1
|
Voulgari-Kokota A, Boatta F, Rijkers R, Wertheim B, Beukeboom LW, Ellers J, Salles JF. High-sugar diet leads to loss of beneficial probiotics in housefly larvae guts. THE ISME JOURNAL 2024; 18:wrae193. [PMID: 39361901 PMCID: PMC11495414 DOI: 10.1093/ismejo/wrae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
The housefly (Musca domestica) is a common insect species with only a few recurrent bacterial taxa in its gut microbiota, because the numerous microbial acquisition routes in its septic habitats can favor transient microbes. Here, we investigated the role of the diet on the microbiota and the developmental success of a housefly strain reared on three substrates. We used a control wheat bran-based substrate, and added clotted cream and sucrose to make a high-fat, and a high-sugar substrate, respectively. The conducted survey revealed that, in contrast to the high-fat diet, the high-sugar diet caused lower developmental success and less diverse microbiota, in which several lactobacilli were replaced with Weissella bacterial phylotypes. Cultures with sucrose as the sole carbon source confirmed that a Weissella confusa strain, isolated from larvae, could utilize sucrose more efficiently than other tested lactic acid bacteria; a result also supported by gene function prediction analysis. Enhancing the rearing substrate with Limosilactobacillus fermentum and Lactiplantibacillus plantarum strains, which were isolated from control larvae, could not only revert the negative effect of the high-sucrose diet on development, but also increase the gut bacterial diversity. In our study, we show that the microbiota shifts in response to the high-sucrose diet did not benefit the host, that showed lower developmental success. In contrast, high-sucrose favored specific components of the microbiota, that continued to be enriched even after multiple generations, outcompeting beneficial bacteria. Also, microbiome manipulation showed the potential of probiotics to rescue host performance and restore the microbiome.
Collapse
Affiliation(s)
- Anna Voulgari-Kokota
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, P.O. Box 11103, Groningen 9700 CC, The Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen 6700 EH, The Netherlands
| | - Francesco Boatta
- Amsterdam Institute for Life and Environment, Section Ecology and Evolution, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Ruud Rijkers
- Amsterdam Institute for Life and Environment, Section Ecology and Evolution, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
- Department of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, P.O. Box 11103, Groningen 9700 CC, The Netherlands
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, P.O. Box 11103, Groningen 9700 CC, The Netherlands
| | - Jacintha Ellers
- Laboratory of Microbiology, Wageningen University, Wageningen 6700 EH, The Netherlands
| | - Joana Falcao Salles
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, P.O. Box 11103, Groningen 9700 CC, The Netherlands
| |
Collapse
|
2
|
Fusco V, Chieffi D, Fanelli F, Montemurro M, Rizzello CG, Franz CMAP. The Weissella and Periweissella genera: up-to-date taxonomy, ecology, safety, biotechnological, and probiotic potential. Front Microbiol 2023; 14:1289937. [PMID: 38169702 PMCID: PMC10758620 DOI: 10.3389/fmicb.2023.1289937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteria belonging to the genera Weissella and Periweissella are lactic acid bacteria, which emerged in the last decades for their probiotic and biotechnological potential. In 2015, an article reviewing the scientific literature till that date on the taxonomy, ecology, and biotechnological potential of the Weissella genus was published. Since then, the number of studies on this genus has increased enormously, several novel species have been discovered, the taxonomy of the genus underwent changes and new insights into the safety, and biotechnological and probiotic potential of weissellas and periweissellas could be gained. Here, we provide an updated overview (from 2015 until today) of the taxonomy, ecology, safety, biotechnological, and probiotic potential of these lactic acid bacteria.
Collapse
Affiliation(s)
- Vincenzina Fusco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Daniele Chieffi
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Francesca Fanelli
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Marco Montemurro
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | | | | |
Collapse
|
3
|
Hu S, Gao K, Jiao Y, Yuan Z. Glycolysis characteristics of intracellular polysaccharides from Agaricus bitorquis (Quél.) sacc. Chaidam and its effects on intestinal flora from different altitudes of mice in vitro fermentation. Food Res Int 2023; 173:113382. [PMID: 37803720 DOI: 10.1016/j.foodres.2023.113382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
The glycolysis characteristics and effects on intestinal flora of polysaccharides from Agaricus bitorquis (Quél.) Sacc. Chaidam (ABIPs) in vitro fermentation by different altitudes of mice feces was examined, including low, medium, and high altitudes groups (LG, MG, and HG). In vitro, fermentation of ABIPs forty-eight hours resulted in a remarkable decrease in total sugar content and improvement of short-chain fatty acids (SCFAs) (mainly acetate, propionate, and butyrate), which simultaneously induced the composition of monose and uronic acids and SCFAs continuously change. Besides, ABIPs influenced the abundance and composition of the intestinal flora, generally increasing the abundance of probiotic bacteria (such as Bifidobacterium and Faecalibacterium) and decreasing the abundance of harmful bacteria (such as Phenylobacterium and Streptococcus) in all groups, with the highland biology core genus Blautia significantly enriched in LG and MG groups. It was also found that ABIPs enhanced pathways associated with biosynthesis and metabolism. In addition, correlation analysis speculated that the metabolism of SCFAs by ABIPs may be associated with genera such as Anaerostipes, Roseburia, and Weissella. ABIPs may protect organismal health by regulating hypoxic intestinal flora composition and metabolic function, and more superior fermentation performance was observed in MG compared to other groups.
Collapse
Affiliation(s)
- Shicheng Hu
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China
| | - Ke Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China
| | - Yingchun Jiao
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China
| | - Zhenzhen Yuan
- College of Agriculture and Animal Husbandry, Qinghai University, Qinghai 810016, China.
| |
Collapse
|
4
|
López-Sánchez R, Hernández-Oaxaca D, Escobar-Zepeda A, Ramos Cerrillo B, López-Munguía A, Segovia L. Analysing the dynamics of the bacterial community in pozol, a Mexican fermented corn dough. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001355. [PMID: 37410634 PMCID: PMC10433422 DOI: 10.1099/mic.0.001355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
Pozol is a traditional prehispanic Mexican beverage made from fermented nixtamal dough; it is still part of everyday life in many communities due to its nutritional properties. It is the product of spontaneous fermentation and has a complex microbiota composed primarily of lactic acid bacteria (LAB). Although this is a beverage that has been used for centuries, the microbial processes that participate in this fermented beverage are not well understood. We fermented corn dough to produce pozol and sampled it at four key times to follow the community and metabolic changes (0, 9 24 and 48 h) by shotgun metagenomic sequencing to determine structural changes in the bacterial community, as well as metabolic genes used for substrate fermentation, nutritional properties and product safety. We found a core of 25 abundant genera throughout the 4 key fermentation times, with the genus Streptococcus being the most prevalent throughout fermentation. We also performed an analysis focused on metagenomic assembled genomes (MAGs) to identify species from the most abundant genera. Genes involving starch, plant cell wall (PCW), fructan and sucrose degradation were found throughout fermentation and in MAGs, indicating the metabolic potential of the pozol microbiota to degrade these carbohydrates. Complete metabolic modules responsible for amino acid and vitamin biosynthesis increased considerably during fermentation, and were also found to be abundant in MAG, highlighting the bacterial contribution to the well-known nutritional properties attributed to pozol. Further, clusters of genes containing CAZymes (CGCs) and essential amino acids and vitamins were found in the reconstructed MAGs for abundant species in pozol. The results of this study contribute to our understanding of the metabolic role of micro-organisms in the transformation of corn to produce this traditional beverage and their contribution to the nutritional impact that pozol has had for centuries in the traditional cuisine of southeast Mexico.
Collapse
Affiliation(s)
- Rafael López-Sánchez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, CP 62210, Mexico
| | - Diana Hernández-Oaxaca
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, CP 62210, Mexico
| | | | - Blanca Ramos Cerrillo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, CP 62210, Mexico
| | - Agustin López-Munguía
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, CP 62210, Mexico
| | - Lorenzo Segovia
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, CP 62210, Mexico
| |
Collapse
|
5
|
El-Mekkawy RM, Hamour NE, Hassanein WA, Allam AA. Evaluation of the antibacterial activity of Weissella confusa K3 cell-free supernatant against extended-spectrum βeta lactamase (ESBL) producing uropathogenic Escherichia coli U60. Saudi J Biol Sci 2023; 30:103595. [PMID: 36873575 PMCID: PMC9974428 DOI: 10.1016/j.sjbs.2023.103595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/12/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Different strategies have been approved for controlling extended-spectrum βeta lactamase (ESBL) producing uropathogenic bacteria. The antibacterial activity of Lactic acid bacteria (LAB) is an effective strategy due to its probiotic characteristics and beneficial effects on human health. The antibiotic susceptibility test, disk diffusion method, and double disc synergy test indicated that five enteric uropathogenic isolates were ESBL producers during the present study. They recorded diameters of inhibition zones as ≤ 18, ≤ 8, ≤ 19, and ≤ 8 mm against cefotaxime (CTX), ceftazidime (CAZ), aztreonam (ATM), and ceftriaxone (CRO). Genotypically, blaTEM genes are the most common, with (100 %) occurrence in all the five enteric tested uropathogens, followed by blaSHV and blaCTX genes (60 %). In addition, out of 10 LAB isolates from dairy products, the CFS of isolate no. K3 had high antibacterial activity against the tested ESBLs, especially no. U60, with a MIC of 600 µl. Additionally, the MIC and sub-MIC of K3 CFS inhibited the production of antibiotic-resistant bla TEM genes of U60. Analyzing the 16S rRNA sequence confirmed that the most potent ESBL-producing bacteria (U60) and LAB (K3) isolates were identified as Escherichia coli U60.1 and Weissella confuse K3 with accession numbers MW173246 and MW173299.1, respectively, in GenBank.
Collapse
Key Words
- Antibacterial activity
- Antibiotic resistance
- ECU60, Escherichia coli U60
- ESBL, extended-spectrum beta-lactamase
- Extended-spectrum beta-lactamase
- LAB, lactic acid bacteria
- Lactic acid bacteria
- MHA, Mueller–Hinton agar
- MRD, Multidrug resistance
- MRS, De Man, Rogosa, and Sharpe
- U, Urine sample
- UTI, Urinary tract infection
- Urinary tract infection
- WC K3, Weissella confusa K3
Collapse
Affiliation(s)
- Rasha M. El-Mekkawy
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, 44519, Egypt
| | - Noura E. Hamour
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, 44519, Egypt
| | - Wesam A. Hassanein
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, 44519, Egypt
| | - Ayman A. Allam
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
6
|
Wu R, Chen M, Qin Y, Liu S, Li X. Combined hydrothermal and biological treatments for valorization of fruit and vegetable waste into liquid organic fertilizer. ENVIRONMENTAL RESEARCH 2023; 221:115262. [PMID: 36639011 DOI: 10.1016/j.envres.2023.115262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
This study investigated the effects of hydrothermal treatment, biological treatment and their combination on nutrients recovery from fruit and vegetable waste (FVW) and evaluated the feasibility of fruit and vegetable waste juice (FVWJ) from the combined treatment as liquid organic fertilizer. In this study, following conditions were determined suitable for FVW treatment: the temperature of 165 °C and retention time of 45 min for hydrothermal treatment, 20 h for biological treatment, and Weissella, as the dominant microbial genus present in FVW, was suggested as inoculum for biological treatment. In the combined treatment, based on the above conditions of hydrothermal and biological treatments, the yield of FVWJ was 93.03 g out of 100 g FVW, and concentrations of organic matter (1.45%, w/w), primary nutrients (0.51%, w/w), and toxic components in the FVWJ complied with the requirements for use concentration in both Chinese and European standards for liquid organic fertilizer. The economic analysis showed the net saving of 13.60 USD per ton FVW, indicating that it is an economical approach to valorize fruit and vegetable waste into liquid organic fertilizer through the combined treatment.
Collapse
Affiliation(s)
- Renming Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Mingsheng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yifeng Qin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Shuchang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Xudong Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
7
|
Glucuronosylated and linear xylooligosaccharides from Quinoa stalks xylan as potential prebiotic source for growth of Bifidobacterium adolescentis and Weissella cibaria. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Chromatographic preparation of food-grade prebiotic oligosaccharides with defined degree of polymerization. Food Chem 2021; 373:131542. [PMID: 34782210 PMCID: PMC8678371 DOI: 10.1016/j.foodchem.2021.131542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022]
Abstract
Prebiotic oligosaccharides are of widespread interest in the food industry due to their potential health benefits. This has triggered a need for research into their sensory properties. Such research is currently limited due to the lack of available food-grade oligosaccharide preparations with specific degree of polymerization (DP). The aim of this study was to develop economical approaches for the preparation and characterization of prebiotic oligosaccharides differing with respect to composition and DP. Such preparations were prepared by chromatographic fractionation of commercially available prebiotic mixtures using microcrystalline cellulose stationary phases and aqueous ethanol mobile phases. This approach is shown to work for the preparation of food-grade fructooligosaccharides of DP 3 and 4, galactooligosaccharides of DP 3 and 4, and xylooligosaccharides of DP 2-4. Methods for the characterization of the different classes of oligosaccharides are also presented including those addressing purity, identity, total carbohydrate content, moles per unit mass, and DP.
Collapse
|
9
|
Bolaños-Núñez S, Santiago-Urbina JA, Guyot JP, Díaz-Ruiz G, Wacher C. Microbial Interactions between Amylolytic and Non-Amylolytic Lactic Acid Bacteria Strains Isolated during the Fermentation of Pozol. Foods 2021; 10:foods10112607. [PMID: 34828889 PMCID: PMC8622207 DOI: 10.3390/foods10112607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
Pozol is a Mexican beverage prepared from fermented nixtamalized maize dough. To contribute to understanding its complex microbial ecology, the effect of inoculating on MRS-starch pure and mixed cultures of amylolytic Sii-25124 and non-amylolytic W. confusa 17, isolated from pozol, were studied on their interactions and fermentation parameters. These were compared with L. plantarum A6, an amylolytic strain isolated from cassava. Microbial growth, kinetic parameters, amylolytic activity, lactic acid production, and hydrolysis products from starch fermentation were measured. The population dynamics were followed by qPCR. L. plantarum A6 showed higher enzymatic activity, lactic acid, biomass production, and kinetic parameters than pozol LAB in pure cultures. Mixed culture of each pozol LAB with L. plantarum A6 showed a significant decrease in amylolytic activity, lactic acid yield, specific growth rate, and specific rate of amylase production. The interaction between Sii-25124 and W. confusa 17 increased the global maximum specific growth rate (µ), the lactic acid yield from starch (Ylac/s), lactic acid yield from biomass (Ylac/x), and specific rate of lactic acid production (qlac) by 15, 30, 30, and 40%, respectively, compared with the pure culture of Sii-25124. Interactions between the two strains are essential for this fermentation.
Collapse
Affiliation(s)
- Sandra Bolaños-Núñez
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.B.-N.); (G.D.-R.)
| | - Jorge A. Santiago-Urbina
- División de Dirección de Carrera de Agricultura Sustentable y Protegida, Universidad Tecnológica de los Valles Centrales de Oaxaca, Zimatlán, Oaxaca 71270, Mexico;
| | - Jean-Pierre Guyot
- Institut de Recherche pour le Développement, UMR 204 Nutripass, 34394 Montpellier, France;
| | - Gloria Díaz-Ruiz
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.B.-N.); (G.D.-R.)
| | - Carmen Wacher
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.B.-N.); (G.D.-R.)
- Correspondence: ; Tel.: +52-55-5622-5315
| |
Collapse
|
10
|
Carlosama Adriana M, Rodríguez Misael C, Londoño Guillermo C, Sánchez Fernando O, Cock Liliana S. Optimization of the reproduction of Weissella cibaria in a fermentation substrate formulated with agroindustrial waste. ACTA ACUST UNITED AC 2021; 32:e00671. [PMID: 34603976 PMCID: PMC8473453 DOI: 10.1016/j.btre.2021.e00671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022]
Abstract
Use of pineapple and sacha inchi wastes in biotechnological processes. Valorization of agroindustrial waste in the context of circular economy. Use of alternative fermentation substrates (SFS) in the production of probiotics (Weissella cibaria), in order to substitute conventional substrates. Optimal conditions of the fermentation process for the reproduction and viability of W. cibaria.
Agroindustrial wastes contain macronutrients and micronutrients essential for the reproduction of lactic acid bacteria. In this research, the reproduction of Weissella cibaria was experimentally optimized in a supplemented fermentation substrate (SFS) formulated from pineapple and sacha inchi wastes. Response surface methodology was used to evaluate the influence of the following independent variables: temperature (32–40 °C), pH (5.0–6.0), and stirring speed (SS) (100–150 rpm) on the following dependent variables: viability (Log10 CFU mL−1), biomass production (BWc), lactic acid production (LA), biomass yield (YBwc/S), biomass volumetric productivity (VPWc), LA volumetric productivity (VPLA), carbon source consumption (CSC), N2 consumption (N2C), and specific growth rate (µ). The experimental optimization of multiple responses presented a desirability of 76.8%, thus defining the independent variables of the process: temperature = 35.1 °C, pH = 5.0, and SS = 139.3 rpm; and the dependent variables: viability = 10.01 Log10 CFU mL−1, BWc = 2.9 g L−1, LA = 19.4 g mL−1, YBwc/S = 43.9 g biomass/g CSC, VPWc = 0.49 g L−1h − 1, VPLA = 3.2 g L−1 h−1, CSC = 17.2%, N2C = 63.6% and µ = 0.28 h−1. From these, viability, YBwc/S, CSC, N2C, and LA presented significant statistical differences, while the independent variable with the least important effect on the process was pH. Under optimal conditions of temperature, pH and SS; SFS favors the reproduction and viability of W. cibaria. This provides evidence of a sustainable alternative for the production of probiotics in the context of circular economy.
Collapse
Affiliation(s)
- Micanquer Carlosama Adriana
- Área Curricular de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Campus Medellín, Antioquia, Colombia
| | - Cortés Rodríguez Misael
- Departamento de Ingeniería Agrícola y de Alimentos, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Campus Medellín, Antioquia, Colombia
| | - Correa Londoño Guillermo
- Departamento de Ingeniería Agrícola y de Alimentos, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Campus Medellín, Antioquia, Colombia
| | - Orozco Sánchez Fernando
- Área Curricular de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Campus Medellín, Antioquia, Colombia
| | - Serna Cock Liliana
- Departamento de Ingeniería, Facultad de Ingeniería y Administración, Universidad Nacional de Colombia, Campus Palmira, Valle del Cauca, Colombia
| |
Collapse
|
11
|
Rizo J, Guillén D, Díaz-Ruiz G, Wacher C, Encarnación S, Sánchez S, Rodríguez-Sanoja R. Metaproteomic Insights Into the Microbial Community in Pozol. Front Nutr 2021; 8:714814. [PMID: 34490328 DOI: 10.3389/fnut.2021.714814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/05/2021] [Indexed: 01/11/2023] Open
Abstract
Pozol is an acidic, refreshing, and non-alcoholic traditional Mayan beverage made with nixtamalized corn dough that is fermented spontaneously. The extensive analysis of the microbiology, biochemistry and metaproteomics of pozol allowed the construction of a comprehensive image of the fermentation system. The main changes in both the substrate and the microbiota occurred in the first 9 h of fermentation. The increase in microorganisms correlated with the drop in pH and with the decrease in the contents of carbohydrates, lipids, and nitrogen, which shows that this stage has the highest metabolic activity. Bacterial proteins were mainly represented by those of lactic acid bacteria, and among them, the proteins from genus Streptococcus was overwhelmingly the most abundant. Yeast proteins were present in all the analyzed samples, while proteins from filamentous fungi increased up to 48 h. The metaproteomic approach allowed us to identify several previously unknown enzyme complexes in the system. Additionally, enzymes for hydrolysis of starch, hemicellulose and cellulose were found, indicating that all these substrates can be used as a carbon source by the microbiota. Finally, enzymes related to the production of essential intermediates involved in the synthesis of organic acids, acetoin, butanediol, fatty acids and amino acids important for the generation of compounds that contribute to the sensorial quality of pozol, were found.
Collapse
Affiliation(s)
- Jocelin Rizo
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel Guillén
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Díaz-Ruiz
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carmen Wacher
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sergio Encarnación
- Departamento de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Romina Rodríguez-Sanoja
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
12
|
Biodiversity and technological features of Weissella isolates obtained from Brazilian artisanal cheese-producing regions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Rubio-Castillo ÁE, Santiago-López L, Vallejo-Cordoba B, Hernández-Mendoza A, Sáyago-Ayerdi SG, González-Córdova AF. Traditional non-distilled fermented beverages from Mexico to based on maize: An approach to Tejuino beverage. Int J Gastron Food Sci 2021. [DOI: 10.1016/j.ijgfs.2020.100283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Hernández-Oaxaca D, López-Sánchez R, Lozano L, Wacher-Rodarte C, Segovia L, López Munguía A. Diversity of Weissella confusa in Pozol and Its Carbohydrate Metabolism. Front Microbiol 2021; 12:629449. [PMID: 33815312 PMCID: PMC8015861 DOI: 10.3389/fmicb.2021.629449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
The genus Weissella is composed of a group of Gram-positive facultative anaerobe bacteria with fermentative metabolism. Strains of this genus have been isolated from various ecological niches, including a wide variety of fermented cereal foods. The present study aimed to determine the relative abundance and fermentation capabilities of Weissella species isolated from pozol, a traditional maya product made of lime-cooked (nixtamalized) fermented maize. We sequenced the V3-V4 regions of 16S rDNA; Weissella was detected early in the fermentation process and reached its highest relative abundance (3.89%) after 3 h of culture. In addition, we evaluated five Weissella strains previously isolated from pozol but reported as non-amylolytic, to define alternative carbon sources such as xylan, xylooligosaccharides, and sucrose. While no growth was observed on birch xylan, growth did occur on xylooligosaccharides and sucrose. Strains WcL17 and WCP-3A were selected for genomic sequencing, as the former shows efficient growth on xylooligosaccharides and the latter displays high glycosyltransferase (GTF) activity. Genomes of both strains were assembled and recorded, with a total of 2.3 Mb in 30 contigs for WcL17 and 2.2 Mb in 45 contigs for WCP-3a. Both strains were taxonomically assigned to Weissella confusa and genomic analyses were performed to evaluate the gene products encoding active carbohydrate enzymes (CAZy). Both strains have the gene content needed to metabolize sucrose, hemicellulose, cellulose, and starch residues, all available in pozol. Our results suggest that the range of secondary enzymatic activity in Weissella confusa strains confer them with wide capabilities to participate in fermentative processes of natural products with heterogeneous carbon sources.
Collapse
Affiliation(s)
- Diana Hernández-Oaxaca
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Rafael López-Sánchez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Luis Lozano
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Carmen Wacher-Rodarte
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Lorenzo Segovia
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Agustín López Munguía
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| |
Collapse
|
15
|
Teixeira CG, Fusieger A, Milião GL, Martins E, Drider D, Nero LA, de Carvalho AF. Weissella: An Emerging Bacterium with Promising Health Benefits. Probiotics Antimicrob Proteins 2021; 13:915-925. [PMID: 33565028 DOI: 10.1007/s12602-021-09751-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 01/11/2023]
Abstract
Weissella strains have been the subject of much research over the last 5 years because of the genus' technological and probiotic potential. Certain strains have attracted the attention of the pharmaceutical, medical, and food industries because of their ability to produce antimicrobial exopolysaccharides (EPSs). Moreover, Weissella strains are able to keep foodborne pathogens in check because of the bacteriocins, hydrogen peroxide, and organic acids they can produce; all listed have recognized pathogen inhibitory activities. The Weissella genus has also shown potential for treating atopic dermatitis and certain cancers. W. cibaria, W. confusa, and W. paramesenteroides are particularly of note because of their probiotic potential (fermentation of prebiotic fibers) and their ability to survive in the gastrointestinal tract. It is important to note that most of the Weissella strains with these health-promoting properties have been shown to be save safe, due to the absence or the low occurrence of virulence or antibiotic-resistant genes. A large number of scientific studies continue to report on and to support the use of Weissella strains in the food and pharmaceutical industries. This review provides an overview of these studies and draws conclusions for future uses of this rich and previously unexplored genus.
Collapse
Affiliation(s)
- Camila Gonçalves Teixeira
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Andressa Fusieger
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Gustavo Leite Milião
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Evandro Martins
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV - Institut Charles Viollette, 59000, Lille, France
| | - Luís Augusto Nero
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil.
| | - Antônio Fernandes de Carvalho
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil.
| |
Collapse
|
16
|
Cuvas-Limon RB, Nobre C, Cruz M, Rodriguez-Jasso RM, Ruíz HA, Loredo-Treviño A, Texeira JA, Belmares R. Spontaneously fermented traditional beverages as a source of bioactive compounds: an overview. Crit Rev Food Sci Nutr 2020; 61:2984-3006. [PMID: 32662286 DOI: 10.1080/10408398.2020.1791050] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fermented food has been present throughout history, since fermentation not only helps preserving food, but also provides specific organoleptic characteristics typically associated to these foods. Most of the traditional fermented foods and artisanal beverages are produced by spontaneous generation, meaning no control of the microbiota, or the substrate used. Nevertheless, even not being standardized, they are an important source of bioactive compounds, such as antioxidant compounds, bioactive beeps, short chain fatty acids, amino acids, vitamins, and minerals. This review compiles a list of relevant traditional fermented beverages around the world, aiming to detail the fermentation process itself-including source of microorganisms, substrates, produced metabolites and the operational conditions involved. As well as to list the bioactive compounds present in each fermented food, together with their impact in the human health. Traditional fermented beverages from Mexico will be highlighted. These compounds are of high interest for the food, pharmaceutical and cosmetics industry. To scale-up the home fermentation processes, it is necessary to fully understand the microbiology and biochemistry behind these traditional products. The use of good quality raw materials with standardized methodologies and defined microorganisms, may improve and increase the production of the desirable bioactive compounds and open a market for novel functional products.
Collapse
Affiliation(s)
- R B Cuvas-Limon
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico.,Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Clarisse Nobre
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Mario Cruz
- Department of Food Science and Technology, Antonio Narro Autonomous Agricultural University, Saltillo, Coahuila, Mexico
| | - Rosa M Rodriguez-Jasso
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| | - Héctor A Ruíz
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| | - Araceli Loredo-Treviño
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| | - J A Texeira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ruth Belmares
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| |
Collapse
|
17
|
Han G, Li C, Xiang F, Zhao Q, Zhao Y, Cai R, Cheng B, Wang X, Tao F. Genome-wide association study leads to novel genetic insights into resistance to Aspergillus flavus in maize kernels. BMC PLANT BIOLOGY 2020; 20:206. [PMID: 32393173 PMCID: PMC7216483 DOI: 10.1186/s12870-020-02404-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Fungus infection in staple grains affects the food storage and threatens food security. The Aspergillus flavus is known to infect multiple grains and produce mycotoxin Aflatoxin B1, which is mutagenic, teratogenic and causes immunosuppression in animals. However, the molecular mechanism of maize resistance to A. flavus is largely unknown. RESULTS Here we used corn kernels to investigate resistance genes to A. flavus using genome-wide association study (GWAS) of 313 inbred lines. We characterized the resistance levels of kernels after inoculating with A. flavus. The GWAS with 558,529 SNPs identified four associated loci involving 29 candidate genes that were linked to seed development, resistance or infection, and involved in signal pathways, seed development, germination, dormancy, epigenetic modification, and antimicrobial activity. In addition, a few candidate genes were also associated with several G-protein signaling and phytohormones that might involve in synergistic work conferring different resistance during seed development. Expression of 16 genes out of 29 during kernel development was also associated with resistance levels. CONCLUSIONS We characterized the resistance levels of 313 maize kernels after inoculating with A. flavus, and found four associated loci and 16 candidate maize genes. The expressed 16 genes involved in kernel structure and kernel composition most likely contribute to mature maize kernels' resistance to A. flavus, and in particular, in the development of pericarp. The linked candidate genes could be experimentally transformed to validate and manipulate fungal resistance. Thus this result adds value to maize kernels in breeding programs.
Collapse
Affiliation(s)
- Guomin Han
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036 China
| | - Cuiping Li
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
| | - Fangzhi Xiang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
| | - Qianqian Zhao
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
| | - Yang Zhao
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036 China
| | - Ronghao Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
| | - Beijiu Cheng
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036 China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, 30602 USA
| | - Fang Tao
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036 China
| |
Collapse
|
18
|
Tao M, Guan L, Jing Z, Tao Z, Wang Y, Luo H, Wang Y. Enhanced denitrification and power generation of municipal wastewater treatment plants (WWTPs) effluents with biomass in microbial fuel cell coupled with constructed wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136159. [PMID: 31887514 DOI: 10.1016/j.scitotenv.2019.136159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
A microbial fuel cell-constructed wetland (MFC-CW) with water hyacinth is established to remove the nitrogen and organics from municipal wastewater treatment plants (WWTPs) effluents. Because insufficient carbon sources in influent might decrease pollutants removal efficiency and electricity generation, this research aimed to select high-quality and low-cost biomass as additional carbon source to improve the performance of MFC-CW. Cellulose and hemicellulose (xylan) were chosen as the biomass. Results indicated that xylan displayed a higher nitrate removal (above 92%) compared with cellulose (10.9%). With xylan as carbon source, the anode packing removed nitrate above 80%, while the cathode packing only removed around 50%. With glucose as sole carbon source, the maximum total nitrogen (TN) removal of MFC-CW was 87.66 ± 4.23%, which was higher than that of MFC (85.58 ± 4.14%). The chemical oxygen demand (COD) and TN in the effluent of MFC-CW were maintained below 25 mg/L and 1.5 mg/L, respectively, with the COD/TN ratio around 5.4 and hydraulic retention time (HRT) at 48 h. The TN removal reached the maximum efficiency of 88.78 ± 3.98% when glucose and xylan ratio was in 40%:60% as composite carbon sources, and COD and TN in the effluent were below 20 mg/L and 1.5 mg/L, respectively. In addition, xylan as the additional carbon source significantly promoted the power density compared with sole glucose. Microbial community diversity in the MFC-CW was significantly higher than that in the single MFC or CW. Proteobacteria and Cyanobacteria_norank were relatively more dominant in the MFC-CW than those in the single MFC or CW, which accounted for high nitrogen removal and power generation. Findings in this study proved that MFC-CW with biomass addition enhanced nitrogen removal and power generation.
Collapse
Affiliation(s)
- Mengni Tao
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lin Guan
- Nanjing Municipal Design and Research Institute Co., Ltd., Nanjing 210008, China
| | - Zhaoqian Jing
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhengkai Tao
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yue Wang
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Luo
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yin Wang
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
19
|
Dysvik A, La Rosa SL, Buffetto F, Liland KH, Myhrer KS, Rukke EO, Wicklund T, Westereng B. Secondary Lactic Acid Bacteria Fermentation with Wood-Derived Xylooligosaccharides as a Tool To Expedite Sour Beer Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:301-314. [PMID: 31820631 DOI: 10.1021/acs.jafc.9b05459] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Xylooligosaccharides (XOS) from woody biomass were evaluated as a substrate for secondary lactic acid bacteria (LAB) fermentation in sour beer production. XOS were extracted from birch (Betula pubescens) and added to beer to promote the growth of Lactobacillus brevis BSO 464. Growth, pH, XOS degradation, and metabolic products were monitored throughout fermentations, and the final beer was evaluated sensorically. XOS were utilized, metabolic compounds were produced (1800 mg/L lactic acid), and pH was reduced from 4.1 to 3.6. Secondary fermentation changed sensory properties significantly, and the resulting sour beer was assessed as similar to a commercial reference in multiple attributes, including acidic taste. Overall, secondary LAB fermentation induced by wood-derived XOS provided a new approach to successfully produce sour beer with reduced fermentation time (from 1-3 years to 4 weeks). The presented results demonstrate how hemicellulosic biomass can be valorized for beverage production and to obtain sour beer with improved process control.
Collapse
Affiliation(s)
- Anna Dysvik
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Aas , Norway
| | - Sabina Leanti La Rosa
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Aas , Norway
| | - Fanny Buffetto
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Aas , Norway
| | - Kristian Hovde Liland
- Faculty of Science and Technology , Norwegian University of Life Sciences , P.O. Box 5003, N-1433 Ås , Norway
| | - Kristine S Myhrer
- NOFIMA - Norwegian Institute of Food, Fisheries and Aquaculture Research , PB 210, N-1431 Ås , Norway
| | - Elling-Olav Rukke
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Aas , Norway
| | - Trude Wicklund
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Aas , Norway
| | - Bjørge Westereng
- Faculty of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Aas , Norway
| |
Collapse
|
20
|
Le B, Yang S. Production of prebiotic xylooligosaccharide from aqueous ammonia‐pretreated rice straw by β‐xylosidase of
Weissella cibaria. J Appl Microbiol 2019; 126:1861-1868. [DOI: 10.1111/jam.14255] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/06/2019] [Accepted: 02/13/2019] [Indexed: 11/30/2022]
Affiliation(s)
- B. Le
- Department of Biotechnology Chonnam National University Yeosu, Chonnam Republic of Korea
| | - S.H. Yang
- Department of Biotechnology Chonnam National University Yeosu, Chonnam Republic of Korea
| |
Collapse
|