1
|
Chen X, Abdallah MF, Landschoot S, Audenaert K, De Saeger S, Chen X, Rajkovic A. Aspergillus flavus and Fusarium verticillioides and Their Main Mycotoxins: Global Distribution and Scenarios of Interactions in Maize. Toxins (Basel) 2023; 15:577. [PMID: 37756003 PMCID: PMC10534665 DOI: 10.3390/toxins15090577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Maize is frequently contaminated with multiple mycotoxins, especially those produced by Aspergillus flavus and Fusarium verticillioides. As mycotoxin contamination is a critical factor that destabilizes global food safety, the current review provides an updated overview of the (co-)occurrence of A. flavus and F. verticillioides and (co-)contamination of aflatoxin B1 (AFB1) and fumonisin B1 (FB1) in maize. Furthermore, it summarizes their interactions in maize. The gathered data predict the (co-)occurrence and virulence of A. flavus and F. verticillioides would increase worldwide, especially in European cold climate countries. Studies on the interaction of both fungi regarding their growth mainly showed antagonistic interactions in vitro or in planta conditions. However, the (co-)contamination of AFB1 and FB1 has risen worldwide in the last decade. Primarily, this co-contamination increased by 32% in Europe (2010-2020 vs. 1992-2009). This implies that fungi and mycotoxins would severely threaten European-grown maize.
Collapse
Affiliation(s)
- Xiangrong Chen
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.L.); (K.A.)
| | - Mohamed F. Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Sofie Landschoot
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.L.); (K.A.)
| | - Kris Audenaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.L.); (K.A.)
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium;
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng 2028, South Africa
| | - Xiangfeng Chen
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, China;
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
| |
Collapse
|
2
|
Olaniran AF, Osemwegie O, Taiwo EA, Okonkwo CE, Ojo OA, Abalaka M, Malomo AA, Iranloye YM, Akpor OB, Bamidele OP, Michael T. Application and Acceptability of Microbiomes in the Production Process of Nigerian Indigenous Foods: Drive towards Responsible Production and Consumption. Prev Nutr Food Sci 2023; 28:108-120. [PMID: 37416797 PMCID: PMC10321447 DOI: 10.3746/pnf.2023.28.2.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/15/2023] [Indexed: 07/08/2023] Open
Abstract
In Nigeria, the use of microorganisms for food product modulation, development, and commercialization through biotechnological innovations remains unexplored and unaccepted. The microbiome-based sustainable innovation in the production process of Nigerian indigenous food requires a vigorous drive toward responsible consumption and production. The production process of locally fermented beverages and foods culturally varies in terms of fermentation techniques and is characterized by the distinctiveness of the microbiomes used for food and beverage production. This review was conducted to present the use of microbiome, its benefits, and utility as well as the perspectives toward and mediatory roles of biotechnology on the processing of locally fermented foods and their production in Nigeria. With the current concerns on global food insecurity, the utilization of modern molecular and genetic sciences to improve various rural food processing technologies to acceptable foreign exchange and socioeconomic scales has been gaining attention. Thus, further research on the various types of processing techniques for locally fermented foods using microbiomes in Nigeria is needed, with a focus on yield optimization using advanced techniques. This study demonstrates the adaptability of processed foods locally produced in Nigeria for the beneficial control of microbial dynamics, optimal nutrition, therapeutic, and organoleptic characteristics.
Collapse
Affiliation(s)
- Abiola Folakemi Olaniran
- Department of Food Science and Microbiology, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State 251103, Nigeria
| | - Osarenkhoe Osemwegie
- Department of Food Science and Microbiology, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State 251103, Nigeria
| | - Ezekiel Abiola Taiwo
- Faculty of Engineering, Mangosuthu University of Technology, Durban 4031, South Africa
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Food and Agriculture, United Arab Emirates (UAE) University, Al Ain 15551, UAE
| | | | - Moses Abalaka
- Department of Microbiology, Federal University of Technology, Minna, Niger State 920101, Nigeria
| | - Adekunbi Adetola Malomo
- Department of Food Science and Technology, Faculty of Technology, Obafemi Awolowo University, Ile-Ife, Osun State 220101, Nigeria
| | - Yetunde Mary Iranloye
- Department of Food Science and Microbiology, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State 251103, Nigeria
| | | | | | - Towobola Michael
- Department of Food Science and Microbiology, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State 251103, Nigeria
| |
Collapse
|
3
|
Deng Y, Wang R, Zhang Y, Li J, Gooneratne R. Effect of Amino Acids on Fusarium oxysporum Growth and Pathogenicity Regulated by TORC1- Tap42 Gene and Related Interaction Protein Analysis. Foods 2023; 12:foods12091829. [PMID: 37174368 PMCID: PMC10177761 DOI: 10.3390/foods12091829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Free amino acids (AAs) formed in fermented meat products are important nitrogen sources for the survival and metabolism of contaminating fungi. These AAs are mainly regulated by the TORC1-Tap42 signaling pathway. Fusarium spp., a common contaminant of fermented products, is a potential threat to food safety. Therefore, there is an urgent need to clarify the effect of different AAs on Fusarium spp. growth and metabolism. This study investigated the effect of 18 AAs on Fusarium oxysporum (Fo17) growth, sporulation, T-2 toxin (T-2) synthesis and Tri5 expression through Tap42 gene regulation. Co-immunoprecipitation and Q Exactive LC-MS/MS methods were used to detect the interacting protein of Tap42 during specific AA treatment. Tap42 positively regulated L-His, L-Ile and L-Tyr absorption for Fo17 colony growth. Acidic (L-Asp, L-Glu) and sulfur-containing (L-Cys, L-Met) AAs significantly inhibited the Fo17 growth which was not regulated by Tap42. The L-Ile and L-Pro addition significantly activated the sporulation of ΔFoTap42. L-His and L-Ser inhibited the sporulation of ΔFoTap42. In T-2 synthesis, ΔFoTap42 was increased in GYM medium, but was markedly inhibited in L-Asp and L-Glu addition groups. Dose-response experiments showed that 10-70 mg/mL of neutral AA (L-Thr) and alkaline AA (L-His) significantly increased the T-2 production and Tri5 expression of Fo17, but Tri5 expression was not activated in ΔFoTap42. Inhibition of T-2 synthesis and Tri5 expression were observed in Fo17 following the addition of 30-70 mg/mL L-Asp. KEGG enrichment pathway analysis demonstrated that interacting proteins of Tap42 were from glycerophospholipid metabolism, pentose phosphate pathway, glyoxylate and dicarboxylate metabolism, glycolysis and gluconeogenesis, and were related to the MAPK and Hippo signaling pathways. This study enhanced our understanding of AA regulation in fermented foods and its effect on Fusarium growth and metabolism, and provided insight into potential ways to control fungal contamination in high-protein fermented foods.
Collapse
Affiliation(s)
- Yijia Deng
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Rundong Wang
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| |
Collapse
|
4
|
Nwokocha BC, Chatzifragkou A, Fagan CC. Impact of Ultrasonication on African Oil Bean ( Pentaclethra macrophylla Benth) Protein Extraction and Properties. Foods 2023; 12:foods12081627. [PMID: 37107422 PMCID: PMC10137838 DOI: 10.3390/foods12081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
African oil bean (Pentaclethra macrophylla Benth) is an underutilised edible oil seed that could represent a sustainable protein source. In this study, the impact of ultrasonication on the extraction efficiency and properties of protein from African oil bean (AOB) seeds was evaluated. The increase in the duration of extraction favoured the extraction of AOB proteins. This was observed by an increase in extraction yield from 24% to 42% (w/w) when the extraction time was increased from 15 min to 60 min. Desirable properties were observed in extracted AOB proteins; the amino acid profile of protein isolates revealed higher ratios of hydrophobic to hydrophilic amino acids compared to those of the defatted seeds, suggesting alterations in their functional properties. This was also supported by the higher proportion of hydrophobic amino acids and high surface hydrophobicity index value (3813) in AOB protein isolates. The foaming capacity of AOB proteins was above 200%, with an average foaming stability of 92%. The results indicate that AOB protein isolates can be considered promising food ingredients and could help stimulate the growth of the food industry in tropical Sub-Saharan regions where AOB seeds thrive.
Collapse
Affiliation(s)
- Blessing C Nwokocha
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights RG6 6DZ, UK
| | - Afroditi Chatzifragkou
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights RG6 6DZ, UK
| | - Colette C Fagan
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights RG6 6DZ, UK
| |
Collapse
|
5
|
Antifungal activity of lactic acid bacteria isolated from kunu-zaki, a cereal-based Nigerian fermented beverage. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Motlhanka K, Zhou N, Kamakama M, Masilo M, Lebani K. Mycotoxins in khadi, A Traditional Non-Cereal Based Alcoholic Beverage of Botswana. Microbiol Insights 2022; 15:11786361221139817. [DOI: 10.1177/11786361221139817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022] Open
Abstract
Mycotoxin contamination is a major food safety drawback towards the commercialization of food products. The commercialization of khadi, a popular fermented alcoholic beverage of Botswana necessitates the investigation of the presence of mycotoxins. Khadi brewing involves the uncontrolled and unstandardized spontaneous fermentation of sun-dried Grewia flava fruits, which could be a source of mycotoxin-producing filamentous fungi (molds). This study sought to investigate the presence of mycotoxins producing fungi and mycotoxins in 18 samples of khadi collected in Central and Northern Botswana. Periconia thailandica, Cladosporium cladosporioides, Aspergillus ochraceus, Phoma eupyrena, Setosphaeria turcica, Cladosporium sphaerospermum, Chaetomium longiciliata, and Flavodon ambrosius were identified in 10 out of 18 khadi samples. Mycotoxins were detected using the Myco-10 Randox Evidence Investigator biochip kit and confirmed using a UPLC-ESI-MS/MS. Mycotoxins such as paxilline, ochratoxin A, ergot alkaloids, aflatoxin G1/G2, and zearalenone were detected using the Myco-10 Randox Evidence Investigator biochip kit. The Myco-10 results revealed that the mycotoxins in the khadi samples were lower than the regulatory limits set by FDA or European Commission. Confirmation of results using an UPLC-ESI-MS/MS system involved confirming selected mycotoxins (AFB1, DON. ZEA, FB1, FB2, FB3, NIV, and OTA) from selected khadi samples (Palapye 1, Palapye 2, Letlhakane 2, Maun 3, Mmashoro 3, and Tonota 3). The UPLC results demonstrated that the aforementioned mycotoxins in the selected khadi samples were below the detection thresholds. The study shows that while fungal isolates were present, there is no to minimal danger/risk of exposure to toxic mycotoxins after consumption of khadi. Towards commercialization endeavors, the production process would necessitate minimal mycotoxin monitoring and product preservation but no detoxifying steps.
Collapse
Affiliation(s)
- Koketso Motlhanka
- Department of Animal Science, Botswana University of Agriculture and Natural Resources, Gaborone, Botswana
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Malaki Kamakama
- Department of Chemistry, National Food Technology Research Center, Kanye, Botswana
| | - Monkgogi Masilo
- Department of Chemistry, National Food Technology Research Center, Kanye, Botswana
| | - Kebaneilwe Lebani
- Department of Animal Science, Botswana University of Agriculture and Natural Resources, Gaborone, Botswana
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
7
|
Deng Y, Wang Y, Deng Q, Sun L, Wang R, Ye L, Tao S, Liao J, Gooneratne R. Fungal diversity and mycotoxin contamination in dried fish products in Zhanjiang market, China. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107614] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Inducing red pigment and inhibiting citrinin production by adding lanthanum(III) ion in Monascus purpureus fermentation. Appl Microbiol Biotechnol 2021; 105:1905-1912. [PMID: 33576885 DOI: 10.1007/s00253-021-11162-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
Monascus pigments (MPs) are widely used natural colorants in Asian countries. The problems of low extracellular red pigment (ERP) and high citrinin remain to be solved in Monascus pigment production. The effect of lanthanum(III) ion (LaCl3) on Monascus purpureus fermentation was investigated in this study. The yields of ERP and biomass respectively reached maxima of 124.10 U/mL and 33.10 g/L by adding 0.4 g/L La3+ on the second day in the total 8-day fermentation; simultaneously, citrinin was decreased by 59.93% and 38.14% in the extracellular and intracellular fractions, respectively. Reactive oxygen species (ROS) levels were obviously improved by La3+ treatment, while the activities of catalase (CAT) and superoxide dismutase (SOD) were increased compared with the control. The ratio of unsaturated/saturated fatty acids in mycelia was increased from 2.94 to 3.49, indicating that the permeability and fluidity of the cell membrane were enhanced under La3+ treatment. Gene expression analysis showed that the relative expression levels of Monascus pigment synthesis genes (pksPT, mppB, mppD, MpFasB2, and MpPKS5) were significantly upregulated by La3+ treatment, and in contrast, the relative expression levels of citrinin synthesis genes (ctnA, pksCT and mppC) were markedly downregulated. This work confirmed that LaCl3 possesses the potential to induce red pigment biosynthesis and inhibit citrinin production in M. purpureus fermentation. KEY POINTS: • La3+ induced red pigment and inhibited citrinin production in Monascus fermentation. • La3+ regulated genes expression up for Monascus pigment and down for citrinin. • La3+ increased the UFAs in cell membrane to enhance the permeability and fluidity.
Collapse
|
9
|
Voidarou C, Antoniadou M, Rozos G, Tzora A, Skoufos I, Varzakas T, Lagiou A, Bezirtzoglou E. Fermentative Foods: Microbiology, Biochemistry, Potential Human Health Benefits and Public Health Issues. Foods 2020; 10:E69. [PMID: 33396397 PMCID: PMC7823516 DOI: 10.3390/foods10010069] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Fermented foods identify cultures and civilizations. History, climate and the particulars of local production of raw materials have urged humanity to exploit various pathways of fermentation to produce a wide variety of traditional edible products which represent adaptations to specific conditions. Nowadays, industrial-scale production has flooded the markets with ferments. According to recent estimates, the current size of the global market of fermented foods is in the vicinity of USD 30 billion, with increasing trends. Modern challenges include tailor-made fermented foods for people with special dietary needs, such as patients suffering from Crohn's disease or other ailments. Another major challenge concerns the safety of artisan fermented products, an issue that could be tackled with the aid of molecular biology and concerns not only the presence of pathogens but also the foodborne microbial resistance. The basis of all these is, of course, the microbiome, an aggregation of different species of bacteria and yeasts that thrives on the carbohydrates of the raw materials. In this review, the microbiology of fermented foods is discussed with a special reference to groups of products and to specific products indicative of the diversity that a fermentation process can take. Their impact is also discussed with emphasis on health and oral health status. From Hippocrates until modern approaches to disease therapy, diet was thought to be of the most important factors for health stability of the human natural microbiome. After all, to quote Pasteur, "Gentlemen, the microbes will have the last word for human health." In that sense, it is the microbiomes of fermented foods that will acquire a leading role in future nutrition and therapeutics.
Collapse
Affiliation(s)
- Chrysa Voidarou
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47132 Arta, Greece; (C.V.); (A.T.); (I.S.)
| | - Maria Antoniadou
- School of Dentistry, National and Kapodistrian University of Athens, 11521 Athens, Greece;
| | - Georgios Rozos
- Laboratory of Microbiology, Biotechnology & Hygiene, Department of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece;
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47132 Arta, Greece; (C.V.); (A.T.); (I.S.)
| | - Ioannis Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47132 Arta, Greece; (C.V.); (A.T.); (I.S.)
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece
| | - Areti Lagiou
- Department of Public and Community Health, University of West Attika, 11521 Athens, Greece;
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| |
Collapse
|
10
|
Anupma A, Tamang JP. Diversity of Filamentous Fungi Isolated From Some Amylase and Alcohol-Producing Starters of India. Front Microbiol 2020; 11:905. [PMID: 32547501 PMCID: PMC7272576 DOI: 10.3389/fmicb.2020.00905] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
Filamentous fungi are important organisms in traditionally prepared amylase and alcohol-producing dry starters in India. We collected 40 diverse types of amylase and alcohol-producing starters from eight states in North East India viz. marcha, thiat, humao, hamei, chowan, phut, dawdim, and khekhrii. The average fungal population was 4.9 × 105 cfu/g with an average of pH 5.3 and 10.7%, respectively. In the present study, 131 fungal isolates were isolated and characterized based on macroscopic and microscopic characteristics and were grouped into 44 representative fungal strains. Based on results of morphological characteristics and ITS gene sequencing, 44 fungal strains were grouped into three phyla represented by Ascomycota (48%), Mucoromycota (38%), and Basidiomycota (14%). Taxonomical keys to species level was illustrated on the basis of morphological characteristics and ITS gene sequencing, aligned to the fungal database of NCBI GenBank, which showed seven genera with 16 species represented by Mucor circinelloides (20%), Aspergillus sydowii (11%), Penicillium chrysogenum (11%), Bjerkandera adusta (11%), Penicillium citrinum (7%), Rhizopus oryzae (7%), Aspergillus niger (5%), Aspergillus flavus (5%), Mucor indicus (5%) Rhizopus microsporus (5%), Rhizopus delemar (2%), Aspergillus versicolor (2%), Penicillium oxalicum (2%), Penicillium polonicum (2%), Trametes hirsuta (2%), and Cladosporium parahalotolerans (2%). The highest Shannon diversity index H was recorded in marcha of Sikkim (H: 1.74) and the lowest in hamei of Manipur (H: 0.69). Fungal species present in these amylolytic starters are morphologically, ecologically and phylogenetically diverse and showed high diversity within the community.
Collapse
Affiliation(s)
- Anu Anupma
- Department of Microbiology, DAICENTRE (Department of Biotechnology-National Institute of Advance Industrial Science and Technology (DBT-AIST) International Centre for Translational and Environmental Research) and Bioinformatics Centre, School of Life Sciences, Sikkim University, Gangtok, India
| | - Jyoti Prakash Tamang
- Department of Microbiology, DAICENTRE (Department of Biotechnology-National Institute of Advance Industrial Science and Technology (DBT-AIST) International Centre for Translational and Environmental Research) and Bioinformatics Centre, School of Life Sciences, Sikkim University, Gangtok, India
| |
Collapse
|
11
|
Ezekiel CN, Oyedele OA, Kraak B, Ayeni KI, Sulyok M, Houbraken J, Krska R. Fungal Diversity and Mycotoxins in Low Moisture Content Ready-To-Eat Foods in Nigeria. Front Microbiol 2020; 11:615. [PMID: 32328050 PMCID: PMC7161469 DOI: 10.3389/fmicb.2020.00615] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Low moisture content ready-to-eat foods vended in Nigerian markets could be pre-packaged or packaged at point of sale. These foods are widely and frequently consumed across Nigeria as quick foods. Despite their importance in the daily diets of Nigerians, a comprehensive study on the diversity of fungi, fungal metabolite production potential, and mycotoxin contamination in the foods has not yet been reported. Therefore, this study assessed the diversity of fungi in 70 samples of low moisture content ready-to-eat foods [cheese balls, garri (cassava-based), granola (a mix of cereals and nuts) and popcorn] in Nigeria by applying a polyphasic approach including morphological examination, genera/species-specific gene marker sequencing and secondary metabolite profiling of fungal cultures. Additionally, mycotoxin levels in the foods were determined by LC-MS/MS. Fungal strains (n = 148) were recovered only from garri. Molecular analysis of 107 representative isolates revealed 27 species belonging to 12 genera: Acremonium, Allophoma, Aspergillus, Cladosporium, Fusarium, Microdochium, Penicillium, Sarocladium, Talaromyces, and Tolypocladium in the Ascomycota, and Fomitopsis and Trametes in the Basidiomycota. To the best of our knowledge Allophoma, Fomitopsis, Microdochium, Tolypocladium, and Trametes are reported in African food for the first time. A total of 21 uncommon metabolites were found in cultures of the following species: andrastin A and sporogen AO1 in Aspergillus flavus; paspalin in A. brunneoviolaceus; lecanoic acid and rugulusovin in A. sydowii; sclerotin A in P. citrinum and Talaromyces siamensis; barceloneic acid, festuclavine, fumigaclavine, isochromophilons (IV, VI, and IX), ochrephilone, sclerotioramin, and sclerotiorin in P. sclerotium; epoxyagroclavine, infectopyron, methylorsellinic acid and trichodermamide C in P. steckii; moniliformin and sporogen AO1 in P. copticola; and aminodimethyloctadecanol in Tolypocladium. Twenty-four mycotoxins in addition to other 73 fungal and plant toxins were quantified in the foods. In garri, cheeseballs, popcorn and granola were 1, 6, 12, and 23 mycotoxins detected, respectively. Deoxynivalenol, fumonisins, moniliformin, aflatoxins and citrinin contaminated 37, 31, 31, 20, and 14% of all food samples, respectively. Overall, citrinin had the highest mean concentration of 1481 μg/kg in the foods, suggesting high citrinin exposures in the Nigerian populace. Fungal and mycotoxin contamination of the foods depend on pre-food and post-food processing practices.
Collapse
Affiliation(s)
- Chibundu N. Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Nigeria
- Department of Agrobiotechnology (IFA–Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | | | - Bart Kraak
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan, Netherlands
| | - Kolawole I. Ayeni
- Department of Microbiology, Babcock University, Ilishan Remo, Nigeria
| | - Michael Sulyok
- Department of Agrobiotechnology (IFA–Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan, Netherlands
| | - Rudolf Krska
- Department of Agrobiotechnology (IFA–Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
12
|
Geng DH, Liang T, Yang M, Wang L, Zhou X, Sun X, Liu L, Zhou S, Tong LT. Effects of Lactobacillus combined with semidry flour milling on the quality and flavor of fermented rice noodles. Food Res Int 2019; 126:108612. [DOI: 10.1016/j.foodres.2019.108612] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/31/2019] [Accepted: 08/11/2019] [Indexed: 11/29/2022]
|
13
|
Fan X, Liu G, Qiao Y, Zhang Y, Leng C, Chen H, Sun J, Feng Z. Characterization of Volatile Compounds by SPME-GC-MS During the Ripening of Kedong Sufu, a Typical Chinese Traditional Bacteria-Fermented Soybean Product. J Food Sci 2019; 84:2441-2448. [PMID: 31429494 DOI: 10.1111/1750-3841.14760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 01/07/2023]
Abstract
The purpose of the present study was to evaluate the volatile profile of Kedong sufu, which is a typical bacteria-fermented soybean product in China, using solid phase microextraction coupled to gas chromatography and mass spectrometry and to reveal the evolution and diversity of flavor substances for this specialty. A total of 75 compounds were identified, including 35 esters, 4 alcohols, 4 phenols, 4 aldehydes, 7 acids, 10 ketones, and 11 other compounds from sufu samples during ripening. Some volatile compounds increased with ripening time, especially hexadecenoic acid ethyl ester, methoxy acetic acid pentyl ester, benzene propanoic acid ethyl ester, ethyl 9-hexadecenoate, ethyl oleate, ethanol, 3-methyl-1-butanol, 5-methoxy-1-pentanol, and eugenol; these compounds enriched the flavors and provided the typical savory taste of Kedong sufu. PRACTICAL APPLICATION: This research elucidated the formation of flavor substances in sufu. For traditional fermented foods, this study provides a scientific basis for promoting the generation of typical flavor substances and for the precise determination of maturity time.
Collapse
Affiliation(s)
- Xuejing Fan
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural Univ., 600 Changjiang Road, Harbin, 150030, Heilongjiang, China
| | - Gefei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural Univ., 600 Changjiang Road, Harbin, 150030, Heilongjiang, China
| | - Yali Qiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural Univ., 600 Changjiang Road, Harbin, 150030, Heilongjiang, China
| | - Yanjiao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural Univ., 600 Changjiang Road, Harbin, 150030, Heilongjiang, China
| | - Cong Leng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural Univ., 600 Changjiang Road, Harbin, 150030, Heilongjiang, China
| | - Hongyu Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural Univ., 600 Changjiang Road, Harbin, 150030, Heilongjiang, China
| | - Jiahui Sun
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural Univ., 600 Changjiang Road, Harbin, 150030, Heilongjiang, China
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural Univ., 600 Changjiang Road, Harbin, 150030, Heilongjiang, China
| |
Collapse
|
14
|
Huang Z, Zhang L, Gao H, Wang Y, Li X, Huang X, Huang T. Soybean isoflavones reduce citrinin production by Monascus aurantiacus Li AS3.4384 in liquid state fermentation using different media. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4772-4780. [PMID: 30953365 DOI: 10.1002/jsfa.9723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/05/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Monascus, a filamentous fungus, produces many bioactive substances. However, in the process of fermentation, Monascus also produces the mycotoxin citrinin. Owing to the presence of citrinin, the safety of Monascus products has been questioned and their wide application limited. Using soybean isoflavones (SI) as exogenous additives, alterations in citrinin production by Monascus aurantiacus Li AS3.4384 (MALA) in different media used for liquid state fermentation were investigated. RESULTS Results showed that the citrinin concentration was 95.98% lower than that of the control group after 16-days fermentation when 20.0 g L-1 SI were added to rice powder and inorganic salt medium. Citrinin production was reduced by 97.24% after 12-days fermentation with 10.0 g L-1 SI in starch inorganic salt medium; 82.52% after 20-days fermentation with 20.0 g L-1 SI in starch peptone medium with high starch content; 45.07% after 14-days fermentation with 5.0 g L-1 SI in starch peptone medium with low starch content; and 82.21% after 14-days fermentation with 20.0 g L-1 SI in yeast extract sucrose medium. CONCLUSION The developed method of removing citrinin is simple, safe, and effective, and it can be applied to reduce the citrinin content of Monascus products. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhibing Huang
- State Key Laboratory of Food Science and Technology, and Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Lijuan Zhang
- State Key Laboratory of Food Science and Technology, and Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Heng Gao
- State Key Laboratory of Food Science and Technology, and Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Yanling Wang
- State Key Laboratory of Food Science and Technology, and Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xiujiang Li
- The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xinyu Huang
- State Key Laboratory of Food Science and Technology, and Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Ting Huang
- State Key Laboratory of Food Science and Technology, and Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Adekoya I, Obadina A, Olorunfemi M, Akande O, Landschoot S, De Saeger S, Njobeh P. Occurrence of bacteria and endotoxins in fermented foods and beverages from Nigeria and South Africa. Int J Food Microbiol 2019; 305:108251. [PMID: 31229696 DOI: 10.1016/j.ijfoodmicro.2019.108251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/01/2023]
Abstract
In Africa, fermented foods and beverages play significant roles in contributing to food security. Endotoxins are ubiquitous heat stable lipopolysaccharide (LPS) complexes situated in the outer cell membranes of Gram-negative bacteria. This study evaluated the microbiological quality of fermented foods (ogiri, ugba, iru, ogi and ogi baba) and beverages (mahewu and umqombothi) from selected Nigerian and South African markets. The bacterial diversity of the fermented foods was also investigated and the identity of the isolates confirmed by biochemical and molecular methods. Isolate grouping was established through hierarchal clustering and the samples were further investigated for endotoxin production with the chromogenic Limulus Amoebocyte Lysate assay. The total aerobic count of the samples ranged from 5.7 to 10.8 Log CFU/g. Fourteen bacteria genera were detected with most of the isolates being members of the Enterobacteriaceae family. Sphingomonas paucimobilis and Escherichia coli were the dominant Gram-negative bacterial species detected. There were considerable variations in the concentrations of endotoxins produced and the lowest endotoxin concentration was found in ogi (4.3 × 10 EU/g) and the highest in iru (5.5 × 104 EU/g) while, 44% of umqombothi samples had endotoxins. Ogi baba samples had better microbial quality than other samples due to its reduced bacterial load and endotoxin levels. There was a strong positive (r = 0.714, r = 0.996) and significant (p < 0.01) correlation between the endotoxin levels and bacterial loads of the samples. Some previously unreported species of bacteria found in the fermented foods included Aeromonas haemolyticus and Rhizobium radiobacter. This is the first comprehensive report on endotoxins in fermented foods and beverages in Africa. Furthermore, the occurrence of pathogenic bacteria and toxins in the foods and beverages is of serious concern that calls for immediate action.
Collapse
Affiliation(s)
- Ifeoluwa Adekoya
- Department of Biotechnology and Food Technology, University of Johannesburg, Johannesburg, South Africa.
| | - Adewale Obadina
- Department of Food Science and Technology, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Olamide Akande
- Department of Food Science and Technology, Federal University of Technology, Akure, Nigeria
| | - Sofie Landschoot
- Department of Applied Bioscience Engineering, Ghent University, B-9000, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, B-9000, Belgium
| | - Patrick Njobeh
- Department of Biotechnology and Food Technology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
16
|
Adekoya I, Njobeh P, Obadina A, Landschoot S, Audenaert K, Okoth S, De Boevre M, De Saeger S. Investigation of the Metabolic Profile and Toxigenic Variability of Fungal Species Occurring in Fermented Foods and Beverage from Nigeria and South Africa Using UPLC-MS/MS. Toxins (Basel) 2019; 11:E85. [PMID: 30717215 PMCID: PMC6409632 DOI: 10.3390/toxins11020085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/19/2019] [Accepted: 01/25/2019] [Indexed: 11/16/2022] Open
Abstract
Fungal species recovered from fermented foods and beverage from Nigeria and South Africa were studied to establish their toxigenic potential in producing an array of secondary metabolites including mycotoxins (n = 49) that could compromise human and animal safety. In total, 385 fungal isolates were grown on solidified yeast extract sucrose agar. Their metabolites were extracted and analyzed via ultra-performance liquid chromatography tandem mass spectrometry. To examine the grouping of isolates and co-occurrence of metabolites, hierarchal clustering and pairwise association analysis was performed. Of the 385 fungal strains tested, over 41% were toxigenic producing different mycotoxins. A. flavus and A. parasiticus strains were the principal producers of aflatoxin B₁ (27⁻7406 µg/kg). Aflatoxin B₁ and cyclopiazonic acid had a positive association. Ochratoxin A was produced by 67% of the A. niger strains in the range of 28⁻1302 µg/kg. The sterigmatocystin producers found were A. versicolor (n = 12), A. amstelodami (n = 4), and A. sydowii (n = 6). Apart from P. chrysogenum, none of the Penicillium spp. produced roquefortine C. Amongst the Fusarium strains tested, F. verticillioides produced fumonisin B₁ (range: 77⁻218 µg/kg) meanwhile low levels of deoxynivalenol were observed. The production of multiple metabolites by single fungal species was also evident.
Collapse
Affiliation(s)
- Ifeoluwa Adekoya
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein 2092, South Africa.
| | - Patrick Njobeh
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein 2092, South Africa.
| | - Adewale Obadina
- Department of Food Science and Technology, Federal University of Agriculture, PMB, 2240 Abeokuta, Nigeria.
| | - Sofie Landschoot
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000 Ghent, Belgium.
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Ghent University, B-9000 Ghent, Belgium.
| | - Sheila Okoth
- Department of Botany, School of Biological Sciences, University of Nairobi, P.O. Box, Nairobi 30197, Kenya.
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, B-9000 Ghent, Belgium.
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, B-9000 Ghent, Belgium.
| |
Collapse
|
17
|
Adekoya I, Obadina A, Phoku J, De Boevre M, De Saeger S, Njobeh P. Fungal and mycotoxin contamination of fermented foods from selected south african markets. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.02.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Determination of trichothecenes in chicken liver using gas chromatography coupled with triple-quadrupole mass spectrometry. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Zang J, Xu Y, Xia W, Yu D, Gao P, Jiang Q, Yang F. Dynamics and diversity of microbial community succession during fermentation of Suan yu, a Chinese traditional fermented fish, determined by high throughput sequencing. Food Res Int 2018; 111:565-573. [PMID: 30007719 DOI: 10.1016/j.foodres.2018.05.076] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 01/10/2023]
Abstract
The main goal of this study was to investigate the dynamics, diversity and succession of microbial community present during the preparation of Suan yu (fermented fish), with and without starter cultures by high-throughput sequencing of 16S rRNA and ITS1 genes. Firmicutes and Ascomycota were the predominant phyla of bacteria and fungi, respectively, in all samples. At the genus level, Lactobacillus, Macrococcus and Staphylococcus were the predominating bacteria throughout the fermentation process, regardless of the inclusion of starter cultures. Saccharomyces was the predominating fungal genus in the early-fermentation stage of samples that inoculated starter cultures (MS), while the final product was dominated by Candida and Wickerhamomyces. Compared with naturally-fermented samples (NS; no starter cultures), Lactococcus, Leuconostoc, Enterococcus, Vibrio, Fusicolla and Torulaspora were inhibited and Aureobasidium emerged in samples inoculated with starter cultures (P < .05). Unweighted pair-group and principal component analyses of bacterial and fungal compositions revealed that microbiota structures differed between NS and MS samples. Redundancy analysis indicated that water content and pH might be important factors influencing the dominant bacterial and fungal community. Results indicated that microbial community were dynamic during fermentation process and the inoculation of mixed starter culture inhibited the growth of many organisms associated with food spoilage and contributed to the improvement of the quality of Suan yu products.
Collapse
Affiliation(s)
- Jinhong Zang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Dawei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Pei Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Fang Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| |
Collapse
|
20
|
Chilaka CA, De Boevre M, Atanda OO, De Saeger S. Quantification of Fusarium mycotoxins in Nigerian traditional beers and spices using a multi-mycotoxin LC-MS/MS method. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.12.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Mycobiota and co-occurrence of mycotoxins in South African maize-based opaque beer. Int J Food Microbiol 2018; 270:22-30. [PMID: 29453120 DOI: 10.1016/j.ijfoodmicro.2018.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/04/2018] [Accepted: 02/02/2018] [Indexed: 11/21/2022]
Abstract
Beer, a beverage consumed throughout the world, is mainly derived from cereals. In this study, fungal and mycotoxin contamination, as well as the physicochemical properties of maize-based opaque beer (umqombothi) obtained from the Gauteng province of South Africa, was investigated. The mean water activity, pH and total titratable acidity of the analysed beer samples were 0.91, 3.76 and 1.20% lactic acid, respectively. The investigation revealed Aspergillus, Penicillium, Phoma and Saccharomyces as the predominant fungal genera with a mean fungal load of 3.66 × 105 CFU/mL. Among the mycotoxigenic fungal species recovered, Aspergillus flavus had the highest incidence of 26%. Previously unreported strains such as P. chrysogenum strain AD25, A. sydowii strain AD 22 and A. tritici strain AD 11 were found. Furthermore, mycotoxin quantitative analysis via liquid chromatography-tandem mass spectrophotometry showed that deoxynivalenol was the dominant mycotoxin occurring in 84% of the samples. This was followed by enniatin B that occurred in 75% of samples ranging from 12 to 44 μg/L and fumonisin B1 (FB1) (incidence of 53% at a maximum level of 182 μg/L). Generally, there was low occurrence aflatoxins, whereas T-2, HT-2, nivalenol, zearalenone, 3- and 15-acetyl-deoxynivalenol were not detected. All the samples analysed had safe levels of mycotoxins tested but were contaminated by at least two mycotoxins that could pose some additive or synergistic health effects among consumers. On average: a 60 kg adult consuming 1-6 L/day of the beer was exposed to FB1 + FB2 at an estimated 2.20-13.20 μg/kg body weight/day. These values were far above the maximum tolerable daily intake of 2 μg/kg bw/day established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). The study demonstrates that consumption of umqombothi can significantly enhance dietary exposure to multiple mycotoxins among consumers, and therefore accentuates the need for strategies aimed at reducing toxigenic fungal colonization and mycotoxin contamination in the beer processing chain.
Collapse
|
22
|
Adekoya I, Njobeh P, Obadina A, Chilaka C, Okoth S, De Boevre M, De Saeger S. Awareness and Prevalence of Mycotoxin Contamination in Selected Nigerian Fermented Foods. Toxins (Basel) 2017; 9:E363. [PMID: 29117141 PMCID: PMC5705978 DOI: 10.3390/toxins9110363] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 11/17/2022] Open
Abstract
Fermented food samples (n = 191) including maize gruel (ogi), sorghum gruel (ogi-baba), melon seed (ogiri), locust bean (iru) and African oil bean seed (ugba) from Southwest Nigeria were quantified for 23 mycotoxins, including aflatoxin B₁ (AFB₁), fumonisin B₁ (FB₁), and sterigmatocystin (STE) using liquid chromatography-tandem mass spectrometry. The practices, perceived understanding and health risks related to fungal and mycotoxin contamination amongst fermented food sellers was also established. Data obtained revealed that 82% of the samples had mycotoxins occurring singly or in combination. FB₁ was present in 83% of ogi-baba samples, whereas 20% of ugba samples contained AFB₁ (range: 3 to 36 µg/kg) and STE was present in 29% of the ogi samples. In terms of multi-mycotoxin contamination, FB₁ + FB₂ + FB₃ + STE + AFB₁ + alternariol + HT-2 co-occurred within one sample. The awareness study revealed that 98% of respondents were unaware of mycotoxin contamination, and their education level slightly correlated with their level of awareness (p < 0.01, r = 0.308). The extent to which the analyzed mycotoxins contaminated these food commodities, coupled with the poor perception of the population under study on fungi and mycotoxins, justifies the need to enact fungal and mycotoxin mitigation strategies along the food chain.
Collapse
Affiliation(s)
- Ifeoluwa Adekoya
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Patrick Njobeh
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Adewale Obadina
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein 2028, South Africa.
- Department of Food Science and Technology, Federal University of Agriculture, Abeokuta 2240, Nigeria.
| | - Cynthia Chilaka
- Laboratory of Food Analysis, Department of Bioanalysis, Ghent University, Ghent B-9000, Belgium.
| | - Sheila Okoth
- Department of Botany, School of Biological Sciences, University of Nairobi, Nairobi 00100, Kenya.
| | - Marthe De Boevre
- Laboratory of Food Analysis, Department of Bioanalysis, Ghent University, Ghent B-9000, Belgium.
| | - Sarah De Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Ghent University, Ghent B-9000, Belgium.
| |
Collapse
|