1
|
Ganugi P, Caffi T, Gabrielli M, Secomandi E, Fiorini A, Zhang L, Bellotti G, Puglisi E, Fittipaldi MB, Asinari F, Tabaglio V, Trevisan M, Lucini L. A 3-year application of different mycorrhiza-based plant biostimulants distinctively modulates photosynthetic performance, leaf metabolism, and fruit quality in grapes ( Vitis vinifera L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1236199. [PMID: 37711298 PMCID: PMC10497758 DOI: 10.3389/fpls.2023.1236199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023]
Abstract
The use of microbial biostimulants in agriculture is recognized as a sustainable approach to promoting crop productivity and quality due to improved nutrient uptake, enhanced stress tolerance, and improved ability to cope with non-optimal environments. The present paper aimed to comparatively investigate the effect of seven different commercial mycorrhizal-based treatments in terms of yield, phytochemical components, and technological traits of Malvasia di Candia Aromatica grape (Vitis vinifera L.) plants. Metabolomic analysis and photosynthetic performance were first investigated in leaves to point out biochemical differences related to plant growth. Higher photosynthetic efficiency and better PSII functioning were found in biostimulant-treated vines, reflecting an overall decrease in photoinhibition compared to untreated plants. Untargeted metabolomics followed by multivariate statistics highlighted a robust reprogramming of primary (lipids) and secondary (alkaloids and terpenoids) metabolites in treated plants. The analysis of berry yield and chemical components exhibited significant differences depending on the biostimulant product. Generally, berries obtained from treated plants displayed improved contents of polyphenols and sugars, while yield remained unchanged. These results elucidated the significant role of microbial biostimulants in determining the quality of grape berries and eliciting biochemical changes in vines.
Collapse
Affiliation(s)
- Paola Ganugi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Tito Caffi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Mario Gabrielli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Elena Secomandi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Department of Sciences, Technologies and Society, University School for Advanced Studies, IUSS, Pavia, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gabriele Bellotti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Florencia Asinari
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vincenzo Tabaglio
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
2
|
Darriaut R, Lailheugue V, Masneuf-Pomarède I, Marguerit E, Martins G, Compant S, Ballestra P, Upton S, Ollat N, Lauvergeat V. Grapevine rootstock and soil microbiome interactions: Keys for a resilient viticulture. HORTICULTURE RESEARCH 2022; 9:uhac019. [PMID: 35184168 PMCID: PMC8985100 DOI: 10.1093/hr/uhac019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/18/2021] [Accepted: 01/17/2022] [Indexed: 05/10/2023]
Abstract
Soil microbiota has increasingly been shown to play an integral role in viticulture resilience. The emergence of new metagenomic and culturomic technologies has led to significant advances in the study of microbial biodiversity. In the agricultural sector, soil and plant microbiomes have been found to significantly improve resistance to environmental stressors and diseases, as well as influencing crop yields and fruit quality thus improving sustainability under shifting environments. Grapevines are usually cultivated as a scion grafted on rootstocks, which are selected according to pedoclimatic conditions and cultural practices, known as terroir. The rootstock connects the surrounding soil to the vine's aerial part and impacts scion growth and berry quality. Understanding rootstock and soil microbiome dynamics is a relevant and important field of study, which may be critical to improve viticulture sustainability and resilience. This review aims to highlight the relationship between grapevine roots and telluric microbiota diversity and activity. In addition, this review explores the concept of core microbiome regarding potential applications of soil microbiome engineering with the goal of enhancing grapevine adaptation to biotic and abiotic stress.
Collapse
Affiliation(s)
- Romain Darriaut
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Vincent Lailheugue
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Isabelle Masneuf-Pomarède
- Université de Bordeaux,
UMR Oenologie 1366, INRAE, Bordeaux INP, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, France
- Bordeaux Sciences Agro, 33170 Gradignan, France
| | - Elisa Marguerit
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Guilherme Martins
- Université de Bordeaux,
UMR Oenologie 1366, INRAE, Bordeaux INP, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, France
- Bordeaux Sciences Agro, 33170 Gradignan, France
| | - Stéphane Compant
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Konrad Lorenz Straße 24, Tulln, A-3430, Austria
| | - Patricia Ballestra
- Université de Bordeaux,
UMR Oenologie 1366, INRAE, Bordeaux INP, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, France
| | | | - Nathalie Ollat
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Virginie Lauvergeat
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| |
Collapse
|
3
|
Verma R, Kumar D, Nagraik R, Sharma A, Tapwal A, Puri S, Kumar H, Kumari A, Nepovimova E, Kuca K. Mycorrhizal inoculation impact on Acorus calamus L. - An ethnomedicinal plant of western Himalaya and its in silico studies for anti-inflammatory potential. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113353. [PMID: 32891818 DOI: 10.1016/j.jep.2020.113353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Different plants are used for the treatment of various ailments and Acorus calamus L. is one such plant found in Western Himalaya. Rhizome of this plants has ethnomedicinal significance, as its rhizome is used for curing fever, pain and inflammation. An attempt has been made to alter the phytochemicals and increase its antioxidant property in a sustainable way with the help of mycorrhizal inoculation. AIM OF THE STUDY Study of mycorrhizal (Funneliformis mosseae) impact on the biological activities and phytochemical profile of A. calamus L. rhizome and in silico studies of phytochemicals for their anti-inflammatory property. MATERIALS AND METHODS F. mosseae was mass multiplied by single spore culture and then A. calamus rhizomes were inoculated with it. Antioxidant potential of rhizome extract was observed by DPPH and FRAP assays and the phytochemical profiling was done with GC-MS analysis. For observing antimicrobial activity disc diffusion method was employed. Dominant phytochemicals α-asarone and monolinolein TMS were chosen for molecular docking studies against four receptors (4COX, 2AZ5, 5I1B, 1ALU). RESULTS There was increase in antioxidant activity of rhizome extract after mycorrhizal inoculation. However, no change in antimicrobial activity was observed in the plant after mycorrhizal inoculation. The comparison in phytochemicals was observed by GC-MS analysis which showed qualitative and quantitative variation in biochemical content in plants. The phytochemical, α-asarone and monolinolein TMS showed highest docking score and least binding energy against 1ALU and 4COX respectively for anti-inflammatory activity. CONCLUSION Medicinal plants are potential source of antioxidants which can be increased by mycorrhizal inoculation without addition of chemical fertilizers and also results in altering the phytochemical composition.
Collapse
Affiliation(s)
- Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Business Management, Solan, Himachal Pradesh, 173229, India
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Business Management, Solan, Himachal Pradesh, 173229, India.
| | - Rupak Nagraik
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Business Management, Solan, Himachal Pradesh, 173229, India
| | - Avinash Sharma
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Business Management, Solan, Himachal Pradesh, 173229, India
| | | | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Business Management, Solan, Himachal Pradesh, 173229, India
| | - Harsh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Business Management, Solan, Himachal Pradesh, 173229, India
| | - Amita Kumari
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Business Management, Solan, Himachal Pradesh, 173229, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic.
| |
Collapse
|
4
|
Cao Q, Li J, Xia Y, Li W, Luo S, Ma C, Liu S. Green Extraction of Six Phenolic Compounds from Rattan ( Calamoideae faberii) with Deep Eutectic Solvent by Homogenate-Assisted Vacuum-Cavitation Method. Molecules 2018; 24:molecules24010113. [PMID: 30597978 PMCID: PMC6337183 DOI: 10.3390/molecules24010113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 11/25/2022] Open
Abstract
A homogenate-assisted vacuum-cavitation extraction (HVE) method with a “green” solvent (a deep eutectic solvent, DES) was developed to extract phenolic compounds from rattan (Calamoideae faberii). In this study, the optimum molar ratio of choline chloride (ChCl) and ethylene glycol (EG) was 1:3, the optimum volume ratio of ChCl-EG:H2O was 6:4, the solid-liquid ratio of HVE was 1:15, and the extraction time of homogenate and vacuum-cavitation were 2.0 min and 25 min, respectively. Under the optimum parameters of HVE, the extraction yield of total phenolic content with ChCl-EG solution was 6.82 mg/g. The higher total phenolic content was detected in fruit tissues (seeds 81.24 ± 1.55 mg/g, episperm 43.21 ± 0.87 mg/g, and arillus 38.47 ± 0.74 mg/g), followed by in leaves (sheath 19.5 ± 0.38 mg/g and blade 17.81 ± 0.33 mg/g). In addition, the content of specific phenolic compounds in aqueous and DES extracts was determined. Chlorogenic acid was the most abundant phenol in most organs of the rattan plant. Gallic acid was mainly distributed in the arillus; protocatechuic acid was mainly distributed in the arillus, sheath, and blade; protocatechuic aldehyde was mainly distributed in the blade, seed, and sheath; (+)-catechins were mainly distributed in the episperm, seed, and sheath; and epigallocatechin gallate was mainly distributed in the blade. The recovery rates of gallic acid, protocatechuic acid, protocatechuic aldehyde, (+)-catechins, chlorogenic acid, and epigallocatechin gallate were 93.77%, 94.09%, 97.32%, 97.83%, 94.41%, and 92.47%, respectively, by AB-8 resin.
Collapse
Affiliation(s)
- Qin Cao
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Junhan Li
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Yu Xia
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Wei Li
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Sha Luo
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Chunhui Ma
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Shouxin Liu
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
5
|
Torres N, Goicoechea N, Zamarreño AM, Carmen Antolín M. Mycorrhizal symbiosis affects ABA metabolism during berry ripening in Vitis vinifera L. cv. Tempranillo grown under climate change scenarios. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:383-393. [PMID: 30080626 DOI: 10.1016/j.plantsci.2018.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/15/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Arbuscular mycorrhizal symbiosis is a promising tool for improving the quality of grapes under changing environments. Therefore, the aim of this research was to determine if the ability of arbuscular mycorrhizal fungi (AMF) to enhance phenolic content (specifically, anthocyanins) in a climate change framework could be mediated by alterations in berry ABA metabolism during ripening. The study was carried out on fruit-bearing cuttings of cv. Tempranillo (CL-1048 and CL-1089) inoculated (+M) or not (-M) with AMF. Two experimental designs were implemented. In the first experiment +M and -M plants were subjected to two temperatures (24/14 °C or 28/18 °C (day/night)) from fruit set to berry maturity. In the second experiment, +M and -M plants were subjected to two temperatures (24/14 °C or 28/18 °C (day/night)) combined with two irrigation regimes (late water deficit (LD) and full irrigation (FI)). At 28/18 °C AMF contributed to an increase in berry anthocyanins and modulated ABA metabolism, leading to higher ABA-GE and 7'OH-ABA and lower phaseic acid (PA) in berries compared to -M plants. Under the most stressful scenario (LD and 28/18 °C), at harvest +M plants exhibited higher berry anthocyanins and 7´OH-ABA and lower PA and dihydrophaseic acid (DPA) levels than -M plants. These findings highlight the involvement of ABA metabolism into the ability of AMF to improve some traits involved in the quality of grapes under global warming scenarios.
Collapse
Affiliation(s)
- Nazareth Torres
- Universidad de Navarra, Facultades de Ciencias y Farmacia y Nutrición, Grupo de Fisiología del Estrés en Plantas (Departamento de Biología Ambiental), Unidad Asociada al CSIC (EEAD, Zaragoza, ICVV, Logroño), c/ Irunlarrea 1, 31008, Pamplona, Spain
| | - Nieves Goicoechea
- Universidad de Navarra, Facultades de Ciencias y Farmacia y Nutrición, Grupo de Fisiología del Estrés en Plantas (Departamento de Biología Ambiental), Unidad Asociada al CSIC (EEAD, Zaragoza, ICVV, Logroño), c/ Irunlarrea 1, 31008, Pamplona, Spain
| | - Angel M Zamarreño
- Universidad de Navarra, Facultades de Ciencias y Farmacia y Nutrición, Grupo de Biología y Química Agrícola (Departamento de Biología Ambiental), c/ Irunlarrea 1, 31008, Pamplona, Spain
| | - M Carmen Antolín
- Universidad de Navarra, Facultades de Ciencias y Farmacia y Nutrición, Grupo de Fisiología del Estrés en Plantas (Departamento de Biología Ambiental), Unidad Asociada al CSIC (EEAD, Zaragoza, ICVV, Logroño), c/ Irunlarrea 1, 31008, Pamplona, Spain.
| |
Collapse
|
6
|
Zaller JG, Cantelmo C, Santos GD, Muther S, Gruber E, Pallua P, Mandl K, Friedrich B, Hofstetter I, Schmuckenschlager B, Faber F. Herbicides in vineyards reduce grapevine root mycorrhization and alter soil microorganisms and the nutrient composition in grapevine roots, leaves, xylem sap and grape juice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23215-23226. [PMID: 29862481 PMCID: PMC6096560 DOI: 10.1007/s11356-018-2422-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/25/2018] [Indexed: 04/12/2023]
Abstract
Herbicides are increasingly applied in vineyards worldwide. However, not much is known on potential side effects on soil organisms or on the nutrition of grapevines (Vitis vinifera). In an experimental vineyard in Austria, we examined the impacts of three within-row herbicide treatments (active ingredients: flazasulfuron, glufosinate, glyphosate) and mechanical weeding on grapevine root mycorrhization; soil microorganisms; earthworms; and nutrient concentration in grapevine roots, leaves, xylem sap and grape juice. The three herbicides reduced grapevine root mycorrhization on average by 53% compared to mechanical weeding. Soil microorganisms (total colony-forming units, CFU) were significantly affected by herbicides with highest CFUs under glufosinate and lowest under glyphosate. Earthworms (surface casting activity, density, biomass, reproduction) or litter decomposition in soil were unaffected by herbicides. Herbicides altered nutrient composition in grapevine roots, leaves, grape juice and xylem sap that was collected 11 months after herbicide application. Xylem sap under herbicide treatments also contained on average 70% more bacteria than under mechanical weeding; however, due to high variability, this was not statistically significant. We conclude that interdisciplinary approaches should receive more attention when assessing ecological effects of herbicides in vineyard ecosystems.
Collapse
Affiliation(s)
- Johann G Zaller
- Institute of Zoology, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor Mendel Straße 33, A-1180, Vienna, Austria.
| | - Clemens Cantelmo
- Institute of Zoology, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor Mendel Straße 33, A-1180, Vienna, Austria
| | - Gabriel Dos Santos
- Institute of Zoology, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor Mendel Straße 33, A-1180, Vienna, Austria
| | - Sandrina Muther
- Institute of Zoology, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor Mendel Straße 33, A-1180, Vienna, Austria
| | - Edith Gruber
- Institute of Zoology, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor Mendel Straße 33, A-1180, Vienna, Austria
| | - Paul Pallua
- Institute of Zoology, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor Mendel Straße 33, A-1180, Vienna, Austria
| | - Karin Mandl
- Federal College and Reseach Center of Viticulture and Pomology, Wiener Straße 74, A-3400, Klosterneuburg, Austria
| | - Barbara Friedrich
- Federal College and Reseach Center of Viticulture and Pomology, Wiener Straße 74, A-3400, Klosterneuburg, Austria
| | - Ingrid Hofstetter
- Federal College and Reseach Center of Viticulture and Pomology, Wiener Straße 74, A-3400, Klosterneuburg, Austria
| | - Bernhard Schmuckenschlager
- Federal College and Reseach Center of Viticulture and Pomology, Wiener Straße 74, A-3400, Klosterneuburg, Austria
| | - Florian Faber
- Federal College and Reseach Center of Viticulture and Pomology, Wiener Straße 74, A-3400, Klosterneuburg, Austria
| |
Collapse
|
7
|
Effects of low sulfur dioxide concentrations on bioactive compounds and antioxidant properties of Aglianico red wine. Food Chem 2017; 245:1105-1112. [PMID: 29287328 DOI: 10.1016/j.foodchem.2017.11.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
This study analyzed the effect of low sulfur dioxide concentrations on the chromatic properties, phytochemical composition and antioxidant activity of Aglianico red wines with respect to wines produced from conventional winemaking. We determined the phytochemical composition by spectrophotometric methods and HPLC-DAD analysis and the in vitro antioxidant activity of different wine samples by the ORAC assay. The main important classes of fluorophore molecules in red wine were identified by Front-Face fluorescence spectroscopy, and the emission intensity trend was investigated at various sulfur dioxide concentrations. Lastly, we tested the effects of both conventional and low sulfite wines on ex vivo human erythrocytes under oxidative stimulus by the cellular antioxidant activity (CAA) assay and the hemolysis test. The addition of sulfur dioxide, which has well-known side effects, increased the content of certain bioactive components but did not raise the erythrocyte antioxidant capacity.
Collapse
|
8
|
Goicoechea N, Antolín MC. Increased nutritional value in food crops. Microb Biotechnol 2017; 10:1004-1007. [PMID: 28696049 PMCID: PMC5609228 DOI: 10.1111/1751-7915.12764] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 11/28/2022] Open
Abstract
Modern agriculture and horticulture must combine two objectives that seem to be almost mutually exclusive: to satisfy the nutritional needs of an increasing human population and to minimize the negative impact on the environment. These two objectives are included in the Goal 2 of the 2030 Agenda for Sustainable Development of the United Nations: ‘End hunger, achieve food security and improved nutrition and promote sustainable agriculture'. Enhancing the nutritional levels of vegetables would improve nutrient intake without requiring an increase in consumption. In this context, the use of beneficial rhizospheric microorganisms for improving, not only growth and yield, but also the nutrient quality of crops represents a promising tool that may respond to the challenges for modern agriculture and horticulture and represents an alternative to the genetic engineering of crops. This paper summarizes the state of the art, the current difficulties associated to the use of rhizospheric microorganisms as enhancers of the nutritional quality of food crops as well as the future prospects. This paper summarizes the state of the art, the current difficulties associated to the use of rhizospheric microorganisms as enhancers of the nutritional quality of food crops as well as the future prospects in the context of the Goal 2 of the 2030 Agenda for Sustainable Development of the United Nations: ‘End hunger, achieve food security and improved nutrition and promote sustainable agriculture'.
Collapse
Affiliation(s)
- Nieves Goicoechea
- Universidad de Navarra, Facultades de Ciencias y Farmacia y Nutrición, Grupo de Fisiología del Estrés en Plantas (Departamento de Biología Ambiental), Unidad Asociada al CSIC (EEAD, Zaragoza, ICVV, Logroño), c/Irunlarrea 1, 31008, Pamplona, Spain
| | - M Carmen Antolín
- Universidad de Navarra, Facultades de Ciencias y Farmacia y Nutrición, Grupo de Fisiología del Estrés en Plantas (Departamento de Biología Ambiental), Unidad Asociada al CSIC (EEAD, Zaragoza, ICVV, Logroño), c/Irunlarrea 1, 31008, Pamplona, Spain
| |
Collapse
|
9
|
Vitorino LC, Bessa LA. Technological Microbiology: Development and Applications. Front Microbiol 2017; 8:827. [PMID: 28539920 PMCID: PMC5423913 DOI: 10.3389/fmicb.2017.00827] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/24/2017] [Indexed: 12/22/2022] Open
Abstract
Over thousands of years, modernization could be predicted for the use of microorganisms in the production of foods and beverages. However, the current accelerated pace of new food production is due to the rapid incorporation of biotechnological techniques that allow the rapid identification of new molecules and microorganisms or even the genetic improvement of known species. At no other time in history have microorganisms been so present in areas such as agriculture and medicine, except as recognized villains. Currently, however, beneficial microorganisms such as plant growth promoters and phytopathogen controllers are required by various agricultural crops, and many species are being used as biofactories of important pharmacological molecules. The use of biofactories does not end there: microorganisms have been explored for the synthesis of diverse chemicals, fuel molecules, and industrial polymers, and strains environmentally important due to their biodecomposing or biosorption capacity have gained interest in research laboratories and in industrial activities. We call this new microbiology Technological Microbiology, and we believe that complex techniques, such as heterologous expression and metabolic engineering, can be increasingly incorporated into this applied science, allowing the generation of new and improved products and services.
Collapse
Affiliation(s)
- Luciana C. Vitorino
- Laboratory of Agricultural Microbiology, Goiano Federal InstituteGoiás, Brazil
| | | |
Collapse
|