1
|
Boostani S, Sarabandi K, Tarhan O, Rezaei A, Assadpour E, Rostamabadi H, Falsafi SR, Tan C, Zhang F, Jafari SM. Multiple Pickering emulsions stabilized by food-grade particles as innovative delivery systems for bioactive compounds. Adv Colloid Interface Sci 2024; 328:103174. [PMID: 38728772 DOI: 10.1016/j.cis.2024.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
The most common carrier for encapsulation of bioactive components is still simple emulsion. Recently, bio-based novel emulsion systems such as multiple emulsions (MEs) and Pickering emulsions (PEs) have been introduced as innovative colloidal delivery systems for encapsulation and controlled release of bioactive compounds. Multiple PEs (MPEs), which carries both benefit of MEs and PEs could be fabricated by relatively scalable and simple operations. In comparison with costly synthetic surfactants and inorganic particles which are widely used for stabilization of both MEs and PEs, MPEs stabilized by food-grade particles, while having health-promoting aspects, are able to host the "clean label" and "green label" attributes. Nevertheless, in achieving qualified techno-functional attributes and encapsulation properties, the selection of suitable materials is a crucial step in the construction of such complex systems. Current review takes a cue from both MEs and PEs emulsification techniques to grant a robust background for designing various MPEs. Herein, various fabrication methods of MEs and PEs are described comprehensively in a physical viewpoint in order to find key conception of successful formulation of MPEs. This review also highlights the link between the underlying aspects and exemplified specimens of evidence which grant insights into the rational design of MPEs through food-based ingredients to introduces MPEs as novel colloidal/functional materials. Their utilization for encapsulation of bioactive compounds is discussed as well. In the last part, instability behavior of MPEs under various conditions will be discussed. In sum, this review aims to gain researchers who work with food-based components, basics of innovative design of MPEs.
Collapse
Affiliation(s)
- Sareh Boostani
- Shiraz Pharmaceutical Products Technology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khashayar Sarabandi
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Ozgur Tarhan
- Food Engineering Department, Engineering Faculty, Uşak University, 1 Eylul Campus, Uşak 64100, Türkiye
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education. China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
2
|
Sharkawy A, Rodrigues AE. Plant gums in Pickering emulsions: A review of sources, properties, applications, and future perspectives. Carbohydr Polym 2024; 332:121900. [PMID: 38431409 DOI: 10.1016/j.carbpol.2024.121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Recently, there has been an increasing research interest in the development of Pickering emulsions stabilized with naturally derived biopolymeric particles. In this regard, plant gums, obtained as plant exudates or from plant seeds, are considered promising candidates for the development of non-toxic, biocompatible, biodegradable and eco-friendly Pickering stabilizers. The main objective of this review article is to provide a detailed overview and assess the latest advances in the formulation of Pickering emulsions stabilized with plant gum-based particles. The plant gum sources, types and properties are outlined. Besides, the current methodologies used in the production of plant gum particles formed solely of plant gums, or through interactions of plant gums with proteins or other polysaccharides are highlighted and discussed. Furthermore, the work compiles and assesses the innovative applications of plant gum-based Pickering emulsions in areas such as encapsulation and delivery of drugs and active agents, along with the utilization of these Pickering emulsions in the development of active packaging films, plant-based products and low-fat food formulations. The last part of the review presents potential future research trends that are expected to motivate and direct research to areas related to other novel food applications, as well as tissue engineering and environmental applications.
Collapse
Affiliation(s)
- Asma Sharkawy
- LSRE-LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Alírio E Rodrigues
- LSRE-LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|
3
|
Park J, Kim HS. Rice-Based Gluten-Free Foods and Technologies: A Review. Foods 2023; 12:4110. [PMID: 38002168 PMCID: PMC10670158 DOI: 10.3390/foods12224110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Rice, one of the most widely consumed staples worldwide, serves as a versatile gluten-free substitute. However, review articles on technological developments in grain-free production focusing on rice are scarce. This review assesses various research results concerning the quality attributes of rice-based gluten-free foods, including bread, pasta, and beer. To optimize the key attributes in processed products, such as dough leavening in bread and the physical and cooking properties of noodles and pasta, research has focused on blending different gluten-free grains and incorporating additives that mimic the gluten function. Additionally, various processing technologies, such as starch preprocessing and extrusion puffing processes, have been employed to boost the quality of rice-based gluten-free products. Today, a variety of products, including bread, noodles, and beer, use rice as a partial replacement for barley or wheat. With rapid advancements in technology, a noticeable portion of consumers now shows a preference for products containing rice as a substitute. This trend indicates that rice-based gluten-free foods can be enhanced by leveraging the latest developments in gluten-free product technologies, particularly in countries where rice is a staple or is predominantly cultivated.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Central Area Crop Science, National Institute of Crop Science (NICS), Rural Development Administration (RDA), 126 Suin-ro, Kwonseon-gu, Suwon 16429, Gyeonggi, Republic of Korea
| | | |
Collapse
|
4
|
Zaini HM, Saallah S, Roslan J, Sulaiman NS, Munsu E, Wahab NA, Pindi W. Banana biomass waste: A prospective nanocellulose source and its potential application in food industry - A review. Heliyon 2023; 9:e18734. [PMID: 37554779 PMCID: PMC10404743 DOI: 10.1016/j.heliyon.2023.e18734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/21/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
Bananas are among the most produced and consumed fruit all over the world. However, a vast amount of banana biomass is generated because banana trees bear fruit only once in their lifetime. This massive amount of biomass waste is either disposed of in agricultural fields, combusted, or dumped at plantations, thus posing environmental concerns. Nanocellulose (NC) extraction from this source can be one approach to improve the value of banana biomass. Owing to its superb properties, such as high surface area and aspect ratio, good tensile strength, and high thermal stability, this has facilitated nanocellulose application in the food industry either as a functional ingredient, an additive or in food packaging. In this review, two different applications of banana biomass NC were identified: (i) food packaging and (ii) food stabilizers. Relevant publications were reviewed, focusing on the nanocellulose extraction from several banana biomass applications as food additives, as well as on the safety and regulatory aspects. Ultimately, further research is required to prompt a perspicuous conclusion about banana biomass NC safety, its potential hazards in food applications, as well as its validated standards for future commercialization.
Collapse
Affiliation(s)
- Hana Mohd Zaini
- Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Suryani Saallah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Jumardi Roslan
- Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | | | - Elisha Munsu
- Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Noorakmar A. Wahab
- Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Wolyna Pindi
- Functional Foods Research Group, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
5
|
Apostolidis E, Stoforos GN, Mandala I. Starch physical treatment, emulsion formation, stability, and their applications. Carbohydr Polym 2023; 305:120554. [PMID: 36737219 DOI: 10.1016/j.carbpol.2023.120554] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/18/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Pickering emulsions are increasingly preferred over typical surfactant-based emulsions due to several advantages, such as lower emulsifier usage, simplicity, biocompatibility, and safety. These types of emulsions are stabilized using solid particles, which produce a thick layer at the oil-water interface preventing droplets from aggregating. Starch nano-particles (SNPs) have received considerable attention as natural alternatives to synthetic stabilizers due to their unique properties. Physical formulation processes are currently preferred for SNP production since they are environmentally friendly procedures that do not require the use of chemical reagents. This review provides a thorough overview in a critical perspective of the physical processes to produce starch nano-particles used as Pickering emulsion stabilizers, fabricated by a 2-step process. Specifically, the reviewed physical approaches for nano-starch preparation include high hydrostatic pressure, high pressure homogenization, ultrasonication, milling and antisolvent precipitation. All the essential parameters used to evaluate the effectiveness of particles in stabilizing these systems are also presented in detail, including the hydrophobicity, size, and content of starch particles. Finally, this review provides the basis for future research focusing on physical nano-starch production, to ensure the widespread use of these natural stabilizers in the ever-evolving field of food technology.
Collapse
Affiliation(s)
- Eftychios Apostolidis
- Agricultural University of Athens, Dept. Food Science & Human Nutrition, Laboratory of Food Process Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece
| | - George N Stoforos
- Agricultural University of Athens, Dept. Food Science & Human Nutrition, Laboratory of Food Process Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece
| | - Ioanna Mandala
- Agricultural University of Athens, Dept. Food Science & Human Nutrition, Laboratory of Food Process Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece.
| |
Collapse
|
6
|
Assessing Gluten-Free Soy Bread Quality and Amino Acid Content. Foods 2023; 12:foods12061195. [PMID: 36981122 PMCID: PMC10048178 DOI: 10.3390/foods12061195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
The nutritional and palatability relevance of bread prepared with soy flour was examined. There are a few effective nutritional measures that combine palatability, convenience, and functionality in the suppression of muscle loss (contributing to the improvement and prevention of sarcopenia). Therefore, in the present study, we attempted to produce bread using soybeans, which are rich in amino acids involved in the synthesis and degradation of skeletal muscle proteins. Rice flour was also used to avoid gluten intolerance. The bread was baked in an automatic bread maker, and the rheological properties of its breadcrumbs were determined using a creep meter. We found that a 70 g slice of soy bread satisfied approximately one-fifth of the daily nutritional requirement for leucine. Although soy decreased the specific volume of bread by preventing starch construction, the use of preprocessed rice flour recovered the volume, and corn starch improved the taste. We propose that the addition of soy bread to the daily diet may be an effective protein source.
Collapse
|
7
|
Alsmaeil AW, Kouloumpis A, Potsi G, Hammami MA, Kanj MY, Giannelis EP. Probing the Interfacial Properties of Oil-Water Interfaces Decorated with Ionizable, pH Responsive Silica Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3118-3130. [PMID: 36791471 DOI: 10.1021/acs.langmuir.2c03286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Particle-stabilized emulsions (Pickering emulsions) have recently attracted significant attention in scientific studies and for technological applications. The interest stems from the ease of directly assembling the particles at interfaces and modulating the interfacial properties. In this paper, we demonstrate the formation of stable, practical emulsions leveraging the assembly of ionizable, pH responsive silica nanoparticles, surface-functionalized by a mixture of silanes containing amine/ammonium groups, which renders them positively charged. Using pH as the trigger, the assembly and the behavior of the emulsion are controlled by modulating the charges of the functional groups of the nanoparticle and the oil (crude oil). In addition to their tunable charge, the particular combination of silane coupling agents leads to stable particle dispersions, which is critical for practical applications. Atomic force microscopy and interfacial tension (IFT) measurements are used to monitor the assembly, which is controlled by both the electrostatic interactions between the particles and oil and the interparticle interactions, both of which are modulated by pH. Under acidic conditions, when the surfaces of the oil and the nanoparticles (NPs) are positively charged, the NPs are not attracted at the interface and there is no significant reduction in the IFT. In contrast, under basic conditions in which the oil carries a high negative charge and the amine groups on the silica are deprotonated while still positively charged because of the ammonium groups, the NPs assemble at the interface in a closely packed configuration yielding a jammed state with a high dilatational modulus. As a result, two oil droplets do not coalesce even when pushed against each other and the emulsion stability improves significantly. The study provides new insights into the directed assembly of nanoparticles at fluid interfaces relevant to several applications, including environmental remediation, catalysis, drug delivery, food technology, and oil recovery.
Collapse
Affiliation(s)
- Ahmed Wasel Alsmaeil
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14850, United States
- EXPEC Advanced Research Center, Saudi Aramco, Dhahran 31261, Saudi Arabia
| | - Antonios Kouloumpis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Georgia Potsi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Mohamed Amen Hammami
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Mazen Yousef Kanj
- College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
8
|
Yano H, Fu W. Hemp: A Sustainable Plant with High Industrial Value in Food Processing. Foods 2023; 12:651. [PMID: 36766179 PMCID: PMC9913960 DOI: 10.3390/foods12030651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
In the era of SDGs, useful plants which provide valuable industrial outputs and at the same time pose less impact on the environment should be explored. Hemp seems one of the most relevant gluten-free crop plants to meet such requirements. Its high nutritional value is comparable to soy. Moreover, almost the whole body of the hemp plant has a wide array of utility: industrial production of food, fiber, and construction materials. In view of environmental sustainability, hemp requires less pesticides or water in cultivation compared to cotton, a representative fiber plant. This short review investigates hemp's sustainability as a plant as well as its utility value as a highly nutritional material in the food industry. Recent application research of hemp protein in food processing includes plant milk, emulsifiers, fortification of gluten-free bread, plant-based meat production, as well as membrane formation. These studies have revealed distinctive properties of hemp protein, especially in relation to disulfide (S-S)/sulfhydryl (-SH)-mediated interactions with protein from other sources. While its cultivation area and industrial use were limited for a while over confusion with marijuana, the market for industrial hemp is growing rapidly because it has been highly reevaluated in multiple areas of industry. Conclusively, with its sustainability as a plant as well as its distinctive useful property of the seed protein, hemp has promising value in the development of new foods.
Collapse
|
9
|
Impact of fortificants on the powder properties of a gluten-free porous starch matrix of puffed rice flour. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Saito K, Okouchi M, Yamaguchi M, Takechi T, Hatanaka Y, Kitsuda K, Mannari T, Takamura H. Quality improvement of gluten-free rice flour bread through the addition of high-temperature water during processing. J Food Sci 2022; 87:4820-4830. [PMID: 36181452 DOI: 10.1111/1750-3841.16333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/29/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022]
Abstract
Recently, there has been an increase in the demand for gluten-free bread due to health reasons. One of the flours used to produce gluten-free bread is rice flour; flour characteristics are very important for breadmaking. Although a study has shown that the addition of high-temperature water can improve the quality of rice flour bread, studies are yet to consider different rice properties. Therefore, the aim of this study was to investigate the effect of adding high-temperature water and rice flour characteristics on the quality of rice flour bread using six commercially available rice flours. The rice flours used in the sample had amylose content from 12.1% to 24.5%, damaged starch content from 2.4% to 5.5%, mode diameter from 16.3 to 63.3 µm, protein content from 5.4% to 6.1%, and moisture content in the range of 12.0%-15.0%. The results showed that regardless of the rice characteristics, breads prepared at the optimum watering temperature were puffier and softer than those prepared using cold water (5°C). For rice flours with similar particle size, the optimal water temperature and degree of gelatinization for breadmaking increased with rice flours with lower amylose content. Furthermore, the rheological properties of dough prepared at the optimum water addition temperature were stable, with loss modulus (G″) being dominant over the entire frequency range in the frequency sweep test. Since the water temperature added to the dough affects breadmaking properties more than the characteristics of the rice flour, adjusting the water temperature may enable the production of high-quality bread even with rice flour unsuitable for making. PRACTICAL APPLICATION: Presently, the addition of high-temperature water to rice flour has been shown to improve the bread quality. In this study, we investigated the effects of high-temperature water addition on the quality of rice flour bread using rice flour varieties with different flour characteristics. Even in rice flour with small particle size and low amylose content, which is not suitable for breadmaking, bread quality can be improved by adding hot water at around 70°C. This is a simple and practical method to improve the quality of gluten-free rice flour bread without adding thickeners.
Collapse
Affiliation(s)
- Kumiko Saito
- Department of Food Science and Nutrition, Nara Women's University, Nara, Japan
| | - Maya Okouchi
- Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan.,Panasonic Operational Excellence Co., Ltd., Kadoma, Japan
| | - Mana Yamaguchi
- Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Tayori Takechi
- Faculty of Human Life Sciences Department of Food and Nutrition, Senri Kinran University, Suita, Japan
| | - Yoshiro Hatanaka
- Morinomiya Center, Osaka Research Institute of Industrial Science and Technology, Osaka, Japan
| | - Koji Kitsuda
- Research Institute of Environment, Agriculture and Fisheries, Habikino, Japan
| | - Takayo Mannari
- Department of Anatomy and Cell Biology, Nara Medical University, Nara, Japan.,KYOUSEI Science Center for Life and Nature, Nara Women's University, Nara, Japan
| | - Hitoshi Takamura
- Department of Food Science and Nutrition, Nara Women's University, Nara, Japan.,KYOUSEI Science Center for Life and Nature, Nara Women's University, Nara, Japan
| |
Collapse
|
11
|
Ripening rice grains under low temperature for the high loaf volume and slow firming of gluten-free rice bread without additives. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Bozkurt S, Görgüç A, Gençdağ E, Elmas F, Koç M, Yılmaz FM. Principles and recent applications of vacuum technology in the processing of dough-based cereal products: A comprehensive review. Food Chem 2022; 403:134443. [DOI: 10.1016/j.foodchem.2022.134443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
|
13
|
Espinosa-Solis V, García-Tejeda YV, Portilla-Rivera OM, Chávez-Murillo CE, Barrera-Figueroa V. Effect of Mixed Particulate Emulsifiers on Spray-Dried Avocado Oil-in-Water Pickering Emulsions. Polymers (Basel) 2022; 14:polym14153064. [PMID: 35956579 PMCID: PMC9370146 DOI: 10.3390/polym14153064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Avocado oil is a very valuable agro-industrial product which can be perishable in a short time if it is not stored in the right conditions. The encapsulation of the oils through the spray drying technique protects them from oxidation and facilitates their incorporation into different pharmaceutical products and food matrices; however, the selection of environmentally friendly emulsifiers is a great challenge. Four formulations of the following solid particles: Gum Arabic, HI-CAP®100 starch, and phosphorylated waxy maize starch, were selected to prepare avocado oil Pickering emulsions. Two of the formulations have the same composition, but one of them was emulsified by rotor-stator homogenization. The rest of the emulsions were emulsified by combining rotor-stator plus ultrasound methods. The protective effect of mixed particle emulsifiers in avocado oil encapsulated by spray drying was based on the efficiency of encapsulation. The best results were achieved when avocado oil was emulsified with a mixture of phosphorylated starch/HI-CAP®100, where it presented the highest encapsulation efficiency.
Collapse
Affiliation(s)
- Vicente Espinosa-Solis
- Coordinación Académica Región Huasteca Sur, Universidad Autónoma de San Luis Potosí, km 5, Carretera Tamazunchale-San Martín, Tamazunchale 79960, Mexico; (V.E.-S.); (O.M.P.-R.)
| | - Yunia Verónica García-Tejeda
- Academia de Ciencias Básicas, UPIITA, Avenida Instituto Politécnico Nacional No. 2580, Col. Barrio la Laguna Ticomán, Gustavo A. Madero, Mexico City 07340, Mexico
- Correspondence: ; Tel.: +52-555-729-6000 (Ext. 56918)
| | - Oscar Manuel Portilla-Rivera
- Coordinación Académica Región Huasteca Sur, Universidad Autónoma de San Luis Potosí, km 5, Carretera Tamazunchale-San Martín, Tamazunchale 79960, Mexico; (V.E.-S.); (O.M.P.-R.)
| | - Carolina Estefania Chávez-Murillo
- Academia de Bioingeniería, UPIIZ, Instituto Politécnico Nacional, Circuito del Gato No. 202, Col. Ciudad Administrativa, Zacatecas 98160, Mexico;
| | - Víctor Barrera-Figueroa
- Sección de Estudios de Posgrado e Investigación, UPIITA, Avenida Instituto Politécnico Nacional No. 2580, Col. Barrio la Laguna Ticomán, Gustavo A. Madero, Mexico City 07340, Mexico;
| |
Collapse
|
14
|
Yano H, Fu W. Effective Use of Plant Proteins for the Development of "New" Foods. Foods 2022; 11:foods11091185. [PMID: 35563905 PMCID: PMC9102783 DOI: 10.3390/foods11091185] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Diversity in our diet mirrors modern society. Affluent lifestyles and extended longevity have caused the prevalence of diabetes and sarcopenia, which has led to the increased demand of low-carb, high-protein foods. Expansion of the global population and Westernization of Asian diets have surged the number of meat eaters, which has eventually disrupted the supply–demand balance of meat. In contrast, some people do not eat meat for religious reasons or due to veganism. With these multiple circumstances, our society has begun to resort to obtaining protein from plant sources rather than animal origins. This “protein shift” urges food researchers to develop high-quality foods based on plant proteins. Meanwhile, patients with food allergies, especially gluten-related ones, are reported to be increasing. Additionally, growing popularity of the gluten-free diet demands development of foods without using ingredients of wheat origin. Besides, consumers prefer “clean-label” products in which products are expected to contain fewer artificial compounds. These diversified demands on foods have spurred the development of “new” foods in view of food-processing technologies as well as selection of the primary ingredients. In this short review, examples of foodstuffs that have achieved tremendous recent progress are introduced: effective use of plant protein realized low-carb, high protein, gluten-free bread/pasta. Basic manufacturing principles of plant-based vegan cheese have also been established. We will also discuss on the strategy of effective development of new foods in view of the better communication with consumers as well as efficient use of plant proteins.
Collapse
|
15
|
Sasaki T. Influence of xanthan gum and gluten on
in vitro
digestibility and textural properties of rice bread. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Tomoko Sasaki
- National Agriculture and Food Research Organization National Food Research Institute Tsukuba Ibaraki Japan
| |
Collapse
|
16
|
Saito K, Okouchi M, Yamaguchi M, Takechi T, Hatanaka Y, Kitsuda K, Mannari T, Takamura H. Effect of the addition of high-temperature water on the properties of batter and bread made from gluten-free rice flour. J Food Sci 2022; 87:576-584. [PMID: 35040128 DOI: 10.1111/1750-3841.16040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022]
Abstract
Increasing number of individuals worldwide are consuming gluten-free products, for example, bread, for health and other reasons. However, gluten-free products are currently expensive and/or their preparation involves the use of specialist machinery or food additives. In this study, we focused on the thickening effect of starch gelatinization and attempted to develop a novel method for gluten-free rice flour bread production without the use of additives. We aimed to determine the effect of adding high-temperature water to gluten-free rice flour on the properties of the resulting batter, primarily gelatinization. The water was tested at temperatures between 50 and 80°C, in 2°C increments. For comparison, control bread from gluten-free rice flour was made using cold (5°C) water. The addition of water at a temperature between 66 and 70°C significantly improved the specific volume and firmness of bread (p < 0.05, Dunnett's test; compared with control). Additionally, maintaining the gelatinization temperature of the bread batter for approximately 1-10 s and the degree of gelatinization of batter, approximately 5%-10%, were crucial for obtaining good-quality bread. Further, the addition of water at a temperature above 78°C adversely affected the bread-making properties. This simple method developed for making high-quality bread from gluten-free rice flour will make gluten-free bread products more widely available to and acceptable by the consumers. PRACTICAL APPLICATION: Currently, making high-quality bread from gluten-free rice flour involves the use of food additives or special rice flour. Here, we present a simple method for producing high-quality bread by manipulating the temperature of water added during the preparation of rice flour batter. We optimized the method by analyzing the gelatinization properties of the batter and determined the optimal water temperature suitable for bread making. This method yields high-quality gluten-free bread and is cost-effective and simple to implement.
Collapse
Affiliation(s)
- Kumiko Saito
- Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-Nishimachi, Nara, 630-8506, Japan
| | - Maya Okouchi
- Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-Nishimachi, Nara, 630-8506, Japan
| | - Mana Yamaguchi
- Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-Nishimachi, Nara, 630-8506, Japan
| | - Tayori Takechi
- Senri Kinran University, 5-25-1 Fujishirodai, Suita, Osaka, 565-0873, Japan
| | - Yoshiro Hatanaka
- Osaka Research Institute of Industrial Science and Technology Morinomiya Center, 1-6-50, Morinomiya, Jotoku, Osaka, 536-8553, Japan
| | - Koji Kitsuda
- Research Institute of Environment, Agriculture and Fisheries, 442 Shakudo, Habikino, Osaka, 583-0862, Japan
| | - Takayo Mannari
- Department of Food Science and Nutrition, Nara Women's University, Kitauoya-Nishimachi, Nara, 630-8506, Japan
| | - Hitoshi Takamura
- Department of Food Science and Nutrition, Nara Women's University, Kitauoya-Nishimachi, Nara, 630-8506, Japan.,KYOUSEI Science Center for Life and Nature, Nara Women's University, Kitauoya-Nishimachi, Nara, 630-8506, Japan
| |
Collapse
|
17
|
Aoki N, Kataoka T, Nishiba Y. Factors underlying the differential properties of gluten- and additive-free rice bread following rice flour pulverization. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2022. [DOI: 10.3136/fstr.fstr-d-21-00184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Noriaki Aoki
- Kyushu Okinawa Agricultural Research Center, NARO, Kumamoto
| | | | - Yoichi Nishiba
- Kyushu Okinawa Agricultural Research Center, NARO, Kumamoto
| |
Collapse
|
18
|
Qin W, Lin Z, Wang A, Chen Z, He Y, Wang L, Liu L, Wang F, Tong LT. Influence of particle size on the properties of rice flour and quality of gluten-free rice bread. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112236] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Cui F, Zhao S, Guan X, McClements DJ, Liu X, Liu F, Ngai T. Polysaccharide-based Pickering emulsions: Formation, stabilization and applications. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106812] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Boopathy B, Stephen J, Rajan A, Radhakrishnan M. Evaluation of temperature and concentration on the development of rice hydrogel and 2D xerogel. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bhavadharini Boopathy
- Associate Professor and Head, Centre of Excellence in Nonthermal Processing Indian Institute of Food Processing Technology Thanjavur India
| | - Jaspin Stephen
- Associate Professor and Head, Centre of Excellence in Nonthermal Processing Indian Institute of Food Processing Technology Thanjavur India
| | - Anbarasan Rajan
- Associate Professor and Head, Centre of Excellence in Nonthermal Processing Indian Institute of Food Processing Technology Thanjavur India
| | - Mahendran Radhakrishnan
- Associate Professor and Head, Centre of Excellence in Nonthermal Processing Indian Institute of Food Processing Technology Thanjavur India
| |
Collapse
|
21
|
Chieregato Maniglia B, Carregari Polachini T, Norwood EA, Le-Bail P, Le-Bail A. Thermal technologies to enhance starch performance and starchy products. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Koko MY, Hassanin HA, Qi B, Han L, Lu K, Rokayya S, Harimana Y, Zhang S, Li Y. Hydrocolloids as Promising Additives for Food Formulation Consolidation: A Short Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Marwa Y.F. Koko
- Department of Food, Grease, and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hinawi A.M. Hassanin
- Department of Food, Grease, and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baokun Qi
- Department of Food, Grease, and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Lu Han
- Department of Food, Grease, and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Keyang Lu
- Department of Food, Grease, and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Sami Rokayya
- Department of Food, Grease, and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yves Harimana
- Department of Food, Grease, and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuang Zhang
- Department of Food, Grease, and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yang Li
- Department of Food, Grease, and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
23
|
|
24
|
A Systematic Review on Gluten-Free Bread Formulations Using Specific Volume as a Quality Indicator. Foods 2021; 10:foods10030614. [PMID: 33805719 PMCID: PMC7999268 DOI: 10.3390/foods10030614] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to perform a systematic review on gluten-free bread formulations using specific volumes as a quality indicator. In this systematic review, we identified 259 studies that met inclusion criteria. From these studies, 43 met the requirements of having gluten-free bread with a specific volume greater than or equal to 3.5 cm3/g. Other parameters such as the texture profile, color (crumb and crust), and sensory analysis examined in these studies were presented. The formulations that best compensated the lack of the gluten-network were based on the combination of rice flour, rice flour with low amylose content, maize flour, rice starch, corn starch, potato starch, starch with proteins and added with transglutaminase (TGase), and hydrocolloids like hydroxypropylmethylcellulose (HPMC). Of the 43 studies, three did not present risk of bias, and the only parameter evaluated in common in the studies was the specific volume. However, it is necessary to jointly analyze other parameters that contribute to the quality, such as texture profile, external and internal characteristics, acceptability, and useful life of the bread, especially since it is a product obtained through raw materials and unconventional ingredients.
Collapse
|
25
|
Biomolecule-based pickering food emulsions: Intrinsic components of food matrix, recent trends and prospects. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106303] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Yamamoto K, Kugimiya W, Maeda H, Yano H, Kusumoto KI, Nabetani H. Trends in Plant-Based Substitutes for Animal Proteins. J JPN SOC FOOD SCI 2020. [DOI: 10.3136/nskkk.67.459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kazutaka Yamamoto
- Food Research Institute, National Agriculture and Food Research Organization
| | | | | | - Hiroyuki Yano
- Food Research Institute, National Agriculture and Food Research Organization
| | - Ken-Ichi Kusumoto
- Food Research Institute, National Agriculture and Food Research Organization
| | - Hiroshi Nabetani
- Food Research Institute, National Agriculture and Food Research Organization
- Faculty of Home Economics, Tokyo Kasei University
| |
Collapse
|
27
|
Pickering and high internal phase Pickering emulsions stabilized by protein-based particles: A review of synthesis, application and prospective. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106117] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Ichikawa C, Ishikawa D, Yang JM, Fujii T. Phenomenological analysis on whipping behavior of rice flour batter. J Food Sci 2020; 85:4327-4334. [PMID: 33159347 PMCID: PMC7756452 DOI: 10.1111/1750-3841.15452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/04/2020] [Accepted: 08/18/2020] [Indexed: 11/30/2022]
Abstract
In this study, the bubbles in rice flour batter were investigated under a constant temperature, because the bubble size distribution is important for the control of food texture. We obtained experimental data using a hand mixer and compared the properties of doughs prepared using six rice flours; each flour was prepared through a different milling process. We also added the size effect of the rice flour particles as the Bond number. Furthermore, we performed a dynamic wettability test to estimate the wettability of the rice flour surface. The results of this test were described well by the Washburn equation, and dc cosθ/dp was calculated as a wettability parameter (where, dc = effective diameter of a capillary in a powder bed, cosθ = the contact angle, dp = mean particle diameter of rice flour). If bubble sizes depend mainly on the inertial force, viscous force, surface tension, and gravity, then the normalized mean bubble diameter should be a function of the Reynolds number, Weber number, and Froude number. The mean bubble diameter (dbm ) generated by whipping was expected to be affected by the thickness (d) of the rod of the mixer, its movement speed, and physical properties of the material. Therefore, dimensionless mean diameter (dbm /d) was expressed based on a dimensionless equation. In the three-phase dispersion, different empirical equations were obtained depending on the amount of rice flour added, and the bubble diameter could be predicted using dimensionless parameters. In addition, the equations were generally applicable to the various materials selected for this study. PRACTICAL APPLICATION: The powder properties of rice flour were investigated, and dimensionless parameters were analyzed to construct an appropriate process control system for rice flour-based food products. Although the process method optimized for flour products is also used for rice flour products in practical situations, the comprehensive evaluation based on dimensionless parameters leads to optimization of the process for rice-flour based products. Moreover, this optimization might strongly support the creation of a new texture, and thus, the potential for market expansion of rice-flour based products is considerable.
Collapse
Affiliation(s)
- Chiaki Ichikawa
- Graduate School of Agricultural ScienceTohoku UniversitySendaiMiyagi980‐8572Japan
| | - Daitaro Ishikawa
- Faculty of AgricultureFukushima UniversityFukushimaFukushima960‐1296Japan
| | - Jia Min Yang
- Graduate School of Agricultural ScienceTohoku UniversitySendaiMiyagi980‐8572Japan
| | - Tomoyuki Fujii
- Graduate School of Agricultural ScienceTohoku UniversitySendaiMiyagi980‐8572Japan
| |
Collapse
|
29
|
Abstract
Bread and cheese have been a popular combination since early times. Indeed, the history of bread dates back to 8000 BC and that of cheese to 7200 BC. However, new types of breads and cheeses are increasingly popular for several reasons, such as allergies, lifestyles, economy and religion. The major challenge is that food manufacturers are offering new products most of which are not welcomed by consumers. Therefore, recently, researchers have placed importance on their relationships with consumers to boost the success of new products. This short review summarizes the backgrounds of recent trends, processes, and principles to manufacture new bread and cheese products, and discusses future perspectives. The development of additive-free, gluten-free rice bread we have recently done from basic research to commercialization of the products is highly focused in this review. Additionally, ongoing studies on plant-based cheeses are introduced from material selection to suggest future outlooks.
Collapse
|
30
|
van der Sman RGM, Renzetti S. Understanding functionality of sucrose in cake for reformulation purposes. Crit Rev Food Sci Nutr 2020; 61:2756-2772. [PMID: 32643962 DOI: 10.1080/10408398.2020.1786003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We review the functionality of sucrose during the manufacture of cakes from the perspective of sugar replacement. Besides providing sweetness, sucrose has important functionalities concerning structure formation. These functionalities also need to be mimicked in reformulated cakes. First, we review the hypotheses, concerning the development of structure and texture of cakes during manufacturing, which are conveniently summarized in a qualitative way using the Complex Dispersed Systems methodology. Subsequently, we represent the changes of the state of the cake during manufacturing in a supplemented state diagram, which indicates the important phase transitions occurring during baking. From the analysis, we have learned that sucrose act both as a plasticizer and as a humectant, modifying the phase transitions of biopolymers, dough viscosity, and water activity. If sugar replacers exactly mimick this behavior of sucrose, similar textures in reformulated cakes can be obtained. Physical theories exist for characterizing the plasticizing and hygroscopic behavior of sugars and their replacers. We have shown that the starch gelatinization and egg white denaturation can be predicted by the volumetric density of hydrogen bonds present in the solvent, consisting of water, sugar or its replacers, such as polyols or amino-acids.
Collapse
Affiliation(s)
- R G M van der Sman
- Wageningen-Food & Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - S Renzetti
- Wageningen-Food & Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
31
|
Yemenicioğlu A, Farris S, Turkyilmaz M, Gulec S. A review of current and future food applications of natural hydrocolloids. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14363] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ahmet Yemenicioğlu
- Department of Food Engineering Izmir Institute of Technology 35430 Urla, İzmir Turkey
| | - Stefano Farris
- DeFENS, Department of Food, Environmental and Nutritional Sciences Packaging Division University of Milan Via Celoria 2 20133 Milan Italy
| | - Meltem Turkyilmaz
- Institute of Food Safety Ankara University 06110 Dışkapı, Ankara Turkey
| | - Sukru Gulec
- Department of Food Engineering Izmir Institute of Technology 35430 Urla, İzmir Turkey
- Department of Molecular Nutrition and Human Physiology Laboratory Izmir Institute of Technology 35430 Urla, İzmir Turkey
| |
Collapse
|
32
|
Jafari SM, Sedaghat Doost A, Nikbakht Nasrabadi M, Boostani S, Van der Meeren P. Phytoparticles for the stabilization of Pickering emulsions in the formulation of novel food colloidal dispersions. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Aoki N, Kataoka T, Nishiba Y. Crucial role of amylose in the rising of gluten- and additive-free rice bread. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2019.102905] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Feng X, Sun Y, Yang Y, Zhou X, Cen K, Yu C, Xu T, Tang X. Zein nanoparticle stabilized Pickering emulsion enriched with cinnamon oil and its effects on pound cakes. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109025] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Toledo VCS, Carvalho CWP, Vargas‐Solórzano JW, Ascheri JLR, Comettant‐Rabanal R. Extrusion cooking of gluten‐free whole grain flour blends. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vanessa C. S. Toledo
- Postgraduate Program in Food Science and TechnologyUniversidade Federal Rural do Rio de Janeiro Seropédica RJ Brazil
| | - Carlos W. P. Carvalho
- Food Extrusion and Physical Properties LabEmbrapa Agroindústria de Alimentos Rio de Janeiro RJ Brazil
| | - Jhony W. Vargas‐Solórzano
- Postgraduate Program in Food Science and TechnologyUniversidade Federal Rural do Rio de Janeiro Seropédica RJ Brazil
| | - José L. R. Ascheri
- Food Extrusion and Physical Properties LabEmbrapa Agroindústria de Alimentos Rio de Janeiro RJ Brazil
| | - Raúl Comettant‐Rabanal
- Postgraduate Program in Food Science and TechnologyUniversidade Federal Rural do Rio de Janeiro Seropédica RJ Brazil
| |
Collapse
|
36
|
Čukelj Mustač N, Novotni D, Habuš M, Drakula S, Nanjara L, Voučko B, Benković M, Ćurić D. Storage stability, micronisation, and application of nutrient-dense fraction of proso millet bran in gluten-free bread. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2019.102864] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Tuta Şimşek S. Vacuum-combined baking to enhance quality properties of gluten-free cake: Multi-response optimization study. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Rohleder AR, Scherf KA, Schieberle P, Koehler P. Quantitative Analyses of Key Odorants and Their Precursors Reveal Differences in the Aroma of Gluten-Free Rice Bread and Wheat Bread. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11179-11186. [PMID: 31487164 DOI: 10.1021/acs.jafc.9b04800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rice flour is one of the most important raw materials in gluten-free products. However, the aroma of gluten-free rice bread is less accepted by consumers than that of commercial wheat bread. Therefore, 18 selected aroma compounds were determined in rice and wheat breads by stable isotope dilution assays (SIDA) to elucidate differences in the sensory characteristics, concentrations, and odor activity values (OAVs). The OAVs of most aroma compounds varied greatly between a rice and a wheat bread. In particular, 2-aminoacetophenone with a grape-like, medicinal aroma was characteristic for rice bread crumb and crust, while maltol was only relevant in wheat bread crust. Ehrlich pathway products varied in their concentration between the bread crumbs and were correlated with the contents of their corresponding free amino acid precursors in the flours and doughs. The analysis of rice flour revealed that only a few aroma compounds were retained in the bread. Consequently, the bread making process has a high relevance in aroma compound formation. In a comparison of breads prepared from fresh and stored rice flour, hexanal was identified as an important indicator for aging in rice bread and flour.
Collapse
Affiliation(s)
- Anke R Rohleder
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich , Lise-Meitner-Str. 34 , 85354 Freising , Germany
| | - Katharina A Scherf
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich , Lise-Meitner-Str. 34 , 85354 Freising , Germany
| | - Peter Schieberle
- Department of Chemistry , Technical University of Munich , Lichtenbergstrasse 4 , 85748 Garching , Germany
| | - Peter Koehler
- Biotask AG , Schelztorstraße 54-56 , 73728 Esslingen , Germany
| |
Collapse
|
39
|
Nami Y, Gharekhani M, Aalami M, Hejazi MA. Lactobacillus-fermented sourdoughs improve the quality of gluten-free bread made from pearl millet flour. Journal of Food Science and Technology 2019; 56:4057-4067. [PMID: 31477977 DOI: 10.1007/s13197-019-03874-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 11/26/2022]
Abstract
The study investigated the effect of sourdough made from combinations of four Lactobacillus spp. on the physicochemical properties, consumer acceptability, and shelf life of bread made from pearl millet flour. Fermentation based on both single and multiple species reduced the pH of the dough and increased its titratable acidity and H2O2 content. The addition of sourdough increased the elasticity and reduced the stiffness of the pearl millet dough. Sourdough fermented with L. brevis had the greatest effect on loaf height, specific volume, porosity, and moisture content. During storage, the moisture content of the bread crumb decreased, but that of their crust increased. Sourdough-based loaves retained their moisture better than conventional loaves and the sourdough suppressed the development of mold for a longer period. An organoleptic assessment showed that the sourdough-based bread was more palatable than either conventional or chemically acidified ones. The tissue softness, chewiness, and flavor of the pearl millet bread decreased during storage. The use of sourdough based on either L. brevis, L. paralimentarius, or L. brevis + L. paralimentarius is recommended to produce high-quality pearl millet-based bread.
Collapse
Affiliation(s)
- Yousef Nami
- 1Department of Food Biotechnology, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Mehdi Gharekhani
- 2Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mehran Aalami
- 3Department of Food Science and Technology, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Amin Hejazi
- 1Department of Food Biotechnology, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| |
Collapse
|
40
|
Rice flour physically modified by microwave radiation improves viscoelastic behavior of doughs and its bread-making performance. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.12.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Yano H. Recent practical researches in the development of gluten-free breads. NPJ Sci Food 2019; 3:7. [PMID: 31304279 PMCID: PMC6550274 DOI: 10.1038/s41538-019-0040-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
Wheat bread is consumed globally and has played a critical role in the story of civilization since the development of agriculture. While the aroma and flavor of this staple food continue to delight and satisfy most people, some individuals have a specific allergy to wheat or a genetic disposition to celiac disease. To improve the quality of life of these patients from a dietary standpoint, food-processing researchers have been seeking to develop high-quality gluten-free bread. As the quality of wheat breads depends largely on the viscoelastic properties of gluten, various ingredients have been employed to simulate its effects, such as hydrocolloids, transglutaminase, and proteases. Recent attempts have included the use of redox regulation as well as particle-stabilized foam. In this short review, we introduce the ongoing advancements in the development of gluten-free bread, by our laboratory as well as others, focusing mainly on rice-based breads. The social and scientific contexts of these efforts are also mentioned.
Collapse
Affiliation(s)
- Hiroyuki Yano
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642 Japan
| |
Collapse
|
42
|
Roman L, Belorio M, Gomez M. Gluten‐Free Breads: The Gap Between Research and Commercial Reality. Compr Rev Food Sci Food Saf 2019; 18:690-702. [DOI: 10.1111/1541-4337.12437] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Laura Roman
- Food Technology AreaCollege of Agricultural EngineeringUniv. of Valladolid Palencia 34004 Spain
| | - Mayara Belorio
- Food Technology AreaCollege of Agricultural EngineeringUniv. of Valladolid Palencia 34004 Spain
| | - Manuel Gomez
- Food Technology AreaCollege of Agricultural EngineeringUniv. of Valladolid Palencia 34004 Spain
| |
Collapse
|
43
|
Specific ratio of A-to B-type wheat starch granules improves the quality of gluten-free breads: Optimizing dough viscosity and pickering stabilization. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.04.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Microwave absorption capacity of rice flour. Impact of the radiation on rice flour microstructure, thermal and viscometric properties. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.12.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Effect of retort treatment on physicochemical properties of high-amylose rice gel made by high-speed shear treatment. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2017.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Aoki N. Sweet Potato Flour Decreases Firmness of Gluten-free Rice Bread. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Noriaki Aoki
- Crop Development and Agribusiness Research Division, Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization
| |
Collapse
|