diffraction revealed that the films were semicrystalline nanocomposites, and the thermal properties of the films increased when 5 wt% of TNPs was incorporated into the blend solution. Fourier-transform infrared and Raman analyses revealed interactions among biopolymers, nanoparticles, and organic fillers through hydrogen bonding. The shelf life of fresh salmon fillets was prolonged to six days for all groups, revealed by total viable counts and psychrotrophic bacteria counts, and the pH of the salmon fillets could be extended until the sixth day for all groups. Biodegradation assays demonstrated a significant weight loss in the nanocomposite films. Therefore, a nanocomposite film with 5 wt% TNPs could potentially be cytotoxic to NIH 3T3 cells.
Collapse
Affiliation(s)
- Andy Candra
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC.
| | - Indah Revita Saragi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Chien-Chieh Hu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Wan-Ting Yu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Rajakumari Krishnamoorthi
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Zhen-Xiang Hong
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan, ROC
| |
Collapse
|
13
|
Khanzada B, Mirza B, Ullah A. Chitosan based bio-nanocomposites packaging films with unique mechanical and barrier properties. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Zhang J, Zhang J, Huang X, Shi J, Liu L, Song W, Zhai X, Xiao J, Hashim SBH, Li Z, Zou X, Povey M. A visual bi-layer sensor based on Agar/TiO 2/butterfly bean flower anthocyanin/κ-carrageenan with photostability for monitoring Penaeus chinensis freshness. Int J Biol Macromol 2023; 235:123706. [PMID: 36801306 DOI: 10.1016/j.ijbiomac.2023.123706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
Visual indicator bi-layer films were manufactured incorporating κ-carrageenan, butterfly pea flower anthocyanin, varying Nano‑titanium dioxide (TiO2) content and agar for Penaeus chinensis (Chinese white shrimp) freshness detection. The κ-carrageenan-anthocyanin (CA) layer served as indicator, while the TiO2-agar (TA) layer functioned as the protective layer to improve the photostability of film. The bi-layer structure was characterized by scanning electron microscopy (SEM). The TA2-CA film had the best tensile strength with a value of 17.8 MPa and the lowest water vapor permeability (WVP) value of bi-layer films was 2.98 × 10-7 g.m-1.h-1.pa-1. The bi-layer film protected anthocyanin against exudation when immersed in aqueous solution of varying pH. The TiO2 particles filled the pores of the protective layer, increasing the opacity from 1.61 up to 4.49 significantly improving the photostability with a consequent slight color change under illumination of UV/visible light. Under UV irradiation, the TA2-CA film had no significant color change with a ΔE value of 4.23. Finally, the TA2-CA films showed an obvious color change from blue to yellow green in the early stages of Penaeus chinensis putrefaction (≤48 h) then the color change and Penaeus chinensis freshness were well correlated (R2 = 0.8739).
Collapse
Affiliation(s)
- Junjun Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianing Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Li Liu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenjun Song
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianbo Xiao
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Sulafa B H Hashim
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Megan Povey
- School of Food Science and Nutrition, the University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
15
|
Titanium dioxide nanoparticles and elderberry extract incorporated starch based polyvinyl alcohol films as active and intelligent food packaging wraps. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Lee DH, Kwon S, Kim YE, Kim NY, Joo JB. Double-Layered Polymer Microcapsule Containing Non-Flammable Agent for Initial Fire Suppression. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7831. [PMID: 36363422 PMCID: PMC9659137 DOI: 10.3390/ma15217831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Fire in energy storage systems, such as lithium-ion batteries, has been raised as a serious concern due to the difficulty of suppressing it. Fluorine-based non-flammable agents used as internal substances leaked through the fine pores of the polymer outer shell, leading to a degradation of fire extinguishing performance. To improve the durability of the fire suppression microcapsules and the stability of the ouster shell, a complex coacervation was used, which could be microencapsulated at a lower temperature, and the polymer shell was coated with urea-formaldehyde (UF) resin. The outermost UF resin formed elaborate bonds with the gelatin-based shell, and thus, the structure of the outer shell became denser, thereby improving the loss resistance of the inner substance and thermal stability. The double-layered microcapsules had an average particle diameter of about 309 μm, and a stable outer shell formed with a mass loss of 0.005% during long-term storage for 100 days. This study confirmed that the double-layered microcapsules significantly improved thermal stability, resistance to core material loss, core material content and fire suppression performance compared to single wall microcapsules. These results indicated that the double-layered structure was suitable for the production of microcapsules for initial fire suppression, including highly volatile non-flammable agents with a low boiling point.
Collapse
|
17
|
Zhang T, Zhang W, Deng Y, Chu Y, Zhong Y, Wang G, Xiong Y, Liu X, Chen L, Li H. Curcumin-based waterborne polyurethane-gelatin composite bioactive films for effective UV shielding and inhibition of oil oxidation. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
Yao X, Yun D, Xu F, Chen D, Liu J. Development of shrimp freshness indicating films by immobilizing red pitaya betacyanins and titanium dioxide nanoparticles in polysaccharide-based double-layer matrix. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Li H, Li W, Zhang J, Xie G, Xiong T, Xu H. Preparation and characterization of sodium alginate/gelatin/Ag nanocomposite antibacterial film and its application in the preservation of tangerine. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Effect of anthocyanin-natural deep eutectic solvent (lactic acid/fructose) on mechanical, thermal, barrier, and pH-sensitive properties of polyvinyl alcohol based edible films. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Noorian S, Nafchi AM, Bolandi M, Jokar M. Effects of Nano‐Titanium Dioxide and
Mentha piperita
Essential Oil on Physicochemical, Mechanical, and Optical Properties of Cassava Starch Film. STARCH-STARKE 2022. [DOI: 10.1002/star.202200090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Simin Noorian
- Food Biopolymer Research Group, Food Science and Technology Department, Damghan Branch Islamic Azad University Damghan Iran
| | - Abdorreza Mohammadi Nafchi
- Food Biopolymer Research Group, Food Science and Technology Department, Damghan Branch Islamic Azad University Damghan Iran
- Food Technology Division, School of Industrial Technology Universiti Sains Malaysia Minden Penang 11800 Malaysia
| | - Marzieh Bolandi
- Food Biopolymer Research Group, Food Science and Technology Department, Damghan Branch Islamic Azad University Damghan Iran
| | - Maryam Jokar
- Research Group for Nano‐Bio Science, Division of Food Technology, National Food Institute Technical University of Denmark Lyngby Denmark
| |
Collapse
|
22
|
Pirnia M, Shirani K, Tabatabaee Yazdi F, Moratazavi SA, Mohebbi M. Characterization of antioxidant active biopolymer bilayer film based on gelatin-frankincense incorporated with ascorbic acid and Hyssopus officinalis essential oil. Food Chem X 2022; 14:100300. [PMID: 35434601 PMCID: PMC9011010 DOI: 10.1016/j.fochx.2022.100300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022] Open
Abstract
In this study, a bio-based bilayer edible film based on gelatin/frankincense, with the incorporation of different concentrations of Ascorbic acid (AA) (0, 1, 2%) into the inner layer (gelatin) and Hyssopus officinalis (HO) (0, 0.75, 1.5%) essential oil in the outer layer (frankincense) was prepared. A significant increase (p < 0.05) in b* and a remarkable decrease in whiteness and lightness of the films were seen via increasing the HO ascribed to the Total Phenolic Content of HO and non-enzymatic browning. Although there was a significant decrease (p < 0.05) in Tensile Strength with the addition of HO, Elongation at Break was increased significantly as a function of HO, which is correlated with a dense and compact network in SEM images. The maximum thickness of film emulsified with 1.5%HO + 2%AA ascribed to the accumulation of solid content. The improvement in Water Contact Angle (℃) and a reduction in Water Vapor Permeability (gr/s mPa) have occurred due to the hydrophobic nature of HO.
Collapse
Affiliation(s)
- Motahare Pirnia
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khatereh Shirani
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farideh Tabatabaee Yazdi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Ali Moratazavi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohebbat Mohebbi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
23
|
Multilayer gelatin/myofibrillar films containing clove essential oil: Properties, protein-phenolic interactions, and migration of active compounds. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Alias A, Wan MK, Sarbon N. Emerging materials and technologies of multi-layer film for food packaging application: A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108875] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Impacts of Nano-Gelatin Coating Containing Thymol and Nisin on Chemical Quality Indices of Rainbow Trout Fillets Stored at 4°C. Jundishapur J Nat Pharm Prod 2022. [DOI: 10.5812/jjnpp-122177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Seafood such as fish is an integral part of human nutrition and an excellent source of protein. However, their short shelf life is quite challenging for the food industry. Objectives: This study was carried out to investigate the effects of nano-gelatin coating embedded with thymol and nisin on the chemical quality indices of rainbow trout fillets during 16 days of storage at 4°C. Methods: The fillets were randomly divided into six groups, including control (C), gelatin (G), nano-gelatin (NG), nano-gelatin + thymol (NG-T), nano-gelatin + nisin (NG-N), and nano-gelatin + nisin and thymol (NG-T-N). The chemical quality of fish samples was assessed by performing pH, thiobarbituric acid reactive substance (TBARS), peroxide value (PV), free fatty acid (FFA), and total volatile basic nitrogen (TVB-N) analyses every four days. Results: The results revealed the stunning effect of nisin and thymol addition to the nano-gelatin coating on all chemical quality indices. Besides, PV, TBARS, and FFA analyses showed that nano-gelatin containing thymol significantly decreased lipid oxidation in fish fillet samples (P < 0.05). The lowest amounts of PV (8.33 meq oxygen/kg oil), TBARS, and FFA were recorded for NG-T-N. The best results in the TBARS test (P < 0.05) were observed in NG-T-N, followed by NG-T (1.45 and 1.69 mg of malonaldehyde/kg of tissue, respectively), and similar results were recorded for FFA analysis. On day 16, the lowest amounts of TVB-N were measured for NG-T-N, followed by NG-N and NG-T (26.13, 29.86, and 38.26 mg N/100 g, respectively). Both nisin and thymol reduced the TVB-N and increased the shelf life, and the best results were observed in groups treated with nisin and thymol simultaneously. However, the application of gelatin and nano-gelatin coating without nisin and thymol was ineffective in improving the chemical quality of samples, and they must be used with nisin and/or thymol. Conclusions: Gelatin nanogel embedded with thymol and nisin can be utilized to enhance the chemical quality and shelf life of fish fillets.
Collapse
|
26
|
Antimicrobial and Mechanical Properties of β-Cyclodextrin Inclusion with Octyl Gallate in Chitosan Films and their Application in Fresh Vegetables. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09746-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
27
|
A Facile In Situ Synthesis of Resorcinol-Mediated Silver Nanoparticles and the Fabrication of Agar-Based Functional Nanocomposite Films. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6050124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The in situ synthesis of silver nanoparticles (AgNPs) was performed using resorcinol and agar to produce agar-based antioxidant and antimicrobial films. AgNPs were regularly dispersed on the film matrix, and their presence improved the thermal stability of films. Additionally, the addition of AgNPs slightly increased the agar-based film’s tensile strength (~10%), hydrophobicity (~40%), and water vapor barrier properties (~20%) at 1.5 wt% of AgNP concentration. The resorcinol also imparted UV-barrier and antioxidant activity to the agar-based film. In particular, the agar-based film containing a higher quantity of AgNPs (>1.0 wt%) was highly effective against the foodborne pathogenic bacteria L. monocytogenes and E. coli. Therefore, agar-based composite films with improved physicochemical and functional properties may be promising for active packaging.
Collapse
|
28
|
Alizadeh Sani M, Tavassoli M, Salim SA, Azizi-lalabadi M, McClements DJ. Development of green halochromic smart and active packaging materials: TiO2 nanoparticle- and anthocyanin-loaded gelatin/κ-carrageenan films. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107324] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
Tymczewska A, Furtado BU, Nowaczyk J, Hrynkiewicz K, Szydłowska-Czerniak A. Functional Properties of Gelatin/Polyvinyl Alcohol Films Containing Black Cumin Cake Extract and Zinc Oxide Nanoparticles Produced via Casting Technique. Int J Mol Sci 2022; 23:2734. [PMID: 35269873 PMCID: PMC8911258 DOI: 10.3390/ijms23052734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to develop and characterize gelatin/polyvinyl alcohol (G/PVA) films loaded with black cumin cake extract (BCCE) and zinc oxide nanoparticles (ZnONPs). The BCCE was also applied for the green synthesis of ZnONPs with an average size of less than 100 nm. The active films were produced by a solvent-casting technique, and their physicochemical and antibacterial properties were investigated. Supplementation of G/PVA film in ZnONPs decreased the tensile strength (TS) from 2.97 MPa to 1.69 MPa. The addition of BCCE and ZnONPs increased the elongation at the break (EAB) of the enriched film by about 3%. The G/PVA/BCCE/ZnONPs film revealed the lowest water vapor permeability (WVP = 1.14 × 10-9 g·mm·Pa-1·h-1·mm-2) and the highest opacity (3.41 mm-1). The QUick, Easy, New, CHEap and Reproducible (QUENCHER) methodologies using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6- sulfonic acid) (ABTS) and cupric ion reducing antioxidant capacity (CUPRAC) were applied to measure antioxidant capacity (AC) of the prepared films. The incorporation of BCCE and ZnONPs into G/PVA films enhanced the AC by 8-144%. The films containing ZnONPs and a mixture of BCCE and ZnONPs inhibited the growth of three Gram-positive bacterial strains. These nanocomposite films with desired functional properties can be recommended to inhibit microbial spoilage and oxidative rancidity of packaged food.
Collapse
Affiliation(s)
- Alicja Tymczewska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Bliss Ursula Furtado
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (B.U.F.); (K.H.)
| | - Jacek Nowaczyk
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (B.U.F.); (K.H.)
| | - Aleksandra Szydłowska-Czerniak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
30
|
Zhang W, Rhim JW. Titanium dioxide (TiO2) for the manufacture of multifunctional active food packaging films. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100806] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
Yang Z, Zhai X, Zhang C, Shi J, Huang X, Li Z, Zou X, Gong Y, Holmes M, Povey M, Xiao J. Agar/TiO2/radish anthocyanin/neem essential oil bionanocomposite bilayer films with improved bioactive capability and electrochemical writing property for banana preservation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107187] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
32
|
Alizadeh Sani M, Maleki M, Eghbaljoo-Gharehgheshlaghi H, Khezerlou A, Mohammadian E, Liu Q, Jafari SM. Titanium dioxide nanoparticles as multifunctional surface-active materials for smart/active nanocomposite packaging films. Adv Colloid Interface Sci 2022; 300:102593. [PMID: 34971916 DOI: 10.1016/j.cis.2021.102593] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Environmental issues such as plastic packaging and high demand for fresh and safe food has increased the interest for developing smart/active food packaging films with colloidal nanoparticles (NPs). Titanium dioxide nanoparticles (TNPs) are cost effective and stable metal oxide NPs which could be used as a functional nano-filler for biodegradable food packaging due to their excellent biocompatibility, photo catalyzing, and antimicrobial properties. This article has comprehensively reviewed the functional properties and advantages of TNPs-containing smart/active films. The advantage of adding TNPs for ameliorating food packaging materials such as their physical, mechanical, moisture/light barrier, optical, thermal resistance, microstructure and chemical properties as well as, antibacterial, and photocatalytic properties are discussed. Also, the practical and migration properties of administrating TNPs in food packaging material are investigated. The ethylene decomposition activity of TNPs containing active films, could be used for increasing the shelf life of fruits/vegetables after harvesting. TNPs are safe with negligible migration rates which could be used for fabrication of multifunctional smart/active packaging films due to their antimicrobial properties and ethylene gas scavenging activities.
Collapse
|
33
|
Strategies to Improve the Barrier and Mechanical Properties of Pectin Films for Food Packaging: Comparing Nanocomposites with Bilayers. COATINGS 2022. [DOI: 10.3390/coatings12020108] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditional food packaging systems help reduce food wastage, but they also produce environmental impacts when not properly disposed of. Bio-based polymers are a promising solution to overcome these impacts, but they have poor barrier and mechanical properties. This work evaluates two strategies to improve these properties in pectin films: the incorporation of cellulose nanocrystals (CNC) or sodium montmorillonite (MMT) nanoparticles, and an additional layer of chitosan (i.e., a bilayer film). The bionanocomposites and bilayer films were characterized in terms of optical, morphological, hygroscopic, mechanical and barrier properties. The inclusion of the nanofillers in the polymer reduced the water vapor permeability and the hydrophilicity of the films without compromising their visual properties (i.e., their transparency). However, the nanoparticles did not substantially improve the mechanical properties of the bionanocomposites. Regarding the bilayer films, FTIR and contact angle studies revealed no surface and/or chemical modifications, confirming only physical coating/lamination between the two polymers. These bilayer films exhibited a dense homogenous structure, with intermediate optical and hygroscopic properties. An additional layer of chitosan did not improve the mechanical, water vapor and oxygen barrier properties of the pectin films. However, this additional layer made the material more hydrophobic, which may play an important role in the application of pectin as a food packaging material.
Collapse
|
34
|
Shi XD, Huang JJ, Wu JL, Cai XX, Tian YQ, Rao PF, Huang JL, Wang SY. Fabrication, interaction mechanism, functional properties, and applications of fish gelatin-polysaccharide composites: a review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107106] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Aga MB, Dar AH, Nayik GA, Panesar PS, Allai F, Khan SA, Shams R, Kennedy JF, Altaf A. Recent insights into carrageenan-based bio-nanocomposite polymers in food applications: A review. Int J Biol Macromol 2021; 192:197-209. [PMID: 34624381 DOI: 10.1016/j.ijbiomac.2021.09.212] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Nanotechnology has proven as progressive technology that enables to contribute, develop several effective and sustainable changes in food products. Incorporating nanomaterials like TiO2, SiO2, Halloysite nano clay, Copper sulfide, Bentonite nano clay, in carrageenan to develop innovative packaging materials with augmented mechanical and antimicrobial properties along with moisture and gas barrier properties that can produce safe and healthy foods. Intervention of carrageenan-based bio-nanocomposites as food packaging constituents has shown promising results in increasing the shelf stability and food quality by arresting the microbial growth. Nanomaterials can be incorporated within the carrageenan for developing active packaging systems for continuous protection of food products under different storage environments from farm to the fork to ensure quality and safety of foods. Carrageenan based bio nanocomposite packaging materials can be helpful to reduce the environmental concerns due to their high biodegradability index. This review gives insight about the current trends in the applications of carrageenan-based bio nanocomposites for different food packaging applications.
Collapse
Affiliation(s)
- Mohsin B Aga
- Department of Food Technology, Islamic University of Science and Technology, Awantipora 192122, Kashmir, India
| | - Aamir H Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora 192122, Kashmir, India.
| | - Gulzar A Nayik
- Government Degree College, Shopian 192303, Jammu & Kashmir, India
| | - Parmjit S Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India
| | - Farhana Allai
- Department of Food Technology, Islamic University of Science and Technology, Awantipora 192122, Kashmir, India
| | - Shafat A Khan
- Department of Food Technology, Islamic University of Science and Technology, Awantipora 192122, Kashmir, India
| | - Rafeeya Shams
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu 180009, India
| | - John F Kennedy
- Chembiotech Laboratories, Kyrewood House, Tenbury Wells, Worcestershire WR15 8SG, United Kingdom
| | - Aayeena Altaf
- Department of Food Technology, SIST Jamia Hamdard, 110062 New Delhi, India
| |
Collapse
|
36
|
Synergistic effect of nano-ZnO and Mentha piperita essential oil on the moisture sorption isotherm, antibacterial activity, physicochemical, mechanical, and barrier properties of gelatin film. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01217-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Functionality of Films from Nigella sativa Defatted Seed Cake Proteins Plasticized with Grape Juice: Use in Wrapping Sweet Cherries. COATINGS 2021. [DOI: 10.3390/coatings11111383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The main aim of this work is to improve the functionality of Nigella sativa protein concentrate (NSPC) films by using grape juice (GJ). The film’s mechanical, antioxidant, and antimicrobial activities were evaluated. The obtained results showed, for the first time, that GJ at concentrations of 2%–10% (v/v) are able to act as plasticizer for the NSPC films with promising film properties. The results showed that the tensile strength and Young’s modulus of NSPC films were reduced significantly when the GJ increased. However, the NSPC films prepared with 6% GJ observed a higher elongation at break compared with other films. Moreover, the obtained films showed very interesting and promising results for their antioxidant and antimicrobial properties compared with the control films. The sweet cherries wrapped with NSPC film showed that the TSS (Brix) was significantly lower compared to the control, after 10 days of storage. However, the titratable acidity, pH value, and L* of all cherries, either wrapped or not, was not significantly different in all storage times. On the other hand, hue angle was significantly lower after 10 days of storage at −18 °C compared with control films. GJ has a multi-functional effect for protein-based films as plasticizer, antioxidant, and antimicrobial function.
Collapse
|
38
|
M. Rangaraj V, Rambabu K, Banat F, Mittal V. Natural antioxidants-based edible active food packaging: An overview of current advancements. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101251] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Chang X, Hou Y, Liu Q, Hu Z, Xie Q, Shan Y, Li G, Ding S. Physicochemical and antimicrobial properties of chitosan composite films incorporated with glycerol monolaurate and nano-TiO2. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106846] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
40
|
La Fuente Arias CI, Kubo MTKN, Tadini CC, Augusto PED. Bio-based multilayer films: A review of the principal methods of production and challenges. Crit Rev Food Sci Nutr 2021; 63:2260-2276. [PMID: 34486888 DOI: 10.1080/10408398.2021.1973955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The development of biodegradable packaging materials has been drawing attention worldwide to minimize the environmental impact of traditional petroleum-based plastics. Nevertheless, it is challenging to obtain bio-based materials with suitable properties for packaging applications. Films produced from a single biopolymer often lack some important properties. An alternative to overcome this limitation is the multilayer assembly. Under this technology, two or more materials with specific and complementary properties are combined into a single-layered structure, thus improving the performance of bio-polymer plastics. This review presents the main aspects of bio-based multilayer film production technologies, discussing their advantages and disadvantages, which have to be considered to produce the most suitable film for each specific application. Most of the studies reported that such films resulted in increased mechanical performance and decreased water, oxygen, and dioxide carbon permeability. This approach allows the addition of compounds leading to antioxidant or antibacterial activity. Finally, a discussion about the future challenges is also presented.
Collapse
Affiliation(s)
- Carla Ivonne La Fuente Arias
- School of Agriculture Luiz de Queiroz (ESALQ), Department of Agri-food Industry, Food and Nutrition (LAN), Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Mirian Tiaki Ka-Neiwa Kubo
- Institute of Biosciences, Humanities and Exact Sciences, Department of Food Engineering and Technology, Universidade Estadual de São Paulo (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Carmen Cecilia Tadini
- Department of Chemical Engineering, Universidade de São Paulo, Escola Politéccnica, São Paulo, São Paulo, Brazil.,Food Research Center (FoRC/NAPAN), Universidade de São Paulo, São Paulo, Brazil.,Food and Nutrition Research Center (NAPAN), University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Pedro Esteves Duarte Augusto
- School of Agriculture Luiz de Queiroz (ESALQ), Department of Agri-food Industry, Food and Nutrition (LAN), Universidade de São Paulo, Piracicaba, São Paulo, Brazil.,Food and Nutrition Research Center (NAPAN), University of São Paulo (USP), São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Wardana AA, Kingwascharapong P, Tanaka F, Tanaka F. CuO nanoparticles/Indonesian cedarwood essential oil‐loaded chitosan coating film: characterisation and antifungal improvement against
Penicillium
spp. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Ata Aditya Wardana
- Graduate School of Bioresource and Bioenvironmental Sciences Kyushu University 744 Motooka, Nishi‐ku, Fukuoka‐shi Fukuoka 819‐0395 Japan
- Food Technology Department Faculty of Engineering Bina Nusantara University Jakarta 1148 Indonesia
| | - Passakorn Kingwascharapong
- Graduate School of Bioresource and Bioenvironmental Sciences Kyushu University 744 Motooka, Nishi‐ku, Fukuoka‐shi Fukuoka 819‐0395 Japan
- Department of International Professional in Culinary Art Faculty of International Hospitality Industry Dusit Thani College Bangkok 10250 Thailand
| | - Fumina Tanaka
- Laboratory of Postharvest Science Faculty of Agriculture Kyushu University 744 Motooka, Nishi‐ku, Fukuoka‐shi Fukuoka W5‐873819‐0395 Japan
| | - Fumihiko Tanaka
- Laboratory of Postharvest Science Faculty of Agriculture Kyushu University 744 Motooka, Nishi‐ku, Fukuoka‐shi Fukuoka W5‐873819‐0395 Japan
| |
Collapse
|
42
|
Gürler N, Paşa S, Erdoğan Ö, Cevik O. Physicochemical Properties for Food Packaging and Toxicity Behaviors Against Healthy Cells of Environmentally Friendly Biocompatible Starch/Citric Acid/Polyvinyl Alcohol Biocomposite Films. STARCH-STARKE 2021. [DOI: 10.1002/star.202100074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Nedim Gürler
- Department of Food Process Tunceli Vocational School Munzur University Tunceli Turkey
| | - Salih Paşa
- Faculty of Education Department of Science Afyon Kocatepe University Afyonkarahisar Turkey
| | - Ömer Erdoğan
- School of Medicine Department of Biochemistry Aydın Adnan Menderes University Aydın Turkey
| | - Ozge Cevik
- School of Medicine Department of Biochemistry Aydın Adnan Menderes University Aydın Turkey
| |
Collapse
|
43
|
Lionetto F, Esposito Corcione C. Recent Applications of Biopolymers Derived from Fish Industry Waste in Food Packaging. Polymers (Basel) 2021; 13:2337. [PMID: 34301094 PMCID: PMC8309529 DOI: 10.3390/polym13142337] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Fish waste is attracting growing interest as a new raw material for biopolymer production in different application fields, mainly in food packaging, with significant economic and environmental advantages. This review paper summarizes the recent advances in the valorization of fish waste for the preparation of biopolymers for food packaging applications. The issues related to fishery industry waste and fish by-catch and the potential for re-using these by-products in a circular economy approach have been presented in detail. Then, all the biopolymer typologies derived from fish waste with potential applications in food packaging, such as muscle proteins, collagen, gelatin, chitin/chitosan, have been described. For each of them, the recent applications in food packaging, in the last five years, have been overviewed with an emphasis on smart packaging applications. Despite the huge industrial potential of fish industry by-products, most of the reviewed applications are still at lab-scale. Therefore, the technological challenges for a reliable exploitation and recovery of several potentially valuable molecules and the strategies to improve the barrier, mechanical and thermal performance of each kind of biopolymer have been analyzed.
Collapse
Affiliation(s)
- Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Via Arnesano, 73100 Lecce, Italy;
| | | |
Collapse
|
44
|
Youssef AM, El-Sayed HS, El-Nagar I, El-Sayed SM. Preparation and characterization of novel bionanocomposites based on garlic extract for preserving fresh Nile tilapia fish fillets. RSC Adv 2021; 11:22571-22584. [PMID: 35480459 PMCID: PMC9034308 DOI: 10.1039/d1ra03819b] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/19/2021] [Indexed: 01/11/2023] Open
Abstract
In this paper we describe the preparation of a new bionanocomposite based on carboxymethyl cellulose (CMC), Arabic gum (AG) and gelatin (GL), incorporating garlic extract (GE) and TiO2 nanoparticles (TiO2-NPs). The prepared bionanocomposites were evaluated using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Energy Dispersive X-ray Analysis (EDX), and scanning electron microscopy (SEM), and were evaluated for their antimicrobial effect. The permeability and thermal and mechanical properties of the films were assessed. The water vapor transmission rate (WVTR), oxygen transmission rate (OTR), and mechanical, thermal and antimicrobial properties of the prepared bionanocomposite films were enhanced by the addition of GE and TiO2-NPs. The effects of GE and TiO2-NPs in combination incorporated into a CMC/AG/GL blend as an edible coating on the quality of fresh Nile tilapia fish fillets during refrigerated storage were evaluated. The microbiological status and weight loss of fresh Nile tilapia fish fillets were periodically tested for 21 days during storage at 4 °C. The results indicated that GE combined with TiO2-NPs has a synergistic influence on the enhancement of the preservation properties of CMC/AG/GL/GE–TiO2 bionanocomposites for refrigerated tilapia fish fillets, which could control microbial growth, and decrease weight loss during the storage of tilapia fish fillets. In current work a new bionanocomposite based on carboxymethyl cellulose, Arabic gum and gelatin, incorporating garlic extract and TiO2 nanoparticles as an edible coating for preserving the fresh Nile tilapia fish fillets during cold storage.![]()
Collapse
Affiliation(s)
- Ahmed M Youssef
- Packaging Materials Department, National Research Centre 33 El Bohouth St. (former El Tahrir St.), Dokki Giza 12622 Egypt +20 33370931 +20 33322418
| | - Hoda S El-Sayed
- Dairy Science Department, National Research Centre 33 El Bohouth St. (former El Tahrir St.), Dokki Giza 12622 Egypt
| | - Islam El-Nagar
- Packaging Materials Department, National Research Centre 33 El Bohouth St. (former El Tahrir St.), Dokki Giza 12622 Egypt +20 33370931 +20 33322418
| | - Samah M El-Sayed
- Dairy Science Department, National Research Centre 33 El Bohouth St. (former El Tahrir St.), Dokki Giza 12622 Egypt
| |
Collapse
|
45
|
Can Sustainable Packaging Help to Reduce Food Waste? A Status Quo Focusing Plant-Derived Polymers and Additives. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The promotion of sustainable packaging is part of the European Green Deal and plays a key role in the EU’s social and political strategy. One option is the use of renewable resources and biomass waste as raw materials for polymer production. Lignocellulose biomass from annual and perennial industrial crops and agricultural residues are a major source of polysaccharides, proteins, and lignin and can also be used to obtain plant-based extracts and essential oils. Therefore, these biomasses are considered as potential substitute for fossil-based resources. Here, the status quo of bio-based polymers is discussed and evaluated in terms of properties related to packaging applications such as gas and water vapor permeability as well as mechanical properties. So far, their practical use is still restricted due to lower performance in fundamental packaging functions that directly influence food quality and safety, the length of shelf life, and thus the amount of food waste. Besides bio-based polymers, this review focuses on plant extracts as active packaging agents. Incorporating extracts of herbs, flowers, trees, and their fruits is inevitable to achieve desired material properties that are capable to prolong the food shelf life. Finally, the adoption potential of packaging based on polymers from renewable resources is discussed from a bioeconomy perspective.
Collapse
|
46
|
Said N, Howell NK, Sarbon N. A Review on Potential Use of Gelatin-based Film as Active and Smart Biodegradable Films for Food Packaging Application. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1929298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- N.S. Said
- School of Food Science and Technology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Nazlin K. Howell
- Department of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - N.M Sarbon
- School of Food Science and Technology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| |
Collapse
|
47
|
Rukmanikrishnan B, Ramalingam S, Lee J. Quaternary ammonium silane-reinforced agar/polyacrylamide composites for packaging applications. Int J Biol Macromol 2021; 182:1301-1309. [PMID: 33989690 DOI: 10.1016/j.ijbiomac.2021.05.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/19/2021] [Accepted: 05/09/2021] [Indexed: 11/18/2022]
Abstract
Agar/polyacrylamide/quaternary ammonium silane-based (A/P/QAS-based) composite films were developed for food and biomedical packaging applications. The structural, optical, and surface morphological properties of the A/P and A/P/QAS composites were characterized by various characterization techniques in terms of thermogravimetric analysis, differential scanning calorimetry analyses, mechanical and rheological properties. Results showed that the 5% gravimetric loss (57.8-139.1 °C), glass transition temperature (179-189.9 °C) and tensile strength (35.2-47.8 MPa) of the prepared composites increased with increasing polyacrylamide content. The contact angle and water barrier properties of the composites were considerably improved by the addition of QAS. To compare WVP values of the A/P/QAS composite with neat AP composite films it reduced nearly 46% (2.45 to 1.32 × 10-9 g/m2 Pas). The A/P/QAS composites showed excellent antimicrobial properties against five different organisms. The Staphylococcus aureus exhibited highest 25 mm for gel and 18.1 mm for film of A/P/QAS composites. All the composites exhibited shear-thinning behavior, and their viscosity increased with increasing polyacrylamide content. The storage moduli of the prepared hydrogel composites were in the range of 5000-10,600 Pa at 1 rad/s and increased continuously over the entire frequency range. The dynamic rheological properties of A/P and A/P/QAS composites indicated that the prepared composites had good mechanical strength. Biopolymer based A/P and A/P/QAS composite films are suitable for green composite packaging applications.
Collapse
Affiliation(s)
| | | | - Jaewoong Lee
- Department of Fiber System Engineering, Yeungnam University, South Korea.
| |
Collapse
|
48
|
Dong X, Liang X, Zhou Y, Bao K, Sameen DE, Ahmed S, Dai J, Qin W, Liu Y. Preparation of polylactic acid/TiO 2/GO nano-fibrous films and their preservation effect on green peppers. Int J Biol Macromol 2021; 177:135-148. [PMID: 33610604 DOI: 10.1016/j.ijbiomac.2021.02.125] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022]
Abstract
Polylactic acid (PLA)/nano-TiO2(TiO2 NPs)/Graphene oxide (GO) nano-fibrous films were prepared by ultrasonic assisted electrostatic spinning technology, and the effects of TiO2 NPs:GO mass ratio and ultrasonic power on film morphology and mechanical, thermal, barrier and antibacterial properties were investigated. The addition of TiO2 NPs and GO can significantly increase the tensile strength and elongation at the break of PLA nano-fibrous films, and improve the water barrier properties of the nano-fibrous films. The antibacterial experiment showed that the inhibition rates of the nano-fibrous films against Escherichia coli and Staphylococcus aureus after 24 h exposure to UV irradiation reached 94.4 ± 1.8% and 92.6 ± 1.7% At the same time, the fresh-keeping packaging experiment of green peppers at room temperature, through the determination of hardness, soluble solids, chlorophyll content to determine the degree of decay of green pepper, it showed that PLA/TiO2 NPs/GO nano-fibrous films can better maintain the sensory quality of green peppers, delay the rate of spoilage of green peppers, and prolong the preservation period of green peppers.
Collapse
Affiliation(s)
- Xiaorong Dong
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xue Liang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yuting Zhou
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Kaiwen Bao
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China; California Nano Systems Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
49
|
Mesgari M, Aalami AH, Sahebkar A. Antimicrobial activities of chitosan/titanium dioxide composites as a biological nanolayer for food preservation: A review. Int J Biol Macromol 2021; 176:530-539. [PMID: 33607131 DOI: 10.1016/j.ijbiomac.2021.02.099] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/03/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023]
Abstract
Packaging is an integral part of food industry that preserves the properties of food during storage. Food spoilage caused by foodborne microorganisms is a public health problem that imposes a significant burden on the healthcare systems. Moreover, packaging based on artificial and chemical materials such as plastic is destructive to the environment. Chitosan can be categorized as an active food packaging material because of its inherent antimicrobial properties and capacity to carry various active components. Combining chitosan and metallic nanoparticles can be used as a practical approach in antimicrobial packaging systems. This strategy has advantages of thermal stability, barrier properties, antioxidant and antimicrobial packaging. Titanium dioxide is one of these nanoparticles that plays a photocatalytic role by releasing reactive oxygen species, thereby leading to the destruction of microorganisms' cell wall and extension of food shelf life. This review elaborates on the antimicrobial applications of chitosan/titanium dioxide nanoparticles films in food packaging systems.
Collapse
Affiliation(s)
- Mohammad Mesgari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Amir Hossein Aalami
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
50
|
The effects of agar addition and ultrasound treatment on thermomechanical and physical properties of smooth hound (Mustellus mustellus) skin gelatin film. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00818-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|