1
|
Gutiérrez-Silva G, Vásquez-Lara F, Heredia-Sandoval NG, Islas-Rubio AR. Effect of High-Protein and High-Fiber Breaders on Oil Absorption and Quality Attributes in Chicken Nuggets. Foods 2023; 12:4463. [PMID: 38137267 PMCID: PMC10743118 DOI: 10.3390/foods12244463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Consumption of fried foods is associated with a higher risk of cardiovascular and other diseases; therefore, consumers are looking to reduce fat intake. We evaluated the effect of high-protein breaders and fiber on oil absorption and quality attributes in chicken nuggets, using flour blends (wheat, chickpea, coconut, oil-quinoa-chia), soy protein concentrate, and brewers' spent grain. We evaluated the chemical composition, water and oil retention capacity (ORC), viscosity profile, and flour particle size distribution, along with the developed breaders (Formulation 1 and 2) and a commercial breader (CB), in addition to texture, color, fat, and moisture contents of the fried chicken nuggets prepared with the developed breaders and the CB. The total dietary fiber content (TDF) of the nuggets breaded with only Formulation-1 and CB was determined. Nuggets breaded with Formulation-1 showed lower (p ≤ 0.05) ORC, better moisture retention (67.6%), and more TDF (4.5% vs. 2.3%, p ≤ 0.05) compared to CB-breaded nuggets. Nuggets with Formulation-1 showed the expected texture and color characteristics for fried products. Formulation-1 has the potential to be used as a breader due to its moisture, reduced ORC, and the texture and color it imparts to the fried nuggets, providing higher amounts of nutrients and possible health benefits.
Collapse
Affiliation(s)
| | | | | | - Alma R. Islas-Rubio
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo E. Astiazarán Rosas # 46, Colonia La Victoria, Hermosillo 83304, Mexico; (G.G.-S.); (F.V.-L.); (N.G.H.-S.)
| |
Collapse
|
2
|
Rodrigues SSQ, Vasconcelos L, Leite A, Ferreira I, Pereira E, Teixeira A. Novel Approaches to Improve Meat Products' Healthy Characteristics: A Review on Lipids, Salts, and Nitrites. Foods 2023; 12:2962. [PMID: 37569231 PMCID: PMC10418592 DOI: 10.3390/foods12152962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Meat products are a staple of many diets around the world, but they have been subject to criticism due to their potential negative impact on human health. In recent years, there has been a growing interest in developing novel approaches to improve the healthy characteristics of meat products, with a particular focus on reducing the levels of harmful salts, lipids, and nitrites. This review aims to provide an overview of the latest research on the various methods being developed to address these issues, including the use of alternative salts, lipid-reducing techniques, and natural nitrite alternatives. By exploring these innovative approaches, we can gain a better understanding of the potential for improving the nutritional value of meat products, while also meeting the demands of consumers who are increasingly concerned about their health and well-being.
Collapse
Affiliation(s)
- Sandra S. Q. Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.V.); (A.L.); (I.F.); (E.P.); (A.T.)
- Laboratório Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lia Vasconcelos
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.V.); (A.L.); (I.F.); (E.P.); (A.T.)
- Laboratório Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ana Leite
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.V.); (A.L.); (I.F.); (E.P.); (A.T.)
- Laboratório Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Iasmin Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.V.); (A.L.); (I.F.); (E.P.); (A.T.)
- Laboratório Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Etelvina Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.V.); (A.L.); (I.F.); (E.P.); (A.T.)
- Laboratório Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Alfredo Teixeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.V.); (A.L.); (I.F.); (E.P.); (A.T.)
- Laboratório Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
3
|
Kakkar S, Tandon R, Tandon N. The rising status of edible seeds in lifestyle related diseases: A review. Food Chem 2023; 402:134220. [DOI: 10.1016/j.foodchem.2022.134220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022]
|
4
|
Meat extenders from different sources as protein-rich alternatives to improve the technological properties and functional quality of meat products. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Yüncü Ö, Kavuşan HS, Serdaroğlu M. Chia ( Salvia hispanica L.) Mucilage as a Novel Fat Replacer in Beef Patties Cooked with Different Methods: Physico-Chemical, Technological, and Nutritional Perspectives. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2115960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Özlem Yüncü
- Ege University, Engineering Faculty, Food Engineering Department, Bornova, Izmir, Turkey
| | - Hülya Serpil Kavuşan
- Ege University, Engineering Faculty, Food Engineering Department, Bornova, Izmir, Turkey
| | - Meltem Serdaroğlu
- Ege University, Engineering Faculty, Food Engineering Department, Bornova, Izmir, Turkey
| |
Collapse
|
6
|
Echeverria L, da Silva C, Danesi EDG, Porciuncula BDA, Bolanho Barros BC. Characterization of okara and rice bran and their application as fat substitutes in chicken nugget formulations. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
AMORIM DS, AMORIM IS, MONTEIRO JDS, CASTRO VCGD, BRAGA ACC, SILVA BAD. Preparation of chicken nuggets breaded with tropical fruit peel flours: physicochemical and sensory evaluation. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.62422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Campagnol PCB, Lorenzo JM, Dos Santos BA, Cichoski AJ. Recent advances in the development of healthier meat products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 102:123-179. [PMID: 36064292 DOI: 10.1016/bs.afnr.2022.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Meat products are an excellent source of high biological value proteins, in addition to the high content of minerals, vitamins, and bioactive compounds. However, meat products contain compounds that can cause a variety of adverse health effects and pose a serious health threat to humans. In this sense, this chapter will address recent strategies to assist in the development of healthier meat products. The main advances about the reduction of sodium and animal fat in meat products will be presented. In addition, strategies to make the lipid profile of meat products more nutritionally advantageous for human health will also be discussed. Finally, the reduction of substances of safety concern in meat products will be addressed, including phosphates, nitrites, polycyclic aromatic hydrocarbons, heterocyclic aromatic amines, as well as products from lipid and protein oxidation.
Collapse
Affiliation(s)
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain; Universidad de Vigo, Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Ourense, Spain
| | | | | |
Collapse
|
9
|
Mariutti LRB, Rebelo KS, Bisconsin-Junior A, de Morais JS, Magnani M, Maldonade IR, Madeira NR, Tiengo A, Maróstica MR, Cazarin CBB. The use of alternative food sources to improve health and guarantee access and food intake. Food Res Int 2021; 149:110709. [PMID: 34600699 DOI: 10.1016/j.foodres.2021.110709] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022]
Abstract
To feed and provide Food Security to all people in the world is a big challenge to be achieved with the 2030 Agenda. Undernutrition and obesity are to the opposite of a healthy nutritional status. Both conditions are associated with unbalanced nutrition, absence of food or excess of non-nutritive foods intake. These two nutritional conditions associated with food production are closely related to some goals highlighted by the United Nations in the 2030 Agenda to achieve sustainable world development. In this context, the search for alternative foods whose sustainable production and high nutritional quality guarantee regular access to food for the population must be encouraged. Alternative foods can contribute to Food Security in many ways as they contribute to the local economy and income generation. Popularizing and demystifying the uses of unconventional food plants, ancestral grains, flowers, meliponiculture products, and edible insects as sources of nutrients and non-nutrients is another challenge. Herein, we present an overview of alternative foods - some of them cultivated mostly in Brazil - that can be explored as sources of nutrients to fight hunger and malnutrition, improve food production and the economic growth of nations.
Collapse
Affiliation(s)
| | | | - Antonio Bisconsin-Junior
- School of Food Engineering, University of Campinas, Campinas, SP, Brazil; Federal Institute of Rondônia, Ariquemes/RO, Brazil
| | - Janne Santos de Morais
- Department of Food Engineering Centro de Tecnologia, Universidade Federal da Paraíba, Paraíba, Brazil
| | - Marciane Magnani
- Department of Food Engineering Centro de Tecnologia, Universidade Federal da Paraíba, Paraíba, Brazil
| | | | - Nuno Rodrigo Madeira
- Laboratory of Food Science and Techonology, Embrapa Hortaliças, Distrito Federal, Brazil
| | - Andrea Tiengo
- Universidade do Vale do Sapucaí, Pouso Alegre, MG, Brazil
| | | | | |
Collapse
|
10
|
Badar IH, Liu H, Chen Q, Xia X, Kong B. Future trends of processed meat products concerning perceived healthiness: A review. Compr Rev Food Sci Food Saf 2021; 20:4739-4778. [PMID: 34378319 DOI: 10.1111/1541-4337.12813] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/03/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022]
Abstract
The 21st-century consumer is highly demanding when it comes to the health benefits of food and food products. In the pursuit of attracting these consumers and easing the rise in demand for high-quality meat products, the processed meat sector is intensely focused on developing reformulated, low-fat, healthy meat products. Meat and meat products are considered the primary sources of saturated fatty acids in the human diet. Therefore, these reformulation strategies aim to improve the fatty acid profile and reduce total fat and cholesterol, which can be achieved by replacing animal fat with plant-based oils; it could be performed as direct inclusion of these oils or pre-emulsified oils. However, emulsions offer a viable option for incorporating vegetable oils while avoiding the multiple issues of direct inclusion of these oils in meat products. Processed meat products are popular worldwide and showing a gradually increasing trend of consumption. Various types of plant-based oils have been studied as fat replacers in meat products. This review will focus on possible methods to reduce the saturated fatty acid content in meat products.
Collapse
Affiliation(s)
- Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, China.,Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
11
|
Fernández-López J, Viuda-Martos M, Pérez-Alvarez JA. Quinoa and chia products as ingredients for healthier processed meat products: technological strategies for their application and effects on the final product. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Total and Partial Fat Replacement by Gelled Emulsion (Hemp Oil and Buckwheat Flour) and Its Impact on the Chemical, Technological and Sensory Properties of Frankfurters. Foods 2021; 10:foods10081681. [PMID: 34441461 PMCID: PMC8392028 DOI: 10.3390/foods10081681] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
A gelled emulsion (GE) prepared with hemp oil and buckwheat flour was used to replace pork back fat in frankfurters. Five different formulations were prepared: control (with 35% pork back fat—SC), and the following four to achieve 25%, 50%, 75%, and 100% pork back fat substitution by GE (S1, S2, S3, and S4, respectively). Nutritional, technological, and sensorial characteristics of frankfurters were evaluated. Sausages containing GE presented a lower total fat content with a higher amount of polyunsaturated fatty acids, increased omega 3 content, and reduced saturated fat by up to 55%. The incorporation of GE did not significantly modify technological properties such as emulsion stability or lipid oxidation in spite of using vegetable oils highly susceptible to oxidation. The reformulation of the frankfurters presented a greater effect on the texture and sensory properties when GE was used as total substitution for the pork back fat (S4). When GE was used only as partial substitution for the pork back fat, sausages similar to control frankfurter were obtained. So this study demonstrated that the use of GE could be a promising strategy in the reformulation of healthier meat products.
Collapse
|
13
|
KAMBAROVA A, NURGAZEZOVA A, NURYMKHAN G, ATAMBAYEVA Z, SMOLNIKOVA F, REBEZOV М, ISSAYEVA K, KAZHIBAEVA G, ASIRZHANOVA Z, MOLDABAEVA Z. Improvement of quality characteristics of turkey pâté through optimization of a protein rich ingredient: physicochemical analysis and sensory evaluation. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.00720] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | | | - Мaksim REBEZOV
- K.G. Razumovsky Moscow State University of Technologies and Management, Russia; Ural State Agrarian University, Russia; V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Russia
| | | | | | | | | |
Collapse
|
14
|
Silva MCAD, Leite JSF, Barreto BG, Neves MVDA, Silva AS, Viveiros KMD, Passos RSFT, Costa NP, Silva RVD, Cavalheiro CP. The impact of innovative gluten-free coatings on the physicochemical, microbiological, and sensory characteristics of fish nuggets. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
de Paiva GB, Trindade MA, Romero JT, da Silva-Barretto AC. Antioxidant effect of acerola fruit powder, rosemary and licorice extract in caiman meat nuggets containing mechanically separated caiman meat. Meat Sci 2020; 173:108406. [PMID: 33338780 DOI: 10.1016/j.meatsci.2020.108406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 11/16/2022]
Abstract
The aim of this work was to evaluate the antioxidant effect of acerola fruit powder, rosemary and licorice extract in caiman meat nuggets containing high amounts of mechanically separated caiman meat (MSCM) during 120 days of frozen storage. Five treatments were prepared: a control without antioxidant (CON), sodium erythorbate at 500 mg/kg (ERY), acerola fruit powder at 500 mg/kg (AFP), with licorice extract at 500 mg/kg (LIE) and rosemary extract at 500 mg/kg (ROE). The addition of natural antioxidants increased color, cohesiveness, and decreased TBARS values. The redness values were higher for LIE and these values were different to the CON. Nuggets with licorice extract had significantly lower TBARS values at the end of the storage period compared to the control. All the treatments were similar in sensory analysis, with good acceptability. These results indicate licorice extract used in caiman meat nuggets containing a high amount of MSCM caiman has the potential to improve quality during frozen storage.
Collapse
Affiliation(s)
- Gilmar Borges de Paiva
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000 São José do Rio Preto, SP, Brazil; Federal Institute of Education, Science and Technology of Mato Grosso - IFMT, Highway MT 235, KM 12, Rural Zone, ZiP Code 78360-000 Campo Novo do Parecis, MT, Brazil
| | - Marco Antonio Trindade
- Department of Food Engineering, College of Animal Science and Food Engineering of University of São Paulo, Avenue Duque de Caxias Norte 225, Zip Code 13635-900 Pirassununga, SP, Brazil
| | - Javier Telis Romero
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000 São José do Rio Preto, SP, Brazil
| | - Andrea Carla da Silva-Barretto
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000 São José do Rio Preto, SP, Brazil.
| |
Collapse
|
16
|
Ursachi CȘ, Perța-Crișan S, Munteanu FD. Strategies to Improve Meat Products' Quality. Foods 2020; 9:E1883. [PMID: 33348725 PMCID: PMC7766022 DOI: 10.3390/foods9121883] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Meat products represent an important component of the human diet, their consumption registering a global increase over the last few years. These foodstuffs constitute a good source of energy and some nutrients, such as essential amino acids, high biological value proteins, minerals like iron, zinc, selenium, manganese and B-complex vitamins, especially vitamin B12. On the other hand, nutritionists have associated high consumption of processed meat with an increased risk of several diseases. Researchers and processed meat producers are involved in finding methods to eliminate nutritional deficiencies and potentially toxic compounds, to obtain healthier products and at the same time with no affecting the sensorial quality and safety of the meat products. The present review aims to summarize the newest trends regarding the most important methods that can be applied to obtain high-quality products. Nutritional enrichment with natural bioactive plant compounds (antioxidants, dietary fibers) or probiotics, reduction of harmful components (salt, nitrate/nitrite, N-nitrosamines) and the use of alternative technologies (high-pressure processing, cold plasma, ultrasounds) are the most used current strategies to accomplish this aim.
Collapse
Affiliation(s)
| | | | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania; (C.Ș.U.); (S.P.-C.)
| |
Collapse
|
17
|
Pintado T, Ruiz-Capillas C, Jiménez-Colmenero F, Herrero AM. Impact of Culinary Procedures on Nutritional and Technological Properties of Reduced-Fat Longanizas Formulated with Chia ( Salvia hispanica L.) or Oat ( Avena sativa L.) Emulsion Gel. Foods 2020; 9:E1847. [PMID: 33322421 PMCID: PMC7762967 DOI: 10.3390/foods9121847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
This paper evaluates how grilling, a traditional culinary procedure for fresh meat products, affects the composition and technological properties of healthy longanizas formulated with chia (Salvia hispanica L.) (C-RF) and oat (Avena sativa L.) (O-RF) emulsion gels (EGs) as animal fat replacers. The use of EGs, regardless of whether they contain chia or oat, improved longaniza performance during cooking as they lost less (p < 0.05) water and fat. The composition of cooked sausages was affected by their formulation, particularly those with chia EG (C-RF) which featured the highest polyunsaturated fatty acid content, mainly due to the higher level of α-linolenic fatty acid (1.09 g/100 g of product). Chia and oat EGs in C-RF and O-RF allow longanizas to be labeled with nutritional and health claims under European law. In general, this culinary procedure increases (p < 0.05) the lightness, lipid oxidation and texture parameters of all samples.
Collapse
Affiliation(s)
| | | | | | - Ana M. Herrero
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain; (T.P.); (C.R.-C.); (F.J.-C.)
| |
Collapse
|
18
|
Kotecka-Majchrzak K, Sumara A, Fornal E, Montowska M. Oilseed proteins – Properties and application as a food ingredient. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Fernández-López J, Viuda-Martos M, Sayas-Barberá ME, Navarro-Rodríguez de Vera C, Lucas-González R, Roldán-Verdú A, Botella-Martínez C, Pérez-Alvarez JA. Chia, Quinoa, and Their Coproducts as Potential Antioxidants for the Meat Industry. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1359. [PMID: 33066505 PMCID: PMC7602150 DOI: 10.3390/plants9101359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022]
Abstract
Chia and quinoa have gained popularity among consumers worldwide due to the wide variety of nutrients but also to the bioactive compounds that they contain. Lately, their processing has generated different coproducts (non-commercial grains, flour, partially deoiled flour, rich-fiber fraction, and oil, among others), which could be reincorporated to the food chain with important technological properties, antioxidant activity included. Both sets of ingredients have been revealed a great technological potential for meat product development and innovation, taking into account that oxidation is one of the main reactions responsible for their deterioration and shelf life reduction. This review focuses on the antioxidant compounds of chia and quinoa coproducts and on the strategies used to add them to meat products highlighting their effect on the lipid oxidation control. Apart from the different ways in which quinoa and chia can be incorporated into meat products and their antioxidant properties, innovative approaches for increasing this antioxidant effect and counteracting any negative alterations they may cause will be discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jose Angel Pérez-Alvarez
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312-Alicante, Spain; (J.F.-L.); (M.V.-M.); (M.E.S.-B.); (C.N.-R.d.V.); (R.L.-G.); (A.R.-V.); (C.B.-M.)
| |
Collapse
|
20
|
Câmara AKFI, Paglarini CDS, Vidal VAS, Dos Santos M, Pollonio MAR. Meat products as prebiotic food carrier. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:223-265. [PMID: 32892834 DOI: 10.1016/bs.afnr.2020.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Mirian Dos Santos
- School of Food Engineering, State University of Campinas, Campinas, Brazil
| | | |
Collapse
|
21
|
Argel NS, Ranalli N, Califano AN, Andrés SC. Influence of partial pork meat replacement by pulse flour on physicochemical and sensory characteristics of low-fat burgers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3932-3941. [PMID: 32329079 DOI: 10.1002/jsfa.10436] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/07/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Numerous non-meat ingredients, such as hydrocolloids, starches, and fibers, have been studied to improve texture characteristics and increase the ability to bind water in low-fat meat products. In this sense, pulses flours (lentil, chickpea, pea, and bean) were studied at two levels and various water:flour ratios to replace 10-44% pork meat in low-fat burgers and determine the effect on their sensory and technological properties (cooking yield, expressible liquid, diameter reduction, and color and texture profile). RESULTS All pork-meat burgers that included pulse flour showed higher cooking yields, lower diameter reductions, and expressible liquids than all-meat burgers, which displayed better oil and water retention. Higher water additions resulted in burgers with less hardness. Burgers with 80 g kg-1 lentil flour in all water/flour ratios presented the lowest total color difference (ΔE) compared with the commercial control. Burgers with the higher level of all pulse flour tested and medium water levels showed acceptable sensory scores. CONCLUSIONS Partial pork meat replacement by different legume flour (lentil, chickpea, pea, and bean), at levels of 80 and 150 g kg-1 and water/flour ratios of 1250, 1600, and 2000 g kg-1 resulted in low-fat burgers with adequate physicochemical characteristics. Moreover, the sensorial evaluation of the formulations with the maximum flour addition and intermediate water/flour ratio showed that they had good sensorial acceptability with no effect of flour type. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Natalia Soledad Argel
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CONICET, CICPBA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Natalia Ranalli
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CONICET, CICPBA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Departamento Ingeniería Química, Facultad de Ingeniería, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alicia Noemí Califano
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CONICET, CICPBA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Silvina Cecilia Andrés
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CONICET, CICPBA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
22
|
Quality Characteristics of Healthy Dry Fermented Sausages Formulated with a Mixture of Olive and Chia Oil Structured in Oleogel or Emulsion Gel as Animal Fat Replacer. Foods 2020; 9:foods9060830. [PMID: 32599965 PMCID: PMC7353661 DOI: 10.3390/foods9060830] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 01/08/2023] Open
Abstract
The present work evaluates the suitability of beeswax oleogels and emulsion gel prepared with a healthy lipid mixture (olive and chia oils) as pork fat replacers for the development of a dry fermented meat product (fuet). Because these systems offer various possibilities, this study has compared their effect on the nutritional quality and sensory acceptability of fuets and their behaviour with regard to technological properties and microbiological and oxidative stability during 30 days of chilled storage. This strategy allowed products with an improved fatty acid profile and a 12-fold decrease of the polyunsaturated fatty acids (PUFA) n-6/n-3 ratio, as compared to the control samples. Irrespective of the structuring method used as animal fat replacer, reformulated samples showed a good oxidative status during chilled storage. In general, no differences that depended on the use of oleogel or emulsion gel were observed in the technological properties and microbiological status, so the choice of one or the other would be conditioned by other factors than the characteristics that the product develops. However, further studies are needed to improve the sensory attributes of the reformulated samples.
Collapse
|
23
|
Pires MA, Barros JC, Rodrigues I, Sichetti Munekata PE, Trindade MA. Improving the lipid profile of bologna type sausages with Echium (Echium plantagineum L.) oil and chia (Salvia hispanica L) flour. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108907] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Effect of natural extracts obtained from food industry by-products on nutritional quality and shelf life of chicken nuggets enriched with organic Zn and Se provided in broiler diet. Poult Sci 2020; 99:1491-1501. [PMID: 32111317 PMCID: PMC7587798 DOI: 10.1016/j.psj.2019.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 10/27/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022] Open
Abstract
This study investigated the influence of an organic mineral-supplemented broiler diet on the quality of nuggets. The resulting chicken nuggets were enriched with inorganic and organic forms of Zn and Se. The nuggets were processed by incorporating extracts from food industry by-products (rosemary [RH and RL], hydroxytyrosol [HYT], pomegranate [P], grape [GS], and Harpagophytum [H]). The physiochemical, microbiological, and sensory characteristics of the chicken nuggets were evaluated over a 12-month period of frozen storage. The addition of natural extracts did not affect the pH, proximate composition, or color (CIELab) of the nuggets among samples. However, significative differences were found between month of analysis (range from pH 6.16 to 6.63; luminosity from 62.51 to 84.74; redness from 0.16 to 7.14; and yellowness from 10.80 to 33.77). In addition, the combination of phenolic compounds with Zn and Se retarded microbial growth and reduced protein and lipid oxidation, thus maintaining the sensory quality and extending the shelf life of this product. For instance, the combination of RL + GS reduced in 75% the microbiological growth regarding the control sample (C), while samples that incorporated RH + P or HYT + P + H presented 50% less than C. In addition, upon only incorporating organic minerals Zn and Se, microbiological deterioration is reduced in 15%. This mix was significantly effective at reducing the oxidative reactions of lipids and proteins by 40% and 50%, as measured after 9 and 12 mo of frozen storage, respectively. The addition of the natural extracts and Zn and Se did not adversely affect the acceptability of the meat product.
Collapse
|
25
|
Fernández-López J, Lucas-González R, Viuda-Martos M, Sayas-Barberá E, Navarro C, Haros CM, Pérez-Álvarez JA. Chia (Salvia hispanica L.) products as ingredients for reformulating frankfurters: Effects on quality properties and shelf-life. Meat Sci 2019; 156:139-145. [DOI: 10.1016/j.meatsci.2019.05.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/27/2022]
|
26
|
Barros JC, Gois TS, Pires MA, Rodrigues I, Trindade MA. Sodium reduction in enrobed restructured chicken nuggets through replacement of NaCl with CaCl 2. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:3587-3596. [PMID: 31413386 PMCID: PMC6675818 DOI: 10.1007/s13197-019-03777-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 11/30/2022]
Abstract
The present study aimed to reformulate chicken nuggets with reduced sodium content, replacing the NaCl with CaCl2 and assessing the physicochemical and sensory properties of the obtained products. Four treatments of chicken nuggets were processed: Control formulation (1.5 g NaCl/100 g) and three treatments containing CaCl2 substituting 25, 50 and 75% of the NaCl, considering an ionic strength equivalent to 1.5% NaCl. The four different chicken nuggets were similar (p > 0.05) for the variables oil absorption, lipid, protein and moisture contents, water activity, cooking yield, pick-up and texture profile analysis. However, a decrease in ash content (2.21-1.75 g/100 g) was observed. The replacement of 75% NaCl could reduce 34% sodium in chicken nuggets with a concomitant increase in the calcium content (10-130 mg/100 g). For objective colour, the brightness (L*) increased from 74.43 to 78.28 as CaCl2 contents increased in the chicken nuggets, but the a* and b*parameters did not show differences (p > 0.05) among all treatments. Sensory acceptance (texture, flavour and overall quality attributes) did not differ between Control and the 75% sodium reduction treatments (all values around 7.5 in the 9-point hedonic scale), despite the decrease in the salty taste observed in the just about right scale test. Thus, the maximum tested replacement of 75% NaCl by CaCl2 produced healthier chicken nuggets, for having provided a reduction in sodium content and increase in calcium content, besides maintaining sensory quality and most of the technological characteristics.
Collapse
Affiliation(s)
- Julliane Carvalho Barros
- Department of Food Engineering, College of Animal Science and Food Engineering of University of São Paulo, 225, Duque de Caxias Norte, Jardim Elite, Pirassununga, São Paulo 13635-900 Brazil
| | - Taynara Saviani Gois
- Department of Food Engineering, College of Animal Science and Food Engineering of University of São Paulo, 225, Duque de Caxias Norte, Jardim Elite, Pirassununga, São Paulo 13635-900 Brazil
| | - Manoela Alves Pires
- Department of Food Engineering, College of Animal Science and Food Engineering of University of São Paulo, 225, Duque de Caxias Norte, Jardim Elite, Pirassununga, São Paulo 13635-900 Brazil
| | - Isabela Rodrigues
- Department of Food Engineering, College of Animal Science and Food Engineering of University of São Paulo, 225, Duque de Caxias Norte, Jardim Elite, Pirassununga, São Paulo 13635-900 Brazil
| | - Marco Antonio Trindade
- Department of Food Engineering, College of Animal Science and Food Engineering of University of São Paulo, 225, Duque de Caxias Norte, Jardim Elite, Pirassununga, São Paulo 13635-900 Brazil
| |
Collapse
|
27
|
SOUZA CVB, BELLUCCI ERB, LORENZO JM, BARRETTO ACDS. Low-fat Brazilian cooked sausage-Paio – with added oat fiber and inulin as a fat substitute: effect on the technological properties and sensory acceptance. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.03618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
SCHUCH AF, SILVA ACD, KALSCHNE DL, SILVA-BUZANELLO RAD, CORSO MP, CANAN C. Chicken nuggets packaging attributes impact on consumer purchase intention. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.41317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Pérez-Palacios T, Ruiz-Carrascal J, Solomando JC, Antequera T. Strategies for Enrichment in ω-3 Fatty Acids Aiming for Healthier Meat Products. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1584817] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Trinidad Pérez-Palacios
- Research Institute of Meat and Meat Products (IproCar), University of Extremadura, Cáceres, Spain
| | - Jorge Ruiz-Carrascal
- Research Institute of Meat and Meat Products (IproCar), University of Extremadura, Cáceres, Spain
| | - Juan Carlos Solomando
- Research Institute of Meat and Meat Products (IproCar), University of Extremadura, Cáceres, Spain
| | - Teresa Antequera
- Research Institute of Meat and Meat Products (IproCar), University of Extremadura, Cáceres, Spain
| |
Collapse
|