1
|
Fan L, Wang H, Li M, Lei M, Li L, Ma S, Huang J. Impact of wheat bran dietary fiber on gluten aggregation behavior in dough during noodle processing. Int J Biol Macromol 2024; 257:128765. [PMID: 38096940 DOI: 10.1016/j.ijbiomac.2023.128765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
We herein evaluated the impact of adding wheat bran dietary fiber (WBDF) on the aggregation behavior of gluten in dough at various stages of the noodle-making process. Scanning electron microscopy and confocal laser scanning microscopy images confirmed the effective insertion of WBDF particles into the gluten matrix. Importantly, the gap between WBDF and gluten widened during the rolling process. The addition of WBDF led to a reduction in glutenin macropolymer (GMP) content and an elevation in sulfhydryl content, induced the depolymerization behaviors at the molecular level. Additionally, it facilitated the conversion of α-helices and β-turns into β-sheets and random coils within the dough. Moreover, the processing and addition of WBDF contributed to a decrease in weight loss, whereas the degradation temperature remained constant. Resting decreased the sulfhydryl content, whereas sheeting and cutting increased it, further fostering protein depolymerization in the presence of WBDF. These actions significantly increased the β-sheets and random coils content at the expense of β-turns and α-helices content. Significantly, controlled processing emerged as a crucial factor in enhancing gluten depolymerization induced by WBDF in the dough. This comprehensive study provides a nuanced perspective on controlling dough processing to strike a balance between dietary fiber-rich and high-quality foods.
Collapse
Affiliation(s)
- Ling Fan
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, Henan 475004, China
| | - Huiping Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, Henan 475004, China
| | - Mengyuan Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Mengxu Lei
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Li Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, Henan 475004, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Sen Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, Henan 475004, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Jihong Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, Henan 475004, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Food and Pharmacy College, Xuchang University, Xuchang, Henan 461000, China.
| |
Collapse
|
2
|
Li F, Li T, Zhao J, Fan M, Qian H, Li Y, Wang L. Unraveling the deterioration mechanism of dough during whole wheat flour processing: A case study of gluten protein containing arabinoxylan with different molecular weights. Food Chem 2024; 432:137199. [PMID: 37633141 DOI: 10.1016/j.foodchem.2023.137199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
This study aims to the effect of arabinoxylan (AX) on gluten quality. Ultrasonic treatment is utilized to degrade water unextractable arabinoxylans (WUAX) from wheat bran, which obtains three molecular weights of AX. The results indicate that the shear viscosity and particle size of AX were decreased and the ζ-potential was increased after ultrasonic treatment. Analysis of the gluten shows that the free SH of gluten with 6% WUAX, SAX10, and SAX30 (ultrasound duration for 10 min and 30 min) was increased by 51.9%, 48.1%, and 17.0%, respectively, whereas the free SH of 2% SAX30-gluten was increased by 19.8%. Furthermore, WUAX impaired the viscoelasticity properties of gluten, while SAX30 improved the viscoelasticity of gluten. WUAX induced the open, fragile, and discontinuous structure of gluten. On the contrary, SAX30 promoted the formation of the compact and regular gluten structure. Overall, ultrasonic as a non-chemical treatment could be used to improve the quality of whole-wheat foods.
Collapse
Affiliation(s)
- Fan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Tingting Li
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Jiajia Zhao
- College of Cooking Science and Technology, Jiangsu College of Tourism, Yangzhou, 225000, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
3
|
Lin S, Huang B, Liu S, Liu Y, Zhang Q, Qin W. Impact of supplement of Qingke flours on physiochemical properties, sensory and in vitro starch digestibility of wheat bread and its enhancement by bread quality improvers. Food Chem X 2023; 19:100855. [PMID: 37780254 PMCID: PMC10534235 DOI: 10.1016/j.fochx.2023.100855] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
The aim is to upgrade the formulation to produce wheat bread with lower starch digestibility by supplemented with Qingke flour. Physiochemical properties of multi-scale Qingke flours were examined to select the most satisfied Qingke flour for breadmaking. Data showed multi-scale Qingke samples differed in total starch content, water/oil binding capacity, freeze-thaw stability, but had similar swelling capacity and thermodynamic properties. Addition of Qingke flours significantly reduced the total in vitro starch digestion of bread from 80% to 41% and decreased the rapidly digested starch content from 53% to 27%. However, Qingke flours caused a worse bread quality, texture and sensory e.g. lower bread specific volume (4.26-3.3 mL/g), larger hardness (398-1170 g) and chewiness (296-707 mJ). Meanwhile, hydroxypropyl methylcellulose, sodium stearoyl lactylate and transglutaminase could improve the bread quality and sensory. Lastly, results revealed Qingke-supplemented bread could generate new volatile compounds, hence having a different aroma compared to original wheat bread.
Collapse
Affiliation(s)
| | | | - Shuxiang Liu
- College of Food Science, Sichuan Agricultural University, Sichaun Province, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Sichaun Province, China
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Sichaun Province, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Sichaun Province, China
| |
Collapse
|
4
|
Tan JM, Li B, Han SY, Wu H. Use of a compound modifier to retard the quality deterioration of frozen dough and its steamed bread. Food Res Int 2023; 172:113229. [PMID: 37689962 DOI: 10.1016/j.foodres.2023.113229] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 09/11/2023]
Abstract
To retard the quality deterioration of the dough during frozen storage, the effects of a compound modifier (CM) comprised of sodium stearoyl lactate, VC, and β-glucanase on the properties of the frozen dough, as well as the quality of the frozen dough steamed bread were investigated. The results revealed that CM restricted the migration of water in the dough and improved its rheological properties. Furthermore, CM minimized the deterioration of specific volume and textural properties, and prevented starch retrogradation in the frozen dough steamed bread. Moreover, the addition of CM strengthened the secondary structure of gluten protein and formed a more resilient gluten network. The microstructure of the frozen dough steamed bread showed that CM reduced the damage caused by ice crystals on the gluten network. Overall, the use of CM strengthened the gluten network and effectively delayed the quality deterioration of the frozen dough, thus is potential as an improver for frozen dough.
Collapse
Affiliation(s)
- Jin-Ming Tan
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Bing Li
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Shuang-Yan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China.
| |
Collapse
|
5
|
Li R, Wang C, Wang Y, Xie X, Sui W, Liu R, Wu T, Zhang M. Extrusion Modification of Wheat Bran and Its Effects on Structural and Rheological Properties of Wheat Flour Dough. Foods 2023; 12:foods12091813. [PMID: 37174351 PMCID: PMC10178710 DOI: 10.3390/foods12091813] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The study investigated the extrusion modification of wheat bran and its effects on structural and rheological properties of wheat flour dough. Extruded bran showed better solubility of dietary fiber and structural porosity, leading to higher hydration and swelling power. Addition of extruded bran to dough caused water redistribution as an intensive aggregation of bound water to gluten matrix with reduced mobility. The bran-gluten interaction influenced by water sequestering caused partial gluten dehydration and conversion of β-turn into β-sheet, which demonstrated the formation of a more polymerized and stable gluten network. Farinographic data confirmed the promotion of dough stability with extruded bran addition at lower gluten content, while viscoelastic data suggested improved dough elasticity at all gluten contents by increasing elastic moduli and decreasing loss tangent. This study would be useful for interpreting the modification effect and mechanism of extrusion on cereal brans and provide valuable guidance for applying it as an effective modification technology on the commercial production of cereal bran and its flour products.
Collapse
Affiliation(s)
- Ranran Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chenyang Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yan Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xuan Xie
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Min Zhang
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300392, China
| |
Collapse
|
6
|
Li C, Tilley M, Chen R, Siliveru K, Li Y. Effect of bran particle size on rheology properties and baking quality of whole wheat flour from four different varieties. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Song J, Jiang L, Qi M, Li L, Xu M, Li Y, Zhang D, Wang C, Chen S, Li H. Study of ultrasonic treatment on the structural characteristics of gluten protein and the quality of steamed bread with potato pulp. ULTRASONICS SONOCHEMISTRY 2023; 92:106281. [PMID: 36586338 PMCID: PMC9816964 DOI: 10.1016/j.ultsonch.2022.106281] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Physicochemical properties and microstructure of gluten protein, and the structural characteristics of steamed bread with 30 % potato pulp (SBPP) were investigated by ultrasonic treatments. Results showed that 400 W ultrasonic treatment significantly (P < 0.05) increased the combination of water and substrate in the dough with 30 % potato pulp (DPP). The contents of wet gluten, free sulfhydryl (SH), and disulfide bond (SS) were influenced by ultrasonic treatment. Moreover, UV-visible and fluorescence spectroscopy demonstrated that the conformation of gluten protein was changed by ultrasonic treatment (400 W). Fourier transform infrared (FT-IR) illustrated that the β-sheet content was significantly (P < 0.05) increased (42 %) after 400 W ultrasonic treatment, and the surface hydrophobicity of gluten protein in SBPP increased from 1225.37 (0 W ultrasonic treatment) to 4588.74 (400 W ultrasonic treatment). Ultrasonic treatment facilitated the generation of a continuous gluten network and stabilized crumb structure, further increased the specific volume and springiness of SBPP to 18.9 % and 6.9 %, respectively. Those findings suggested that ultrasonic treatment would be an efficient method to modify gluten protein and improve the quality of SBPP.
Collapse
Affiliation(s)
- Jialin Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong Province 255049, China
| | - Lijun Jiang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong Province 255049, China
| | - Mingming Qi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong Province 255049, China
| | - Luxia Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong Province 255049, China
| | - Mei Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong Province 255049, China
| | - Yueming Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong Province 255049, China
| | - Dongliang Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong Province 255049, China
| | - Chenjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong Province 255049, China
| | - Shanfeng Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong Province 255049, China.
| | - Hongjun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong Province 255049, China.
| |
Collapse
|
8
|
Riley IM, Nivelle MA, Ooms N, Delcour JA. The use of time domain 1 H NMR to study proton dynamics in starch-rich foods: A review. Compr Rev Food Sci Food Saf 2022; 21:4738-4775. [PMID: 36124883 DOI: 10.1111/1541-4337.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/30/2022] [Accepted: 07/31/2022] [Indexed: 01/28/2023]
Abstract
Starch is a major contributor to the carbohydrate portion of our diet. When it is present with water, it undergoes several transformations during heating and/or cooling making it an essential structure-forming component in starch-rich food systems (e.g., bread and cake). Time domain proton nuclear magnetic resonance (TD 1 H NMR) is a useful technique to study starch-water interactions by evaluation of molecular mobility and water distribution. The data obtained correspond to changes in starch structure and the state of water during or resulting from processing. When this technique was first applied to starch(-rich) foods, significant challenges were encountered during data interpretation of complex food systems (e.g., cake or biscuit) due to the presence of multiple constituents (proteins, carbohydrates, lipids, etc.). This article discusses the principles of TD 1 H NMR and the tools applied that improved characterization and interpretation of TD NMR data. More in particular, the major differences in proton distribution of various dough and cooked/baked food systems are examined. The application of variable-temperature TD 1 H NMR is also discussed as it demonstrates exceptional ability to elucidate the molecular dynamics of starch transitions (e.g., gelatinization, gelation) in dough/batter systems during heating/cooling. In conclusion, TD NMR is considered a valuable tool to understand the behavior of starch and water that relate to the characteristics and/or quality of starchy food products. Such insights are crucial for food product optimization and development in response to the needs of the food industry.
Collapse
Affiliation(s)
- Isabella M Riley
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Mieke A Nivelle
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Nand Ooms
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
- Biscuiterie Thijs, Herentals, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Hu H, Lin H, Xiao L, Guo M, Yan X, Su X, Liu L, Sang S. Impact of Native Form Oat β-Glucan on the Physical and Starch Digestive Properties of Whole Oat Bread. Foods 2022; 11:2622. [PMID: 36076808 PMCID: PMC9455579 DOI: 10.3390/foods11172622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022] Open
Abstract
To investigate the effect of oat bran on bread quality and the mechanism of reducing the glycemic index (GI) of bread, wheat bran (10%, w/w, flour basis), oat bran (10%), and β-glucan (0.858%) were individually added to determine the expansion of dough, the specific volume, texture, color, GI, starch digestion characteristics, and α-amylase inhibition rate of bread. The results showed that the incorporation of wheat bran and oat bran both reduced the final expanded volume of the dough, decreased the specific volume of the bread, and increased the bread hardness and crumb redness and greenness values as compared to the control wheat group. The above physical properties of bran-containing bread obviously deteriorated while the bread with β-glucan did not change significantly (p < 0.05). The GI in vitro of bread was in the following order: control (94.40) > wheat bran (69.24) > β-glucan (65.76) > oat bran (64.93). Correspondingly, the oat bran group had the highest content of slowly digestible starch (SDS), the β-glucan group had the highest content of resistant starch (RS), and the control group had the highest content of rapidly digestible starch (RDS). For the wheat bran, oat bran, and β-glucan group, their inhibition rates of α-amylase were 9.25%, 28.93%, and 23.7%, respectively. The β-glucan reduced the bread GI and α-amylase activity by intertwining with starch to form a more stable gel network structure, which reduced the contact area between amylase and starch. Therefore, β-glucan in oat bran might be a key component for reducing the GI of whole oat bread.
Collapse
Affiliation(s)
- Han Hu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315832, China
| | - Huihui Lin
- Department of Food Science and Engineering, Ningbo University, Ningbo 315832, China
| | - Lei Xiao
- Department of Food Science and Engineering, Ningbo University, Ningbo 315832, China
| | - Minqi Guo
- Department of Food Science and Engineering, Ningbo University, Ningbo 315832, China
| | - Xi Yan
- Department of Food Science and Engineering, Ningbo University, Ningbo 315832, China
| | - Xueqian Su
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Lianliang Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315832, China
| | - Shangyuan Sang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315832, China
| |
Collapse
|
10
|
Liu G, Wang ZM, Du N, Zhang Y, Wei Z, Tang XJ, Zhao L, Li C, Deng YY, Zhang MW. Recombinant Rice Quiescin Sulfhydryl Oxidase Strengthens the Gluten Structure through Thiol/Disulfide Exchange and Hydrogen Peroxide Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9106-9116. [PMID: 35736502 DOI: 10.1021/acs.jafc.2c01652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recombinant rice quiescin sulfhydryl oxidase (rQSOX) has the potential to improve the flour processing quality, but the mechanisms remain unclear. The effects of rQSOX on bread quality, dough rheology, and gluten structure and composition, with glucose oxidase as a positive control, were investigated. rQSOX addition could improve the dough processing quality, as proved by enhanced viscoelastic properties of dough as well as a softer crumb, higher specific volume, and lower moisture loss of bread. These beneficial effects were attributed to gluten protein polymerization and gluten network strengthening, evidenced by the improved concentration of SDS-insoluble gluten and formation of large gluten aggregates and the increased α-helix and β-turn conformation. Furthermore, decreased free sulfhydryl and increased dityrosine in gluten as well as improved H2O2 content in dough suggested that the rQSOX dough strengthening mechanism was mainly based on the formation of disulfide bonds and dityrosine cross-links in gluten by both thiol/disulfide direct exchange and hydrogen peroxide indirect oxidation pathways.
Collapse
Affiliation(s)
- Guang Liu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhi-Ming Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Nian Du
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yan Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - ZhenCheng Wei
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xiao-Jun Tang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lei Zhao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Chao Li
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuan-Yuan Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ming-Wei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| |
Collapse
|
11
|
Fan L, Li L, Xu A, Huang J, Ma S. Impact of Fermented Wheat Bran Dietary Fiber Addition on Dough Rheological Properties and Noodle Quality. Front Nutr 2022; 9:952525. [PMID: 35873449 PMCID: PMC9301053 DOI: 10.3389/fnut.2022.952525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/01/2022] Open
Abstract
This study aimed to evaluate the effect of fermented wheat bran dietary fiber (FWBDF) on the rheological properties of the dough and the quality of noodles and to compare it with the effect of the unfermented WBDF (UWBDF). WBDF was fermented with Auricularia polytricha. The results showed that adding UWBDF/FWBDF increased the storage modulus G' and loss modulus G” of the dough, converted α-helices and β-turns into β-sheets and random coils, respectively, inhibited water flow, increased cooking loss, and decreased the maximum resistance in the noodles. The formed gluten network had a more random and rigid structure, resulting in the deterioration of the quality of noodles. Furthermore, the number of α-helices and the peak proportions of weakly bound water A22 increased but the number of β-sheets and cooking loss decreased in the FWBDF group compared with the UWBDF group. FWBDF (≤4%) improved the hardness of noodles, while UWBDF decreased it. These changes indicated that fermentation could reduce the destructive effects of WBDF on the quality of noodles, providing a new perspective on balancing dietary fiber-rich and high-quality foods.
Collapse
Affiliation(s)
- Ling Fan
- Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Li Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Anmin Xu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Jihong Huang
- Food and Pharmacy College, Xuchang University, Xuchang, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
- *Correspondence: Jihong Huang
| | - Sen Ma
- Food and Pharmacy College, Xuchang University, Xuchang, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
- Sen Ma
| |
Collapse
|
12
|
Sun X, Ma L, Zhong X, Liang J. Potential of raw and fermented maize gluten feed in bread making: Assess of dough rheological properties and bread quality. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Effects of Wheat Bran Micronization on the Quality of Reconstituted Whole-Wheat Flour and Its Cooked Noodles. Processes (Basel) 2022. [DOI: 10.3390/pr10051001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The particle size of wheat bran plays an important role in the quality of reconstituted whole-wheat flour and its products. The effects of wheat bran particle size on the quality of reconstituted whole-wheat flour and its cooked noodles were analyzed; the mean particle size (D50) of wheat bran ranged from 26.05 to 46.08 μm. Results show that the decreases in D50 of wheat bran induced the changes in the quality of whole-wheat flour and its noodles. Specifically, the damaged starch content, water absorption, and the solvent retention capacity of sodium carbonate and sucrose of whole-wheat flour increased at various degrees, while pasting viscosity decreased, and the gluten index and SDS-sedimentation volume increased first and then decreased. The cooking yield, cooking loss, and break rate of fresh noodles decreased first and reached a trough at D50 of 26.05 μm, and then increased. The adhesiveness of cooked noodles increased, the score of smoothness, taste, appearance, and color increased to a stable value, but the hardness, springiness, cohesiveness, resilience, firmness score, and elasticity score increased first and then decreased. These turning points of changing trends of indexes mostly occurred when the D50 of wheat bran was 26.51 μm. In conclusion, whole-wheat noodles with wheat bran of D50 of 26.51 μm addition exhibit better cooking, textural, and sensory properties than those with smaller or larger wheat bran. Excessive crushing of wheat bran not only costs highly in terms of energy, but also has a negative impact on the quality of the noodles.
Collapse
|
14
|
Quality Characteristics and Antioxidant Activity of Fresh Noodles Formulated with Flour-Bran Blends Varied by Particle Size and Blend Ratio of Purple-Colored Wheat Bran. Processes (Basel) 2022. [DOI: 10.3390/pr10030584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
This study explored the noodle-making performance of flour blends with different particle sizes and blending ratios of purple-colored wheat bran and their antioxidant properties. The bran particle size was reduced using an ultra-centrifugal mill equipped with 1, 0.5, and 0.2 mm sieves. The damaged starch and swelling capacity of the bran were analyzed. Quality of the flour-bran blends at different blending ratios was analyzed by solvent retention capacity (SRC). Noodles made from the blends and their corresponding antioxidant activities were examined. The damaged starch and swelling capacity of bran were higher for smaller particles than for larger particles. Water and sodium carbonate SRC values of blends increased as the bran particle size decreased. The smaller the bran particles incorporated in the cooked noodles, the greater firmness and springiness measured. The antioxidant activity of noodles made with blends reflected better embedding of the small particles of bran than the large particles into noodle sheets. Small bran particles significantly enhanced noodles’ quality and antioxidant activity at higher blending ratios than large bran particles. Particle size reduction of bran enhanced the noodle-making performance of flour blended with purple-colored wheat bran; this could increase the utilization of bran to produce noodles with health benefits.
Collapse
|
15
|
Comparison of quality characteristics of six reconstituted whole wheat flour with different modified bran. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112543] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Xiang Y, Dong R, Xu S, Ren T, Hu X. Effect of wheat gluten addition on the quality of thermal‐vacuum packaged Chinese steamed bread. Cereal Chem 2021. [DOI: 10.1002/cche.10516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuting Xiang
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an Shaanxi China
| | - Rui Dong
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an Shaanxi China
| | - Shuya Xu
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an Shaanxi China
| | - Tian Ren
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an Shaanxi China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an Shaanxi China
| |
Collapse
|
17
|
Xing J, Qiao J, Yang Z, Guo X, Zhu K. Effects of ultrasound‐assisted resting on the qualities of whole wheat dough sheets and noodles. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jun‐Jie Xing
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Ju‐Yuan Qiao
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Zhen Yang
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Xiao‐Na Guo
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Ke‐Xue Zhu
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| |
Collapse
|
18
|
Ma S, Zhan J, Wang Z, Zhou P, Zhu Q, Wang X. Effect of baked wheat germ on the rheology and fermentation properties of steamed bread dough. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sen Ma
- School of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Jing Zhan
- School of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Zhen Wang
- School of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Peng Zhou
- School of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Qi Zhu
- School of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Xiaoxi Wang
- School of Food Science and Technology Henan University of Technology Zhengzhou China
| |
Collapse
|
19
|
Chen F, Ma Z, Yang Y, Tan B, Ren L, Liu X, Bian X, Wang B, Guo X, Yang J, Zhang N. Effects of japonica rice flour on the mesoscopic and microscopic properties of wheat dough protein. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Feng‐lian Chen
- School of Food Engineering Harbin University of Commerce Harbin150076China
| | - Zhan‐qian Ma
- School of Food Engineering Harbin University of Commerce Harbin150076China
| | - Yang Yang
- School of Food Engineering Harbin University of Commerce Harbin150076China
| | - Bin Tan
- Academy of Science National Food and Strategic Reserves Administration Beijing100037China
| | - Li‐kun Ren
- School of Food Engineering Harbin University of Commerce Harbin150076China
| | - Xiao‐fei Liu
- School of Food Engineering Harbin University of Commerce Harbin150076China
| | - Xin Bian
- School of Food Engineering Harbin University of Commerce Harbin150076China
| | - Bing Wang
- School of Food Engineering Harbin University of Commerce Harbin150076China
| | - Xiao‐xue Guo
- School of Food Engineering Harbin University of Commerce Harbin150076China
| | - Jing Yang
- School of Food Engineering Harbin University of Commerce Harbin150076China
| | - Na Zhang
- School of Food Engineering Harbin University of Commerce Harbin150076China
| |
Collapse
|
20
|
Whole-flours from hard and soft wheat genotypes: study of the ability of prediction test to estimate whole flour end-use. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:1462-1469. [PMID: 33746274 DOI: 10.1007/s13197-020-04658-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 10/23/2022]
Abstract
The aims of this work were to assess the influence of the physicochemical composition of whole flour from soft and hard wheat genotypes on cookie and bread properties, as well as the ability of the prediction tests to estimate the whole meal flour end-use. Flours from hard and soft wheat genotypes proved to have different chemical composition and particle size distribution. Flours from hard wheat had lower particle average size and dietary fiber content, and higher lipid and wet gluten contents than flours from soft wheat. Particle size distribution, water absorption capacity and chemical composition of whole flours strongly influenced bread and cookie making performance. Considering prediction tests, flours from different wheat types were successfully discriminated using SDS-SI, SRC lac, and GI. However, rather weak correlations were found between the prediction test and the cookie and bread quality parameters. The prediction test, standardized for refined flours, showed a poor performance when whole flours were used. Nevertheless, grain texture and whole flour physicochemical properties did affect bread and cookie quality parameters, thus classical prediction tests should be modified in order to estimate the end-use performance of whole flours. Moreover, a standardization of the milling process should be considered.
Collapse
|
21
|
Marchini M, Arduini R, Carini E. Insight into molecular and rheological properties of sprouted sorghum flour. Food Chem 2021; 356:129603. [PMID: 33812195 DOI: 10.1016/j.foodchem.2021.129603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
This work investigated the effect of sprouting and drying post-sprouting on technological functionalities of sorghum flour as probed by Low-resolution Proton Nuclear Magnetic Resonance (1H NMR) and Dynamic Mechanical Analysis (DMA). Multivariate statistics were used to assess the effect of flour (from sprouted and unsprouted sorghum, and wholewheat) and hydration level on flour-water systems molecular and viscoelastic properties. Overall, sorghum-based systems showed greater molecular mobility explaining poorer viscoelastic properties than those obtained from wheat. Sprouting affected the molecular properties of sorghum flour-water systems, while no differences were observed in the two sprouted samples dried in different conditions. However, sprouting did not affect the viscoelastic properties of sorghum-water systems. These results bolster the use of sprouted sorghum in composite flours for the development of sustainable finished products with high nutritional value and satisfactory technological and organoleptic properties.
Collapse
Affiliation(s)
- Mia Marchini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma (PR), Italy.
| | - Riccardo Arduini
- S-IN Soluzioni Informatiche S.r.l., v. G. Ferrari 14, 36100 Vicenza, Italy.
| | - Eleonora Carini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma (PR), Italy; Centro Interdipartimentale sulla Sicurezza, Tecnologie e Innovazione Agroalimentare - SITEIA.PARMA, University of Parma, Via Università 12, 43121 Parma (PR), Italy.
| |
Collapse
|
22
|
Xiao F, Zhang X, Niu M, Xiang X, Chang Y, Zhao Z, Xiong L, Zhao S, Rong J, Tang C, Wu Y. Gluten development and water distribution in bread dough influenced by bran components and glucose oxidase. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110427] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Yang M, Yue Y, Liu L, Tong L, Wang L, Ashraf J, Li N, Zhou X, Zhou S. Investigation of combined effects of xylanase and glucose oxidase in whole wheat buns making based on reconstituted model dough system. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Thermomechanical behaviors and protein polymerization in bread dough modified by bran components and transglutaminase. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Guo L, Fang F, Zhang Y, Xu D, Jin Z, Xu X. Glutathione affects rheology and water distribution of wheat dough by changing gluten conformation and protein depolymerisation. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lunan Guo
- The State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 LiHu Road Wuxi Jiangsu214122China
| | - Fang Fang
- Whistler Center for Carbohydrate Research Department of Food Science Purdue University 745 Agriculture Mall Dr West Lafayette IN47907USA
| | - Yao Zhang
- The State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 LiHu Road Wuxi Jiangsu214122China
| | - Dan Xu
- The State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 LiHu Road Wuxi Jiangsu214122China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 LiHu Road Wuxi Jiangsu214122China
| | - Xueming Xu
- The State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 LiHu Road Wuxi Jiangsu214122China
- Synergetic Innovation Center of Food Safety and Nutrition Jiangnan University 1800 LiHu Road Wuxi Jiangsu214122China
| |
Collapse
|
26
|
Paesani C, Bravo-Núñez Á, Gómez M. Effect of extrusion of whole-grain maize flour on the characteristics of gluten-free cookies. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Yan H, Lu Q. Effects of the size distribution of wheat starch on noodles with and without gluten. J Texture Stud 2020; 52:101-109. [PMID: 32978792 DOI: 10.1111/jtxs.12564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 11/28/2022]
Abstract
To understand the effects of A- and B-type wheat starch on noodle quality, two noodle models with (Model 1) and without (Model 2) gluten were constructed with five different ratios of A- to B-granules (100A-0B, 75A-25B, 50A-50B, 25A-75B, and 0A-100B). With increasing proportions of B-granules, the noodle structures of Models 1 and 2 became increasingly dense. The cooking loss, water absorption, proportion of free water, chewiness, cohesiveness and resilience decreased from 35.64 to 15.49%, 240.92 to 228.58%, 88.89 to 85.98%, 21.93 to 13.24 N, 0.77 to 0.56, and 0.61 to 0.36, respectively, with the increased proportion of B-granules in Model 2, while those parameters normally presented "V" or inverted "V" trends in Model 1. Compared to their counterparts in Model 2, gluten networks with 25-50% B-granules had an outstanding ability to increase the percentage of tightly bound water, hardness, chewiness and springiness by 4.50%, 24.07 N, 25.05 N, and 0.17 at most and reduce the proportion of free water and water absorption by 5.56 and 73.70% at most, respectively. The results indicated that the effect of the gluten network on noodle qualities may partially depend on its structure, which is shaped by the granule size distribution. Compared to the other characteristics of noodles, the springiness was influenced by a more complicated mechanism involving A- and B-granules in Model 2, while it was strongly affected by the gluten network under the given experimental conditions in Model 1.
Collapse
Affiliation(s)
- Huili Yan
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan Province, People's Republic of China
| | - Qiyu Lu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan Province, People's Republic of China
| |
Collapse
|
28
|
Use of the 1H NMR technique to describe the kneading step of wholewheat dough: The effect of kneading time and total water content. Food Chem 2020; 338:128120. [PMID: 33091998 DOI: 10.1016/j.foodchem.2020.128120] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/06/2020] [Accepted: 09/13/2020] [Indexed: 01/30/2023]
Abstract
The kneading step of wholewheat flour (WWF) dough was monitored using low-resolution 1H nuclear magnetic resonance (NMR). The tested variables were kneading time and total water content. Two 1H Free induction decay (FID) (A and B) and four 1H T2 Car-Purcell-Meiboom-Gill (CPMG) (C, D, E and F) proton populations were observed and the attribution to the different proton domains was made based on the literature and data acquisition. Kneading time significantly increased the mobility and the relative abundance of popA, the relative abundance and strength of protons of popC, D and E, while significantly reducing the relative amount of popF and increasing its mobility. This evolution of the proton populations during kneading was interpreted as chemical/physical transformations of the flour constituents. The use of WWF may reveal the changes in molecular dynamics underlying the higher water requirements of unrefined doughs, often associated with improved bread quality.
Collapse
|
29
|
Miś A, Krekora M, Niewiadomski Z, Dziki D, Nawrocka A. Water redistribution between model bread dough components during mixing. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Cao Y, Zhang M, Dong S, Guo P, Li H. Impact of potato pulp on the processing characteristics and gluten structures of wheat flour dough. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanfei Cao
- School of Agricultural Engineering and Food Science Shandong University of Technology Zibo China
| | - Min Zhang
- School of Agricultural Engineering and Food Science Shandong University of Technology Zibo China
| | - Shuang Dong
- School of Agricultural Engineering and Food Science Shandong University of Technology Zibo China
| | - Peng Guo
- School of Agricultural Engineering and Food Science Shandong University of Technology Zibo China
| | - Hongjun Li
- School of Agricultural Engineering and Food Science Shandong University of Technology Zibo China
| |
Collapse
|
31
|
Probing the effect of physical modifications on cereal bran chemistry and antioxidant potential. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00438-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Liu T, Niu M, Hou GG. Protein polymerization in dumpling wrappers influenced by folding patterns. Food Chem 2020; 305:125500. [PMID: 31525593 DOI: 10.1016/j.foodchem.2019.125500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/29/2019] [Accepted: 09/07/2019] [Indexed: 11/18/2022]
Abstract
The influences of folding patterns on the protein polymerization in dumpling wrappers were investigated. The dumpling dough sheet after the compounding rollers was folded with various patterns (control with no angle, 15°, 25°, 35° and 45° folding), before going through the sheeting and reduction rolls. Protein secondary structure, free sulfhydryl content, protein electrophoretic profiles, and texture of dumpling wrappers were determined. Results showed that folding could increase the proportion of α-helix conformation, and produce dumpling wrappers with enhanced toughness but reduce wrapper extensibility. The wrapper with 45° folding showed lower -SH content than the control and other folding angles. However, only a few variations in SDS band pattern and intensities were observed at the molecular weight position of around 35 kDa. Briefly, folding process could influence the gluten formation during the preparation of dumpling wrappers; the folding angle at 45° produced stronger gluten network and tougher wrappers.
Collapse
Affiliation(s)
- Ting Liu
- U.S. Wheat Associates Beijing Office, China World Office 1, 1 Jianguomenwai Avenue, Beijing 100004, PR China
| | - Meng Niu
- College of Food Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei Province, PR China.
| | - Gary G Hou
- SPC Group, 2620 Nambusunhwan-ro, Seocho-gu, Seoul 06737, South Korea.
| |
Collapse
|
33
|
|
34
|
Zhan J, Ma S, Wang X, Li L, Zheng X. Effect of baked wheat germ on gluten protein network in steamed bread dough. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Zhan
- College of Grain Oil and Food Science Henan University of Technology Zhengzhou 450001 China
| | - Sen Ma
- College of Grain Oil and Food Science Henan University of Technology Zhengzhou 450001 China
| | - Xiao‐Xi Wang
- College of Grain Oil and Food Science Henan University of Technology Zhengzhou 450001 China
| | - Li Li
- College of Grain Oil and Food Science Henan University of Technology Zhengzhou 450001 China
| | - Xue‐ling Zheng
- College of Grain Oil and Food Science Henan University of Technology Zhengzhou 450001 China
| |
Collapse
|
35
|
Ma S, Han W, Li L, Zheng X, Wang X. The thermal stability, structural changeability, and aggregability of glutenin and gliadin proteins induced by wheat bran dietary fiber. Food Funct 2019; 10:172-179. [PMID: 30516204 DOI: 10.1039/c8fo01810c] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Wheat bran dietary fiber (WBDF) has been reported to be responsible for the low quality of whole wheat flour products due to its destructive effect on the gluten matrix. Glutenin and gliadin are the major components of gluten protein and contribute to a proper gluten structure. In this study, the thermostability, surface hydrophobicity, fluorescence characteristics, free sulfhydryl contents, and molecular weight distributions of glutenin- and gliadin-rich fractions were determined after the addition of WBDF. The addition of WBDF to glutenin resulted in an increased surface hydrophobicity and free sulfhydryl content, as well as a red-shift of the fluorescence spectrum. However, the WBDF-modified gliadin fraction changed slightly mainly due to its spherical conformation. Size exclusion chromatography profiles revealed increasing soluble gliadin aggregates and decreasing high molecular weight glutenin fractions as a result of WBDF incorporation. The results from the thermostability analyses exhibited decreased weight loss and decomposition temperatures for both glutenin and gliadin proteins at high WBDF concentration. Our results suggest that changes in the gluten matrix caused by WBDF may largely rely on glutenin structure variation.
Collapse
Affiliation(s)
- Sen Ma
- College of Food science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | | | | | | | | |
Collapse
|
36
|
Effects of Milling Methods and Cultivars on Physicochemical Properties of Whole-Wheat Flour. J FOOD QUALITY 2019. [DOI: 10.1155/2019/3416905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study was to investigate the influence of milling methods (jet mill (JM) and hammer mill (HM)) and wheat cultivars (Keumkang (K), Jokyung (J), and Anzunbaengi (A)) on physicochemical and dough properties of whole-wheat flour (WWF). The color, particle size, starch damage (SD), falling number (FN), water absorption index (WAI), water solubility index (WSI), pasting and Mixolab® properties, and dough extensibility of WWF were measured. Significant differences were observed in proximate compositions as well as in color, particle size, FN, and WAI between the distinct milling methods and cultivars (p<0.001). The particle sizes of each cultivar milled with a HM (K: 188.5 µm; J: 115.7 µm; A: 40.34 µm) were larger than those milled with a JM (K: 41.8 µm; J: 50.7 µm; A: 20.8 µm). The final viscosity of WWF milled with a HM (K: 1304 cP; J: 1249 cP; A: 1548 cP) was higher than that of cultivars milled with a JM (K: 1092 cP; J: 1062 cP; A: 994 cP). Dough extensibility and resistance to extension also differed among the cultivars, and the C2 Mixolab® parameter (an indicator of protein weakening) was influenced by the milling method. Overall, results from principal component analysis showed that, among the three cultivars, Keumkang WWF was the most affected by the milling method.
Collapse
|
37
|
Zhang H, Zhang X, Cao XR, Iftikhar M, Wang J. Semi-solid state fermentation and enzymatic hydrolysis impeded the destroy of wheat bran on gluten polymerization. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.08.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Sui W, Xie X, Liu R, Wu T, Zhang M. Effect of wheat bran modification by steam explosion on structural characteristics and rheological properties of wheat flour dough. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.06.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
39
|
Coating development with modified starch and tomato powder for application in frozen dough. Food Packag Shelf Life 2018. [DOI: 10.1016/j.fpsl.2018.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Interactions between dietary fiber and ferulic acid changed the aggregation of gluten in a whole wheat model system. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.01.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Niu M, Xiong L, Zhang B, Jia C, Zhao S. Comparative study on protein polymerization in whole-wheat dough modified by transglutaminase and glucose oxidase. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Lauková M, Karovičová J, Kohajdová Z, Minarovičová L. Thermo-mechanical properties of dough enriched with wheat bran from different wheat variety. POTRAVINARSTVO 2018. [DOI: 10.5219/888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wheat bran is the by-product derived from the wheat milling and represents a good source of dietary fiber. Consumption of wheat bran is associated with many health benefits. The hydration properties (water holding, water retention and swelling capacity) and oil binding capacity of bran from various wheat variety were investigated. It was showed that the water holding capacity of bran ranged from 2.27 to 2.98 g.g-1, which were approximately four times higher compared to wheat flour. Also, it was observed that commercial wheat bran was characterised with the highest swelling capacity (5.21 mL.g-1) and the lowest water retention and oil binding capacities (1.38 and 1.35 g.g-1, respectively). Mixing and pasting properties of wheat dough with addition of bran at different level (5, 10 and 15%) were studied using Mixolab. From the results it was concluded that water absorption and dough development time increased with addition of different bran, while dough stability decreased. Moreover, with increasing addition level of different bran significantly affected the thermo-mechanical properties of wheat dough. The lowest effect on protein weakening was found after addition of spelt bran. The higher starch pasting ability of enriched dough was recorded after incorporation of bran from crossbreed Lubica. Furthermore, it was found that dough enriched with the commercial wheat bran was characterized by the lowest values of C3 (lower starch pasting ability), C4 (lower stability of hot formed gel) and C5 (lower starch retrogradation) parameters.
Collapse
|