1
|
Di Trana A, Sabia E, Di Rosa AR, Addis M, Bellati M, Russo V, Dedola AS, Chiofalo V, Claps S, Di Gregorio P, Braghieri A. Caciocavallo Podolico Cheese, a Traditional Agri-Food Product of the Region of Basilicata, Italy: Comparison of the Cheese's Nutritional, Health and Organoleptic Properties at 6 and 12 Months of Ripening, and Its Digital Communication. Foods 2023; 12:4339. [PMID: 38231870 DOI: 10.3390/foods12234339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Traditional agri-food products (TAPs) are closely linked to the peculiarities of the territory of origin and are strategic tools for preserving culture and traditions; nutritional and organoleptic peculiarities also differentiate these products on the market. One such product is Caciocavallo Podolico Lucano (CPL), a stretched curd cheese made exclusively from raw milk from Podolian cows, reared under extensive conditions. The objective of this study was to characterise CPL and evaluate the effects of ripening (6 vs. 12 months) on the quality and organoleptic properties, using the technological "artificial senses" platform, of CPL produced and sold in the region of Basilicata, Italy. Additionally, this study represents the first analysis of cheese-related digital communication and trends online. The study found no significant differences between 6-month- and 12-month-ripened cheese, except for a slight increase in cholesterol levels in the latter. CPL aged for 6 and 12 months is naturally lactose-free, rich in bioactive components, and high in vitamin A and antioxidants and has a low PUFA-n6/n3 ratio. The "artificial sensory profile" was able to discriminate the organoleptic fingerprints of 6-month- and 12-month-ripened cheese. The application of a socio-semiotic methodology enabled us to identify the best drivers to create effective communication for this product. The researchers recommend focusing on creating a certification mark linked to the territory for future protection.
Collapse
Affiliation(s)
- Adriana Di Trana
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| | - Emilio Sabia
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| | - Ambra Rita Di Rosa
- Department of Veterinary Sciences, University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| | | | - Mara Bellati
- Behavior and Brain Lab IULM, Center of Research on Neuromarketing, IULM University, 20143 Milano, Italy
| | - Vincenzo Russo
- Department of Business, Law, Economics and Consumer Behaviour "Carlo A. Ricciardi", IULM University, 20143 Milano, Italy
| | | | - Vincenzo Chiofalo
- Department of Veterinary Sciences, University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| | - Salvatore Claps
- CREA Research Centre for Animal Production and Aquaculture, 85051 Bella, Italy
| | - Paola Di Gregorio
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| | - Ada Braghieri
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
2
|
Tobar-Delgado E, Mejía-España D, Osorio-Mora O, Serna-Cock L. Rutin: Family Farming Products' Extraction Sources, Industrial Applications and Current Trends in Biological Activity Protection. Molecules 2023; 28:5864. [PMID: 37570834 PMCID: PMC10421072 DOI: 10.3390/molecules28155864] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
In vitro and in vivo studies have demonstrated the bioactivity of rutin, a dietary flavonol naturally found in several plant species. Despite widespread knowledge of its numerous health benefits, such as anti-inflammatory, antidiabetic, hepatoprotective and cardiovascular effects, industrial use of rutin is still limited due to its low solubility in aqueous media, the characteristic bitter and astringent taste of phenolic compounds and its susceptibility to degradation during processing. To expand its applications and preserve its biological activity, novel encapsulation systems have been developed. This review presents updated research on the extraction sources and methodologies of rutin from fruit and vegetable products commonly found in a regular diet and grown using family farming approaches. Additionally, this review covers quantitative analysis techniques, encapsulation methods utilizing nanoparticles, colloidal and heterodisperse systems, as well as industrial applications of rutin.
Collapse
Affiliation(s)
- Elizabeth Tobar-Delgado
- Facultad de Ingeniería y Administración, Universidad Nacional de Colombia, Carrera. 32 Chapinero, Palmira 763533, Colombia
| | - Diego Mejía-España
- Grupo de Investigación GAIDA, Departamento de Procesos Industriales, Facultad de Ingeniería Agroindustrial, Pasto 522020, Colombia
| | - Oswaldo Osorio-Mora
- Grupo de Investigación GAIDA, Departamento de Procesos Industriales, Facultad de Ingeniería Agroindustrial, Pasto 522020, Colombia
| | - Liliana Serna-Cock
- Facultad de Ingeniería y Administración, Universidad Nacional de Colombia, Carrera. 32 Chapinero, Palmira 763533, Colombia
| |
Collapse
|
3
|
Garbowska M, Berthold-Pluta A, Stasiak-Różańska L, Kalisz S, Pluta A. The Impact of White Mulberry, Green Barley, Chia Seeds, and Spirulina on Physicochemical Characteristics, Texture, and Sensory Quality of Processed Cheeses. Foods 2023; 12:2862. [PMID: 37569130 PMCID: PMC10418379 DOI: 10.3390/foods12152862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Processed cheeses (PC) are products resulting from the mixing and melting of rennet cheese, emulsifying salts, water, and possibly various additional ingredients. They are considered good vehicles for new ingredients, including plant-based ones. In addition to the health-promoting effects of plant-based ingredients, some of them can also affect positively the quality characteristics of PC (e.g., texture, taste, and consistency) and their addition may reduce the amount of emulsifying salts used. The aim of the study was to determine the possibility of the addition of 0.5, 1.0, 2.0, and 3.0% white mulberry (M), chia (Ch), green barley (GB), or spirulina (S) to PC and the effects on selected characteristics of these products (chemical composition, pH, water activity, color parameters, texture, and sensory properties). In all PC variants, a significance decrease in the dry matter content was observed with an increase in the additive level. The use of plant-based additives allowed us to reduce the addition of emulsifying salts by 50% compared to their typical amounts and the share of rennet cheese in the PC recipe by approximately 18%, which had a beneficial effect on the nutritional value of these products. The use of 3% GB, Ch, or M as additives to PC enabled a reduction in its sodium content by 27, 27, and 42%, respectively, compared to the control cheese. Among the tested additives, GB caused the greatest increase in the hardness of PC (even at the amount of 0.5%), indicating that is beneficial and can be used in the production of sliced PC. All the additives either significantly reduced the adhesiveness of PC or had no effect on this parameter. In terms of sensory characteristics, the highest acceptable addition of GB was 0.5%, and that for S and Ch was 1%, while the addition of M, even at 3%, was assessed very positively. The results of this research may be helpful in the development of new recipes for processed cheeses obtained in industrial conditions.
Collapse
Affiliation(s)
- Monika Garbowska
- Division of Milk Technology, Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c Street, 02-776 Warsaw, Poland; (M.G.); (L.S.-R.); (A.P.)
| | - Anna Berthold-Pluta
- Division of Milk Technology, Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c Street, 02-776 Warsaw, Poland; (M.G.); (L.S.-R.); (A.P.)
| | - Lidia Stasiak-Różańska
- Division of Milk Technology, Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c Street, 02-776 Warsaw, Poland; (M.G.); (L.S.-R.); (A.P.)
| | - Stanisław Kalisz
- Division of Fruit, Vegetable and Cereal Technology, Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c Street, 02-776 Warsaw, Poland;
| | - Antoni Pluta
- Division of Milk Technology, Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c Street, 02-776 Warsaw, Poland; (M.G.); (L.S.-R.); (A.P.)
| |
Collapse
|
4
|
Busetta G, Garofalo G, Barbera M, Di Trana A, Claps S, Lovallo C, Franciosi E, Gaglio R, Settanni L. Metagenomic, microbiological, chemical and sensory profiling of Caciocavallo Podolico Lucano cheese. Food Res Int 2023; 169:112926. [PMID: 37254352 DOI: 10.1016/j.foodres.2023.112926] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
In this study, Caciocavallo Podolico Lucano (CPL) cheese was deeply characterized for its bacterial community, chemical composition and sensory aspects. The entire cheese making process (from milk collection to ripened cheese) was performed by strictly applying the traditional protocol for CPL production in four dairy factories (A-D) representative of the production area. The vat made of wood represents the main transformation tool for CPL cheese production and the biofilms hosted onto the internal surfaces of all vats analyzed in this study were dominated by lactic acid bacteria. Total mesophilic microorganisms present in bulk milk (4.7-5.0 log CFU/ml) increased consistently after contact with the wooden vat surfaces (5.4-6.4 log CFU/ml). The application of Illumina sequencing technology identified barely 18 taxonomic groups among processed samples; streptococci and lactobacilli constituted the major groups of the wooden vat biofilms [94.74-99.70 % of relative abundance (RA)], while lactobacilli dominated almost entirely (94.19-100 % of total RA) the bacterial community of ripened cheeses. Except coagulase positive staphylococci, undesirable bacteria were undetectable. Among chemical parameters, significant variations were registered for unsaturated, monounsaturated, polyunsaturated fatty acids and antioxidant properties (significantly lower for CPL cheeses produced in factory B). The cheeses from factories A, C and D were characterized by a higher lactic acid and persistence smell attributes than factory B. This work indicated that the strict application of CPL cheese making protocol harmonized the main microbiological, physicochemical and sensory parameters of the final cheeses produced in the four factories investigated.
Collapse
Affiliation(s)
- Gabriele Busetta
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Giuliana Garofalo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Marcella Barbera
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Adriana Di Trana
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali (SAFE), University of Basilicata, Viale dell'Ateneo Lucano, 10, Potenza 85100, Italy
| | - Salvatore Claps
- CREA Research, Centre for Animal Production and Aquaculture, S.S. 7 Via Appia, Bella Muro, PZ 85051, Italy
| | - Carmela Lovallo
- CREA Research, Centre for Animal Production and Aquaculture, S.S. 7 Via Appia, Bella Muro, PZ 85051, Italy
| | - Elena Franciosi
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Raimondo Gaglio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy.
| | - Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| |
Collapse
|
5
|
Bagale U, Kadi A, Abotaleb M, Potoroko I, Sonawane SH. Prospect of Bioactive Curcumin Nanoemulsion as Effective Agency to Improve Milk Based Soft Cheese by Using Ultrasound Encapsulation Approach. Int J Mol Sci 2023; 24:ijms24032663. [PMID: 36768993 PMCID: PMC9917346 DOI: 10.3390/ijms24032663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/02/2023] Open
Abstract
The aim of this paper was to determine the effect of stabilized curcumin nanoemulsions (CUNE) as a food additive capable of directionally acting to inhibit molecules involved in dairy products' quality and digestibility, especially cheese. The objects were cheeses made from the milk of higher grades with addition of a CUNE and a control sample. The cheeses were studied using a scanning electron microscope (SEM) in terms of organoleptic properties, such as appearance, taste, and aroma. The results show that the addition of CUNEs improved the organoleptic properties compared to the control cheese by 150% and improved its shelf life. The SEM study shows that formulation with CUNE promotes the uniform distribution of porosity. The CUNE-based cheese shows a better sensory evaluation compared to the emulsion without curcumin. CUNE-processed cheese provided better antioxidant and antimicrobial analysis than the control sample and offers added value to the dairy sector.
Collapse
Affiliation(s)
- Uday Bagale
- Department of Food and Biotechnology, South Ural State University, Chelyabinsk 454080, Russia
- Correspondence: ; Tel.: +7-(351)-267-93-80
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University, Chelyabinsk 454080, Russia
| | - Mostafa Abotaleb
- Department of System Programming, South Ural State University, Chelyabinsk 454080, Russia
| | - Irina Potoroko
- Department of Food and Biotechnology, South Ural State University, Chelyabinsk 454080, Russia
| | - Shirish Hari Sonawane
- Department of Chemical Engineering, National Institute of Technology Warangal, Telangana 506004, India
| |
Collapse
|
6
|
Fan Z, Wang L, Jiang Q, Fan D, Xiao J, Wang M, Zhao Y. Effects of quercetin on emissions of aldehydes from heated docosahexaenoic acid (DHA)-fortified soybean oil. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130134. [PMID: 36303358 DOI: 10.1016/j.jhazmat.2022.130134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Home cooking has been considered as an indoor pollution problem since cooking oil fumes contain various toxic chemicals such as aldehydes. Fortifying edible oils with docosahexaenoic acid (DHA) has been applied to enhance the nutritional value of oils. This study designed a frying simulation system and examined the effect of oil type, DHA fortification, heating time, and addition of natural antioxidant on the emissions of aldehydes from heated oils. Results showed that linseed oil had the highest total aldehyde emissions, followed by soybean oil, peanut oil, and palm oil. Fortifying soybean oil with DHA increased the toxic aldehydes emitted. Quercetin, a flavonoid, significantly reduced aldehydes emitted from DHA-fortified soybean oil (by up to 39.80%) to levels similar to those of normal soybean oil. Further analysis showed that DHA-fortified soybean oil with quercetin had a significantly higher DHA and unsaturated fatty acids (UFAs) content than the control oil at each heating time point. The result indicated that quercetin inhibited emissions of aldehydes, at least in part, by protecting UFAs from oxidation. Collectively, quercetin could be used as a natural additive in DHA-fortified and normal cooking oils to reduce aldehyde emissions, indoor air pollution, and preserve functional DHA and other UFAs.
Collapse
Affiliation(s)
- Zhenyu Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Li Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qingqing Jiang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Daming Fan
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China.
| |
Collapse
|
7
|
Abstract
Quercetin is a flavonoid present in a wide variety of plant resources. Over the years, extensive efforts have been devoted to examining the potential biological effects of quercetin and to manipulating the chemical and physical properties of the flavonoid. However, limited studies have reviewed the opportunities and challenges of using quercetin in the development of functional foods. To address this necessity, in this review; we foremost present an overview of the chemical properties and stability of quercetin in food products followed by a detailed discussion of various strategies that enhance its oral bioavailability. We further highlight the areas to be practically considered during development of quercetin-based functional foods. By revisiting the current status of applied research on quercetin, it is anticipated that useful insights enabling research on quercetin can be potentially translated into practical applications in food product development.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.,Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| |
Collapse
|
8
|
Cardoso T, Dias MCGC, Dagostin JLA, Masson ML. Direct acidification of requeijão cremoso model by lactobionic acid: physical, chemical and antimicrobial effects. Journal of Food Science and Technology 2021; 58:660-671. [PMID: 33568860 DOI: 10.1007/s13197-020-04580-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/29/2020] [Accepted: 06/12/2020] [Indexed: 11/26/2022]
Abstract
Abstract Lactobionic acid (LBA) shows singular properties (antioxidant and antimicrobial). However, few studies aim to test them in foods and confirm the actual occurrence of properties. The present study aims to apply LBA/lactic acid in the production of requeijão cremoso model in order to recognize some of the effects caused by the component as a food additive. The effects on the requeijão cremoso model were evaluated by the final properties of the product: water activity, rheological properties, antioxidant and antimicrobial capacity. Model of requeijão completely acidified with LBA showed the maximum antioxidant activity (88%). The results revealed a potential of application of LBA for microbial inhibition. All model produced presented pseudo plastic behaviour. Graphic abstract
Collapse
Affiliation(s)
- Taís Cardoso
- Graduate Program in Food Engineering, Department of Chemical Engineering, Federal University of Parana, Av. Francisco Heráclito dos Santos s.n., Curitiba, PR 81530-900 Brazil
| | - Mariana Carolina Gipiela Corrêa Dias
- Graduate Program in Food Engineering, Department of Chemical Engineering, Federal University of Parana, Av. Francisco Heráclito dos Santos s.n., Curitiba, PR 81530-900 Brazil
| | - João Luiz Andreotti Dagostin
- Graduate Program in Food Engineering, Department of Chemical Engineering, Federal University of Parana, Av. Francisco Heráclito dos Santos s.n., Curitiba, PR 81530-900 Brazil
| | - Maria Lucia Masson
- Graduate Program in Food Engineering, Department of Chemical Engineering, Federal University of Parana, Av. Francisco Heráclito dos Santos s.n., Curitiba, PR 81530-900 Brazil
| |
Collapse
|
9
|
Influence of the melt holding time on fat droplet size and the viscoelastic properties of model spreadable processed cheeses with different compositions. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
|
11
|
Volpini-Klein AF, Silva CA, Fernandes SS, Nicolau CL, Cardoso CA, Fiorucci AR, Simionatto E. Effect of leaf and fruit extracts of Schinus molle on oxidative stability of some vegetables oils under accelerated oxidation. GRASAS Y ACEITES 2020. [DOI: 10.3989/gya.0456191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The most highly recommended oils for the diet are those which are rich in unsaturated fatty acids. However, the presence of these components in the oils is related to oxidation, which can be determined by the induction period. Further safety and the prolongation of the storage period for such oils can be achieved by the addition of efficient antioxidants, which today are preferably from natural sources. In order to contribute to the related research, the main objective of this study was to evaluate the efficacy of Schinus molle extracts compared to synthetic antioxidants (BHT) in delaying the oxidation of some vegetable oils. The results of the present study showed that the fruit and leaf extracts of Schinus molle presented activities and potential for being used as antioxidants in vegetable oils based on the tested methods (DPPH and ABTS). The extracts were also characterized as containing phenolic compounds by the Folin Ciocalteau method and by high performance liquid chromatography (HPLC). The action of the extracts as natural antioxidants was proven in the vegetal oils of chia (Salvia hispanica) and peanut (Arachis hypogaea) by the Rancimat method. It was observed that the oils increased their resistance to oxidation when incorporated with the extracts of Schinus molle, and the extract from the leaves increased the induction period of peanut oil by more than three hours (from 19.5 to 22.9 hours) with an extract concentration of 2.5%. The fruit extract was more efficient in delaying the oxidation of chia oil, prolonging its induction period by more than one hour with a concentration of 2.5% (from 3.1 to 4.3 hours). According to the results, the extracts of Schinus molle have favorable properties for possible use as an additive which inhibits the oxidation process of the tested vegetables oils.
Collapse
|
12
|
Frühbauerová M, Červenka L, Hájek T, Salek RN, Velichová H, Buňka F. Antioxidant properties of processed cheese spread after freeze-dried and oven-dried grape skin powder addition. POTRAVINARSTVO 2020. [DOI: 10.5219/1310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Processed cheese spread (PCS) is a popular product with high nutritional value and containing protein, fat and minerals. Grape skin is waste from winery processing plants that still has phenolic substances with significant antioxidant activity that could be used for valorisation of processed cheese and increasing the content of nutrients, phenolics and overall antioxidant properties. Both oven-dried (OD) and freeze-dried (FD) grape skin (GS) powder was characterised by the principal ingredients, the content of phenolic compounds and antioxidant capacity. Similarly, the influence of the addition of OD-GS and FD-GS powders on processed cheese spread (PCS) at 1% and 2% (w/w) levels were examined. The OD-GS and FD-GS powders were characterised by protein content, fat content, moisture and dietary fibre, thus showing that drying technique did not affect those parameters. The OD-GS powder exhibited higher content of rutin, (+)-catechin, (-)-epicatechin and total flavonoid content (TFC), while higher total phenolic content (TPC) and ABTS radical cation were observed for freeze-dried GS powder. Fortification of PCS with 1% and 2% (w/w) of GS powder increased protein content. An ANOVA procedure revealed that addition of FD-GS powder to processed cheese spread was superior to TPC values together with rutin, (+)-catechin, and (-)-epicatechin contents. The higher phenolic contents reflected the higher antioxidant capacity of PCS samples fortified with FD-GS powder. Freeze-dried gape skin powder was the better choice for valorisation of processed cheese spread.
Collapse
|
13
|
Akif Açıkgöz M. Evaluation of Phytochemical Compositions and Biological Properties of
Achillea gypsicola
at Different Phenological Stages. Chem Biodivers 2019; 16:e1900373. [DOI: 10.1002/cbdv.201900373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
|
14
|
Evaluation of various emulsifying salts addition on selected properties of processed cheese sauce with the use of mechanical vibration damping and rheological methods. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Talbot-Walsh G, Kannar D, Selomulya C. A review on technological parameters and recent advances in the fortification of processed cheese. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.09.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Impact of ultrasonication and pulsed light treatments on phenolics concentration and antioxidant activities of lactic-acid-fermented mulberry juice. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Červenka L, Hájek T, Salek RN, Černíková M, Velichová H, Buňka F. Addition of rutin/quercetin mixture to spreadable processed cheese: antioxidant and textural characteristics. POTRAVINARSTVO 2018. [DOI: 10.5219/872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spreadable processed cheese is a traditional product made from a mixture of cheese, fat, water and emulsifying salts.The aim of this research was prepared spreadable processed cheese with new functional properties. Spreadable processed cheese enriched with the mixture (1:1) of rutin and quercetin (1.0 g.100g-1) was prepared at two melting temperature (80°C and 90°C) for three holding times (1, 5 and 10 min). The effect of melting temperature and holding time on the quercetin and rutin content was assessed using liquid chromatography with UV detection after ultrasonic-assissted extraction to methanol. The corresponding antioxidant characteristics were determined using spectrophotometric assays for total phenolics (TPC) and radical scavenging activities DPPH and ABTS. The extraction yield for quercetin varied from 45.8 to 66.4% and from 12.8 to 40.8% for rutin. The level of quercetin significantly descrased with the increase of holding time, while rutin content has increased with the increase of melting temperature. TPC values ranged from 10.8. to 14.8 mg GAE·g-1 in SPC sample enriched with rutin/quercetin mixture, and the increase of melting temperature resulted in the decrease of TPC values. DPPH and ABTS assays did not reveal any statistically significant pattern using Kruskal-Wallis ANOVA. The addition of the mixture of flavonoids into the processed cheese significantly reduced the complex modulus in comparison with the control sample (without flavonoids). This indicate that the structure of enriched SPC sample was more flexible than those in control processed cheese samples. Both melting temperature and holding time increased the complex modulus. Spreadable processed cheese are scarcely used as a carrier of flavonoids in scientific researches probably due to very complex matrices. Our research proved that spreadable processed cheese containing rutin/quercetin mixture can be used as a functional food.
Collapse
|