1
|
Wen K, Zhang Q, Xie J, Xue B, Li X, Bian X, Sun T. Effect of Mono- and Polysaccharide on the Structure and Property of Soy Protein Isolate during Maillard Reaction. Foods 2024; 13:2832. [PMID: 39272597 PMCID: PMC11394747 DOI: 10.3390/foods13172832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
As a protein extracted from soybeans, soy protein isolate (SPI) may undergo the Maillard reaction (MR) with co-existing saccharides during the processing of soy-containing foods, potentially altering its structural and functional properties. This work aimed to investigate the effect of mono- and polysaccharides on the structure and functional properties of SPI during MR. The study found that compared to oat β-glucan, the reaction rate between SPI and D-galactose was faster, leading to a higher degree of glycosylation in the SPI-galactose conjugate. D-galactose and oat β-glucan showed different influences on the secondary structure of SPI and the microenvironment of its hydrophobic amino acids. These structural variations subsequently impact a variety of the properties of the SPI conjugates. The SPI-galactose conjugate exhibited superior solubility, surface hydrophobicity, and viscosity. Meanwhile, the SPI-galactose conjugate possessed better emulsifying stability, capability to produce foam, and stability of foam than the SPI-β-glucan conjugate. Interestingly, the SPI-β-glucan conjugate, despite its lower viscosity, showed stronger hypoglycemic activity, potentially due to the inherent activity of oat β-glucan. The SPI-galactose conjugate exhibited superior antioxidant properties due to its higher content of hydroxyl groups on its molecules. These results showed that the type of saccharides had significant influences on the SPI during MR.
Collapse
Affiliation(s)
- Kun Wen
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qiyun Zhang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Xue
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaohui Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaojun Bian
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Tao Sun
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
2
|
Chen J, Zhang W, Chen Y, Li M, Liu C, Wu X. Effect of glycosylation modification on structure and properties of soy protein isolate: A review. J Food Sci 2024; 89:4620-4637. [PMID: 38955774 DOI: 10.1111/1750-3841.17181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
Soybean protein isolate (SPI) is a highly functional protein source used in various food applications, such as emulsion, gelatin, and food packaging. However, its commercial application may be limited due to its poor mechanical properties, barrier properties, and high water sensitivity. Studies have shown that modifying SPI through glycosylation can enhance its functional properties and biological activities, resulting in better application performance. This paper reviews the recent studies on glycosylation modification of SPI, including its quantification method, structural improvements, and enhancement of its functional properties, such as solubility, gelation, emulsifying, and foaming. The review also discusses how glycosylation affects the bioactivity of SPI, such as its antioxidant and antibacterial activity. This review aims to provide a reference for further research on glycosylation modification and lay a foundation for applying SPI in various fields.
Collapse
Affiliation(s)
- Jinjing Chen
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Wanting Zhang
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Yiming Chen
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Meng Li
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Chang Liu
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Xiuli Wu
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| |
Collapse
|
3
|
He S, Li M, Sun Y, Pan D, Zhou C, Lan H. Effects of limited enzymatic hydrolysis and polysaccharide addition on the physicochemical properties of emulsions stabilized with duck myofibrillar protein under low-salt conditions. Food Chem 2024; 430:137053. [PMID: 37549626 DOI: 10.1016/j.foodchem.2023.137053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
This study aimed to investigate the role of hydrolysis and guar gum (GG) participation on the emulsification of the duck myofibrillar protein (MP) and the related stability of oil-in-water emulsion in low-salt condition. Emulsions were prepared using one of each or both treatments, and that prepared with trypsin hydrolysis and GG (T-GG) exhibited the highest stability. FTIR analysis confirmed the hydrogen bond interactions between the system components. T-GG treatment improved emulsion properties and decreased oil droplet size. Moreover, CLSM indicated that aggregation of T-GG oil droplets was prevented. Physical stability was assessed such as Turbiscan stability index, creaming index, and rheological properties. The adsorbed percentage for T-GG was the lowest. However, interfacial tension, droplet size, stability, and peroxide value analyses indicated that a denser interfacial membrane structure is formed with T-GG. Thus, T-GG treatment could be applied in the food industry, such as in nutrient delivery systems and fat mimetics.
Collapse
Affiliation(s)
- Shufeng He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| | - Mengmeng Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China.
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| | - Hangzhen Lan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| |
Collapse
|
4
|
Xin Y, Liu Z, Yang C, Dong C, Chen F, Liu K. Smart antimicrobial system based on enzyme-responsive high methoxyl pectin-whey protein isolate nanocomplex for fresh-cut apple preservation. Int J Biol Macromol 2023; 253:127064. [PMID: 37748593 DOI: 10.1016/j.ijbiomac.2023.127064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/23/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
The increase in pectin methylesterase (PME) activity on fresh-cut apple surface can smartly trigger the controlled release of bactericidal agents encapsulated within intelligent responsive Pickering emulsions. In this study, we developed a PME-responsive nanocomplex (W-H-II) to stabilize Pickering emulsion containing thyme essential oil (TEO), preserving fresh-cut apples. W-H-II, formed by heat-induced whey protein isolate (WPI) and high methoxyl pectin (HMP) (pH 4.5, 85 °C, 15 min, WPI:HMP ratio 1:2), exhibited good pH stability due to the stabilizing effects of hydrophobic, hydrogen bonding, and electrostatic interactions. The presence of PME triggered the demethylation of HMP within W-H-II, conferring PME response characteristics. Subsequently, a bacteriostasis experiment with pectinase-producing Bacillus subtilis provided evidence of PME-triggered TEO release from W-H-II-stabilized Pickering emulsion. Furthermore, microscopy techniques were employed to verify the demulsification behavior of the emulsion when PME activity ranged from 0.25 to 2.50 U mL-1. Finally, the PME-responsive TEO Pickering emulsion effectively preserved fresh-cut apples. Stored for 6 days at 5 °C and 10 °C, as the PME activity on the apple surface increased, the decay rate of the coated group was 0 %, with a total colony count below 3.0 log CFU g-1. This study introduces a novel intelligent preservation strategy for storing fresh-cut apples.
Collapse
Affiliation(s)
- Ying Xin
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zhenzhen Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Chenhao Yang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Chen Dong
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Kunlun Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
5
|
Ding Y, Zengin A, Cheng W, Wang L, Ettelaie R. Emulsifying properties of plant-derived polypeptide and their conjugates: a self-consistent-field calculation study of the impact of hydrolysis. SOFT MATTER 2023; 19:7443-7458. [PMID: 37747041 DOI: 10.1039/d3sm00855j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
By considering the hydrolysates of soy protein produced by trypsin as an example, the emulsion stabilizing properties of plant-based protein fragments have been investigated theoretically. We apply Self-Consistent-Field (SCF) calculations to determine the colloidal interactions induced between a pair of droplets stabilized by adsorbed layers of various soy protein fragments. The study is extended to conjugates of such polypeptides, formed by covalent bonding with a suitable hydrophilic sidechain (e.g. a polysaccharide). Our results show that the relatively longer fragments, with a greater number of hydrophobic amino acids, will display a stronger degree of adsorption affinity compared to the smaller hydrolysates, even where the latter may have a higher overall ratio of hydrophobic residues. This suggested that the degree of protein hydrolysis should be carefully controlled and limited to modest values to avoid the generation of a large number of short polypeptides, while still sufficient to improve solubility. While the emulsion stabilizing performance of a protein fragment type is strongly dependent on the conformation it adopts on the interface, we find this to be less critical for the conjugated polypeptides. However, we argue that with increasing degree of hydrolysis, many small fragments will not have the chance to form bonds with polysaccharides. It is demonstrated that the abundance of these unreacted polypeptides in the system severely reduces the efficiency of the conjugated longer protein fragments, preventing their presence on the surface of the droplets through competitive adsorption process.
Collapse
Affiliation(s)
- Yue Ding
- College of Food and Bioengineering, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan University of Science and Technology, Luoyang 471000, P. R. China.
- Food Colloids Group, School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| | - Adem Zengin
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Serdivan Sakarya, Turkey
| | - Weiwei Cheng
- College of Food and Bioengineering, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan University of Science and Technology, Luoyang 471000, P. R. China.
| | - Libo Wang
- College of Food and Bioengineering, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan University of Science and Technology, Luoyang 471000, P. R. China.
| | - Rammile Ettelaie
- Food Colloids Group, School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| |
Collapse
|
6
|
Taha A, Casanova F, Talaikis M, Stankevič V, Žurauskienė N, Šimonis P, Pakštas V, Jurkūnas M, Gomaa MAE, Stirkė A. Effects of Pulsed Electric Field on the Physicochemical and Structural Properties of Micellar Casein. Polymers (Basel) 2023; 15:3311. [PMID: 37571205 PMCID: PMC10422647 DOI: 10.3390/polym15153311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Pulsed electric field (PEF) as a green processing technology is drawing greater attention due to its eco-friendliness and potential to promote sustainable development goals. In this study, the effects of different electric field strengths (EFS, 0-30 kV/cm) on the structure and physicochemical features of casein micelles (CSMs) were investigated. It was found that the particle sizes of CSMs increased at low EFS (10 kV/cm) but decreased at high EFS (30 kV/cm). The absolute ζ-potential at 30 kV/cm increased from -26.6 (native CSMs) to -29.5 mV. Moreover, it was noticed that PEF treatment leads to changes in the surface hydrophobicity; it slightly increased at low EFS (10 kV/cm) but decreased at EFS > 10 kV/cm. PEF enhanced the protein solubility from 84.9 (native CSMs) to 87.1% (at 10 kV/cm). PEF at low EFS (10 kV/cm) intensified the emission fluorescence spectrum of CSMs, while higher EFS reduced the fluorescence intensity compared to native CSMs. Moreover, the analysis of the Amide Ι region showed that PEF-treated CSMs reduced the α-helix and increased the β-sheet content. Raman spectra confirmed that PEF treatment > 10 kV/cm buried tyrosine (Tyr) residues in a hydrophobic environment. It was also found that PEF treatment mainly induced changes in the disulfide linkages. In conclusion, PEF technology can be employed as an eco-friendly technology to change the structure and physiochemical properties of CSMs; this could improve their techno-functional properties.
Collapse
Affiliation(s)
- Ahmed Taha
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Federico Casanova
- Food Production Engineering, National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Martynas Talaikis
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Voitech Stankevič
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Nerija Žurauskienė
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Povilas Šimonis
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Vidas Pakštas
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Marijus Jurkūnas
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Mohamed A. E. Gomaa
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Arūnas Stirkė
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
- Micro and Nanodevices Laboratory, Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063 Riga, Latvia
| |
Collapse
|
7
|
Dang Y, Ren J, Guo Y, Yang Q, Liang J, Li R, Zhang R, Yang P, Gao X, Du SK. Structural, functional properties of protein and characteristics of tofu from small-seeded soybeans grown in the Loess Plateau of China. Food Chem X 2023; 18:100689. [PMID: 37151211 PMCID: PMC10154771 DOI: 10.1016/j.fochx.2023.100689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/09/2023] Open
Abstract
The structural, functional properties of protein isolated from small-seeded soybeans were investigated and characteristics of tofu were studied. Small-seeded soybean protein had obvious α', α, β, acidic and basic subunits bands and two endothermic peaks (76.02-76.63℃ and 91.94-94.25℃). Small-seeded black soybean protein isolates (SBSPI) had more β-sheet (31.90-33.54%) structure, while small-seeded yellow soybean protein isolates (SYSPI) had more α-helix (18.89-20.72%) structure. SYSPI had higher fluorescence intensity (839.10-847.80) than SBSPI (482.70-565.10). SBSPI exhibited higher surface hydrophobicity (939.51-1252.75) and water absorption capacity (8.07-8.50 g/g). Tofu made from small-seeded yellow soybeans had higher yield (549.46-560.23 g/100 g soybean) and was brighter (L*, 74.61-77.48) and more yellowish (b*, 14.83-14.95) in color. Tofu made from Fugu small-seeded black soybean (FGSBS) had the highest hardness (178.52 g), adhesiveness (-25.77 g.sec), chewiness (87.45 g) and resilience (0.26), signifying a more compact structure.
Collapse
Affiliation(s)
- Yueyi Dang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qinghua Yang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jibao Liang
- Shenmu Agricultural Technology Promotion Center, Shenmu, Shaanxi 719300, China
| | - Rui Li
- Shenmu Agricultural Technology Promotion Center, Shenmu, Shaanxi 719300, China
| | - Rui Zhang
- Shenmu Agricultural Technology Promotion Center, Shenmu, Shaanxi 719300, China
| | - Pu Yang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoli Gao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, Yangling, Shaanxi 712100, China
- Corresponding authors at: College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shuang-kui Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, Yangling, Shaanxi 712100, China
- Corresponding authors at: College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Wu SS, Han W, Cheng YF, Yun SJ, Chang MC, Cheng FE, Cao JL, Feng CP. Transglutaminase-Catalyzed Glycosylation Improved Physicochemical and Functional Properties of Lentinus edodes Protein Fraction. Foods 2023; 12:foods12091849. [PMID: 37174388 PMCID: PMC10178280 DOI: 10.3390/foods12091849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Lentinula edodes has high nutritional value and abundant protein. In order to develop and utilize edible mushroom protein, this study was designed to investigate the effects of TGase-catalyzed glycosylation and cross-linking on the physicochemical and functional properties of Lentinus edodes protein fraction. The results showed that within a certain time, glycosylation and TGase-catalyzed glycosylation decreased the total sulfydryl, free sulfydryl, disulfide bond, surface hydrophobicity, β-fold and α-helix, but increased the fluorescence intensity, random coil, β-turn, particle size and thermal stability. The apparent viscosity and the shear stress of the protein with an increase in shear rate were increased, indicating that TGase-catalyzed glycosylation promoted the generation of cross-linked polymers. In addition, the TGase-catalyzed glycosylated proteins showed a compact texture structure similar to the glycosylated proteins at the beginning, indicating that they formed a stable three-dimensional network structure. The flaky structure of proteins became more and more obvious with time. Moreover, the solubility, emulsification, stability and oil-holding capacity of enzymatic glycosylated Lentinus edodes protein fraction were significantly improved because of the proper TGase effects of glycosylation grafting and cross-linking. These results showed that glycosylation and TGase-catalyzed glycosylation could improve the processing characteristics of the Lentinula edodes protein fraction to varying degrees.
Collapse
Affiliation(s)
- Shan-Shan Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Wei Han
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yan-Fen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Shao-Jun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Ming-Chang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Fei-Er Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
- Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Jinzhong 030801, China
| | - Jin-Ling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Cui-Ping Feng
- Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Jinzhong 030801, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| |
Collapse
|
9
|
Feng S, Guo Y, Liu F, Li Z, Chen K, Handa A, Zhang Y. The impacts of complexation and glycated conjugation on the performance of soy protein isolate-gum Arabic composites at the o/w interface for emulsion-based delivery systems. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Li N, Zhang Z, Cui Y, Shi J, Sun X, Liu YA, Wang X, Xu N. Optimization of enzymatic soy protein isolate-glucosamine conjugates to improve the freeze-thaw stability of emulsion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:811-819. [PMID: 36036167 DOI: 10.1002/jsfa.12192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/27/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Using transglutaminase (TGase) is a new method to improve protein properties in order to promote protein glycosylation. This article mainly studies soy protein isolate (SPI) and glucosamine to improve the freeze-thaw stability of emulsion under the action of TGase. The degree of glycosylation was studied by the content of free amino groups and the degree of conjugation. The optimal conditions for preparing soy protein isolate-glucosamine (SPI-G) conjugate were determined by a response surface optimization model based on single-factor experiments using the creaming index of the emulsion after the first freeze-thaw cycle as the response value. RESULTS The results showed that the emulsion had the lowest creaming index when the conditions of protein concentration was 20 g L-1 , mass ratio of SPI-G was 5:3 (w/w), enzyme addition amount was 10 U g-1 , and reaction time was 2 h. The optimized modified product was measured for the creaming index after the first freeze-thaw cycle. It was found that the creaming index of the modified product SPI-G after the first freeze-thaw cycle was 9.02%, which was less than and close to the optimized model predicted value. The creaming index and optical microscopy results after three freeze-thaw cycles confirmed that the freeze-thaw stability of the SPI-G samples was significantly enhanced after optimization of the response surface model. CONCLUSION It showed that glycosylation promoted by TGase could improve the freeze-thaw stability of SPI emulsion, thereby broadening the application of SPI in food. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ning Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhihui Zhang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yifan Cui
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jiahui Shi
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaotong Sun
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yi-An Liu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xibo Wang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Ning Xu
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
11
|
Feng J, Xu Z, Jiang L, Sui X. Functional properties of soybean isolate protein as influenced by its critical overlap concentration. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Zhang Q, Long X, Xie J, Xue B, Li X, Gan J, Bian X, Sun T. Effect of d-galactose on physicochemical and functional properties of soy protein isolate during Maillard reaction. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Teng X, Zhang M, Adhikari B, Liu K. Garlic essential oil emulsions stabilized by microwave dry-heating induced protein-pectin conjugates and their application in controlling nitrite content in prepared vegetable dishes. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Razavizadeh BM, Shahidi Noghabi M, Molaveisi M. A Ternary blending of Soy protein Isolate/ Maltodexterin/Inulin for Encapsulation Bioactive Oils: Optimization of Wall material and Release Studies. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bibi Marzieh Razavizadeh
- Department of Food safety and quality control Research Institute of Food Science and Technology Mashhad Iran
| | | | - Mohammad Molaveisi
- Department of Food chemistry Research Institute of Food Science and Technology Mashhad Iran
| |
Collapse
|
15
|
Yu J, Wang Y, Li D, Wang LJ. Freeze-thaw stability and rheological properties of soy protein isolate emulsion gels induced by NaCl. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
|
17
|
Effect of freeze-thaw treatment on the structure and texture of soy protein-dextran conjugate gels crosslinked by transglutaminase. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Xi Y, Zhang A, Wang Z, Farooq S, Zhang C, Wu L, Zhang H. Improved Oxidation Stability of Camellia Oil-in-Water Emulsions Stabilized by the Mixed Monolayer of Soy Protein Isolate/Bamboo Shoot Protein Complexes. Front Nutr 2021; 8:782212. [PMID: 34926555 PMCID: PMC8671835 DOI: 10.3389/fnut.2021.782212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/01/2021] [Indexed: 01/03/2023] Open
Abstract
The complex of soy protein isolate (SPI)/bamboo shoot protein concentrate (BPC) was developed to stabilize camellia oil-in-water (O/W) emulsions. The surface hydrophobicity of the BPC/SPI complex driven by hydrogen bonds and electrostatic attractions was improved. With the increasing ratio of BPC in the complex, a tighter network layer structure of the complex was formed due to the rearrangement of proteins, and the emulsions showed a progressive enhancement in the gel-like structures. At the SPI/BPC ratio of 2:1, the emulsions had smaller droplet size and lower creaming index of 230 nm and 30%, and the emulsifying activity and stability indices of the emulsions were 803.72 min and 11.85 g/m2, respectively, indicating a better emulsifying activity and stability of emulsions. Meanwhile, the emulsions stabilized by the complex at the ratio of 2:1 showed better storage and antioxidant stability. These findings are expected to develop the application of bamboo shoots in emulsion-based food products such as mayonnaise, salad dressings, and sauces.
Collapse
Affiliation(s)
- Yuhang Xi
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Aiping Zhang
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Shahzad Farooq
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Cen Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liangru Wu
- China National Bamboo Research Center, Hangzhou, China
| | - Hui Zhang
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
19
|
Li L, He H, Wu D, Lin D, Qin W, Meng D, Yang R, Zhang Q. Rheological and textural properties of acid-induced soybean protein isolate gel in the presence of soybean protein isolate hydrolysates or their glycosylated products. Food Chem 2021; 360:129991. [PMID: 33965712 DOI: 10.1016/j.foodchem.2021.129991] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 11/25/2022]
Abstract
Enzymatic hydrolysis and glycosylation were successively applied to modify soybean protein isolate (SPI) and rheological and textural properties of acid-induced SPI gel added with the obtained SPI hydrolysates and their glycosylated products were then investigated. The incorporation of SPI hydrolysates decreased the elastic modulus (G') and hardness of SPI gel, which might be related to the random aggregation between SPI hydrolysates and native SPI molecules via hydrophobic interactions. In addition, as the molecular weight of SPI hydrolysates decreased, the reduction in G' and hardness became more significant. Although glycosylation of SPI hydrolysates weakened the adverse effects of hydrolysates on the SPI gel formation to some extent, the glycosylated SPI hydrolysates were still unable to improve the gel quality compared with the control. However, results of this research may provide important information for understanding the influencing mechanism of SPI hydrolysates and their glycosylated products on the formation of SPI gel.
Collapse
Affiliation(s)
- Lin Li
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, PR China
| | - Hui He
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, PR China
| | - Daize Wu
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, PR China
| | - Derong Lin
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, PR China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, PR China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, PR China.
| |
Collapse
|
20
|
Improving freeze–thaw stability of soy protein isolate-glucosamine emulsion by transglutaminase glycosylation. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Dou P, Feng X, Cheng X, Guan Q, Wang J, Qian S, Xu X, Zhou G, Ullah N, Zhu B, Chen L. Binding of aldehyde flavour compounds to beef myofibrillar proteins and the effect of nonenzymatic glycation with glucose and glucosamine. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Zhang A, Wang X, Zhao X. Effect of homogenizing pressure on the properties of soy protein i
solate‐vitamin D
3
nanoemulsion. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anqi Zhang
- College of Food Science Northeast Agricultural University Harbin China
| | - Xibo Wang
- College of Food Science Northeast Agricultural University Harbin China
| | - Xin‐huai Zhao
- School of Biology and Food Engineering Guangdong University of Petrochemical Technology Maoming China
| |
Collapse
|
23
|
Buzalewicz I, Ulatowska-Jarża A, Kaczorowska A, Gąsior-Głogowska M, Podbielska H, Karwańska M, Wieliczko A, Matczuk AK, Kowal K, Kopaczyńska M. Bacteria Single-Cell and Photosensitizer Interaction Revealed by Quantitative Phase Imaging. Int J Mol Sci 2021; 22:5068. [PMID: 34064730 PMCID: PMC8151141 DOI: 10.3390/ijms22105068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 01/12/2023] Open
Abstract
Quantifying changes in bacteria cells in the presence of antibacterial treatment is one of the main challenges facing contemporary medicine; it is a challenge that is relevant for tackling issues pertaining to bacterial biofilm formation that substantially decreases susceptibility to biocidal agents. Three-dimensional label-free imaging and quantitative analysis of bacteria-photosensitizer interactions, crucial for antimicrobial photodynamic therapy, is still limited due to the use of conventional imaging techniques. We present a new method for investigating the alterations in living cells and quantitatively analyzing the process of bacteria photodynamic inactivation. Digital holographic tomography (DHT) was used for in situ examination of the response of Escherichia coli and Staphylococcus aureus to the accumulation of the photosensitizers immobilized in the copolymer revealed by the changes in the 3D refractive index distributions of single cells. Obtained results were confirmed by confocal microscopy and statistical analysis. We demonstrated that DHT enables real-time characterization of the subcellular structures, the biophysical processes, and the induced local changes of the intracellular density in a label-free manner and at sub-micrometer spatial resolution.
Collapse
Affiliation(s)
- Igor Buzalewicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 27 Wybrzeże S. Wyspiańskiego St., 50-370 Wrocław, Poland; (A.U.-J.); (A.K.); (M.G.-G.); (H.P.); (M.K.)
| | - Agnieszka Ulatowska-Jarża
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 27 Wybrzeże S. Wyspiańskiego St., 50-370 Wrocław, Poland; (A.U.-J.); (A.K.); (M.G.-G.); (H.P.); (M.K.)
| | - Aleksandra Kaczorowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 27 Wybrzeże S. Wyspiańskiego St., 50-370 Wrocław, Poland; (A.U.-J.); (A.K.); (M.G.-G.); (H.P.); (M.K.)
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 27 Wybrzeże S. Wyspiańskiego St., 50-370 Wrocław, Poland; (A.U.-J.); (A.K.); (M.G.-G.); (H.P.); (M.K.)
| | - Halina Podbielska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 27 Wybrzeże S. Wyspiańskiego St., 50-370 Wrocław, Poland; (A.U.-J.); (A.K.); (M.G.-G.); (H.P.); (M.K.)
| | - Magdalena Karwańska
- Department of Epizootiology and Veterinary Administration with Clinic of Infectious Diseases, Wrocław University of Environmental and Life Sciences, 45 Grunwaldzki Square, 50-366 Wrocław, Poland; (M.K.); (A.W.)
| | - Alina Wieliczko
- Department of Epizootiology and Veterinary Administration with Clinic of Infectious Diseases, Wrocław University of Environmental and Life Sciences, 45 Grunwaldzki Square, 50-366 Wrocław, Poland; (M.K.); (A.W.)
| | - Anna K. Matczuk
- Department of Pathology, Division of Microbiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 31 C.K. Norwida St., 51-375 Wrocław, Poland;
| | | | - Marta Kopaczyńska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 27 Wybrzeże S. Wyspiańskiego St., 50-370 Wrocław, Poland; (A.U.-J.); (A.K.); (M.G.-G.); (H.P.); (M.K.)
| |
Collapse
|
24
|
Zhang A, Cui Q, Wang X, Zhao XH. Effect of temperature of preheated soy protein isolate on the structure and properties of soy protein isolate heated-vitamin D 3 complex. J Food Biochem 2021; 45:e13733. [PMID: 33890679 DOI: 10.1111/jfbc.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/01/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022]
Abstract
In this paper, soy protein isolate (SPI) was preheated and combined with vitamin D3 (VD3 ) to study the protective effect of modified SPI on VD3 . The structure and properties of the SPI with heat treatment-VD3 (SPI(H)-VD3 ) complex were determined. The secondary and tertiary structure of SPI(H)-VD3 results showed that the content of α-helix decreased and the content of random coil increased, indicating that the rigid structure of the protein decreased, the flexibility increased, and the maximum fluorescence intensity wavelength was red shifted. When the heat treatment temperature was 85°C, the embedding rate of SPI(H)-VD3 composite was the highest. As the heat treatment temperature increased, the internal hydrophobic groups of SPI were exposed, and the average particle size decreased significantly. The light stability results showed that the content of VD3 in the SPI(H)-VD3 composite at a heat treatment temperature of 85°C was significantly increased compared with the unheated SPI. PRACTICAL APPLICATIONS: This article mainly discusses the structure and properties of modified soy protein isolates bound to VD3 by preheating soy protein isolates at different temperatures. It provides more possibilities for the application of VD3 in food.
Collapse
Affiliation(s)
- Anqi Zhang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Qiang Cui
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xibo Wang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| |
Collapse
|
25
|
Ding Y, Chen L, Shi Y, Akhtar M, Chen J, Ettelaie R. Emulsifying and emulsion stabilizing properties of soy protein hydrolysates, covalently bonded to polysaccharides: The impact of enzyme choice and the degree of hydrolysis. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106519] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Sui X, Zhang T, Jiang L. Soy Protein: Molecular Structure Revisited and Recent Advances in Processing Technologies. Annu Rev Food Sci Technol 2021; 12:119-147. [PMID: 33317319 DOI: 10.1146/annurev-food-062220-104405] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rising health concerns and increasing obesity levels in human society have led some consumers to cut back on animal protein consumption and switch to plant-based proteins as an alternative. Soy protein is a versatile protein supplement and contains well-balanced amino acids, making it comparable to animal protein. With sufficient processing and modification, the quality of soy protein can be improved above that of animal-derived proteins, if desired. The modern food industry is undergoing a dynamic change, with advanced processing technologies that can produce a multitude of foods and ingredients with functional properties from soy proteins, providing consumers with a wide variety of foods. This review highlights recent progress in soy protein processing technologies. Using the current literature, the processing-induced structural changes in soy protein are also explored. Furthermore, the molecular structure of soy protein, particularly the crystal structures of β-conglycinin and glycinin, is comprehensively revisited.
Collapse
Affiliation(s)
- Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; ,
| | - Tianyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; ,
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; ,
| |
Collapse
|
27
|
Yu JJ, Chen GY, Zhang YF, Zheng XC, Jiang PY, Ji H, Li SH, Chen Y. Enhanced hydration properties and antioxidant activity of peanut protein by covalently binding with sesbania gum via cold plasma treatment. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102632] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Glycation of Plant Proteins Via Maillard Reaction: Reaction Chemistry, Technofunctional Properties, and Potential Food Application. Foods 2021; 10:foods10020376. [PMID: 33572281 PMCID: PMC7915956 DOI: 10.3390/foods10020376] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
Plant proteins are being considered to become the most important protein source of the future, and to do so, they must be able to replace the animal-derived proteins currently in use as techno-functional food ingredients. This poses challenges because plant proteins are oftentimes storage proteins with a high molecular weight and low water solubility. One promising approach to overcome these limitations is the glycation of plant proteins. The covalent bonding between the proteins and different carbohydrates created via the initial stage of the Maillard reaction can improve the techno-functional characteristics of these proteins without the involvement of potentially toxic chemicals. However, compared to studies with animal-derived proteins, glycation studies on plant proteins are currently still underrepresented in literature. This review provides an overview of the existing studies on the glycation of the major groups of plant proteins with different carbohydrates using different preparation methods. Emphasis is put on the reaction conditions used for glycation as well as the modifications to physicochemical properties and techno-functionality. Different applications of these glycated plant proteins in emulsions, foams, films, and encapsulation systems are introduced. Another focus lies on the reaction chemistry of the Maillard reaction and ways to harness it for controlled glycation and to limit the formation of undesired advanced glycation products. Finally, challenges related to the controlled glycation of plant proteins to improve their properties are discussed.
Collapse
|
29
|
Cui Q, Zhang A, Li R, Wang X, Sun L, Jiang L. Ultrasonic treatment affects emulsifying properties and molecular flexibility of soybean protein isolate-glucose conjugates. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100747] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Nooshkam M, Varidi M. Whey protein isolate-low acyl gellan gum Maillard-based conjugates with tailored technological functionality and antioxidant activity. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104783] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
The radiation assisted-Maillard reaction comprehensively improves the freeze-thaw stability of soy protein-stabilized oil-in-water emulsions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105684] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Jiang B, Wang X, Wang L, Wu S, Li D, Liu C, Feng Z. Fabrication and Characterization of a Microemulsion Stabilized by Integrated Phosvitin and Gallic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5437-5447. [PMID: 32320610 DOI: 10.1021/acs.jafc.0c00945] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The purpose of this work was to conjugate phosvitin (Pv) with gallic acid (GA) to explore a new emulsifier that had both good emulsifying properties and antioxidant activity. The Pv-GA complex was prepared at a GA concentration of 1.5 mg/mL with pH 9.0. The Pv-GA complex obtained was identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and characterized with infrared, ultraviolet, and fluorescence spectra. The emulsifying activity and stability of the Pv-GA complex were slightly improved, and antioxidant activities was significantly enhanced. Furthermore, the Pv-GA complex was used to load conjugated linoleic acid (CLA) for microemulsion preparation. Results showed that the Pv-GA complex could increase the viscosity and lipid antioxidant capacity of Pv-GA/CLA microemulsion. The Pv-GA/CLA microemulsion had remarkable emulsifying activity, emulsifying stability, pH, and thermal stability and poor salt stability.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Xiaojing Wang
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Linlin Wang
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Shuang Wu
- Heilongjiang Eco-meteorology Center, Harbin, Heilongjiang 150030, People's Republic of China
| | - Dongmei Li
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Chunhong Liu
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Zhibiao Feng
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
33
|
Yu JJ, Ji H, Chen Y, Zhang YF, Zheng XC, Li SH, Chen Y. Analysis of the glycosylation products of peanut protein and lactose by cold plasma treatment: Solubility and structural characteristics. Int J Biol Macromol 2020; 158:S0141-8130(20)33129-9. [PMID: 32371128 DOI: 10.1016/j.ijbiomac.2020.04.255] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022]
Abstract
Cold plasma (CP) treatment was used to prepare the glycosylation conjugates of high-temperature peanut protein isolate (HPPI) and lactose to improve the solubility of HPPI. We observed that by increasing the CP treatment time to 3 min, the solubility of the conjugates increased to 1.34 mg/mL. An increase in the degree of glycosylation and a decrease in the degree of browning indicated that although CP treatment accelerated the glycosylation of HPPI and lactose, it interfered with the formation of melanoidin. The analysis of protein tertiary structure showed that tryptophan and tyrosine residues in proteins undergoing CP treatment were the primary sites for the Maillard reaction. The relative decrease in surface hydrophobicity and FT-IR analysis indicated that the increase in the -OH stretching vibration intensity on the protein surface represented the formation of the covalent bonds between HPPI and lactose during the CP treatment. An increase in the denaturation temperature of proteins was observed after grafting with lactose. Changes in the secondary structure and surface structure of proteins showed that lactose covalently bonded to the surface of HPPI during CP treatment, forming a more stable ordered structure.
Collapse
Affiliation(s)
- Jiao-Jiao Yu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hui Ji
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yue Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yi-Fu Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xue-Chao Zheng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shu-Hong Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ye Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
34
|
Ability of casein hydrolysate-carboxymethyl chitosan conjugates to stabilize a nanoemulsion: Improved freeze-thaw and pH stability. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105452] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Nooshkam M, Varidi M. Maillard conjugate-based delivery systems for the encapsulation, protection, and controlled release of nutraceuticals and food bioactive ingredients: A review. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105389] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Influence of ionic strength and thermal pretreatment on the freeze-thaw stability of Pickering emulsion gels. Food Chem 2020; 303:125401. [DOI: 10.1016/j.foodchem.2019.125401] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/28/2022]
|
37
|
Improving the emulsion freeze-thaw stability of soy protein hydrolysate-dextran conjugates. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108506] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Dickinson E. Strategies to control and inhibit the flocculation of protein-stabilized oil-in-water emulsions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
39
|
Li R, Cui Q, Wang G, Liu J, Chen S, Wang X, Wang X, Jiang L. Relationship between surface functional properties and flexibility of soy protein isolate-glucose conjugates. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.030] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Steiner BM, Shukla V, McClements DJ, Li YO, Sancho-Madriz M, Davidov-Pardo G. Encapsulation of Lutein in Nanoemulsions Stabilized by Resveratrol and Maillard Conjugates. J Food Sci 2019; 84:2421-2431. [PMID: 31404478 DOI: 10.1111/1750-3841.14751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/15/2019] [Accepted: 06/29/2019] [Indexed: 11/28/2022]
Abstract
Lutein is incorporated into foods as a natural yellow pigment and nutraceutical. The introduction of lutein into many foods and beverages, however, is problematic because of its strong hydrophobicity and poor chemical stability. In this research, lutein-loaded nanoemulsions were prepared to overcome this problem. Casein-dextran Maillard conjugates or physical complexes were utilized as emulsifiers, while either medium chain triglycerides (MCT) or grape seed oil (GSO) were used as carrier oils. The impact of resveratrol addition on nanoemulsion stability was also examined. The influence of storage temperature, pH, and CaCl2 concentration on the chemical and physical stability of the nanoemulsions was measured. The casein-dextran conjugates were highly effective at improving the physical resistance of the nanoemulsions to environmental stresses, but had a detrimental effect on their color stability. Conversely, nanoemulsions prepared from casein-dextran physical complexes were unstable around the protein's isoelectric point (pH 4.6), as well as upon addition of CaCl2 . Incorporation of resveratrol and GSO into the nanoemulsions decreased lutein degradation and color fading at all temperatures. This study shows that casein-dextran conjugates are highly effective at improving the physical stability of lutein-loaded nanoemulsions, while resveratrol and GSO are effective at improving their chemical stability. PRACTICAL APPLICATION: Lutein can be used by the food industry to create "clean label" and functional food products. The major challenges in incorporating lutein in foods are its poor chemical stability and its high hydrophobicity, which makes it difficult to incorporate. Emulsion-based delivery systems assembled from natural ingredients may address these challenges. In this study, the impact of Maillard conjugates fabricated from caseinate and dextran, as well as resveratrol addition, on the formation and stability of lutein-enriched nanoemulsions was determined. The information obtained from this study will help the formulation of more effective functional foods and beverage products.
Collapse
Affiliation(s)
- Benjamin M Steiner
- Nutrition and Food Science Dept., California State Polytechnic Univ. Pomona, 3801 West Temple Ave, Pomona, CA, 91768, USA
| | - Viral Shukla
- Nutrition and Food Science Dept., California State Polytechnic Univ. Pomona, 3801 West Temple Ave, Pomona, CA, 91768, USA
| | | | - Yao Olive Li
- Nutrition and Food Science Dept., California State Polytechnic Univ. Pomona, 3801 West Temple Ave, Pomona, CA, 91768, USA
| | - Martin Sancho-Madriz
- Nutrition and Food Science Dept., California State Polytechnic Univ. Pomona, 3801 West Temple Ave, Pomona, CA, 91768, USA
| | - Gabriel Davidov-Pardo
- Nutrition and Food Science Dept., California State Polytechnic Univ. Pomona, 3801 West Temple Ave, Pomona, CA, 91768, USA
| |
Collapse
|
41
|
Study on the fabrication and in vitro digestion behavior of curcumin-loaded emulsions stabilized by succinylated whey protein hydrolysates. Food Chem 2019; 287:76-84. [DOI: 10.1016/j.foodchem.2019.02.047] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 11/20/2022]
|
42
|
Optimization of gamma-aminobutyric acid production in a model system containing soy protein and inulin by Lactobacillus brevis fermentation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00183-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Li R, Wang X, Liu J, Cui Q, Wang X, Chen S, Jiang L. Relationship between Molecular Flexibility and Emulsifying Properties of Soy Protein Isolate-Glucose Conjugates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4089-4097. [PMID: 30883123 DOI: 10.1021/acs.jafc.8b06713] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
At present, the structure-activity relationships of soy protein isolate are still not well understood. In this paper, the relationship between molecular flexibility and emulsifying properties of soy protein isolate and soy protein isolate-glucose conjugates were investigated. The Maillard reaction was carried out at different temperature conditions (50 °C, 60 °C, 70 °C, 80 °C, and 90 °C) under a specific wet condition. Meanwhile, structural properties including surface hydrophobicity ( H0), molecular flexibility and secondary, tertiary, quaternary structures, and the free sulfhydryl group ( -SH) content were measured. The results showed that there was a good correlation between molecular flexibility and emulsifying properties, and the correlation coefficients was 0.920 ( P < 0.01) for emulsifying activity and 0.952 ( P < 0.01) for emulsion stability. Compared with soy protein isolate, the H0 of samples at different temperatures first increased and then decreased reaching a maximum at 70 °C, a red shift occurred during the whole given reaction conditions shown by the intrinsic fluorescence spectrum, and the free sulfhydryl content also displayed a marked increase ( P < 0.05). At the same time, the particle size gradually became smaller as the degree of grafting increased. The contents of β-turn and random coil increased at the cost of α-helix and β-sheet contents, as evidenced by Fourier transform infrared results. The findings could provide a deep insight into the structure-function relationship of soy protein isolate-glucose conjugates, thus providing theoretical guidance for further research of soy proteins.
Collapse
Affiliation(s)
- Rui Li
- College of Food Science , Northeast Agricultural University , Harbin 150030 , China
| | - Xibo Wang
- College of Food Science , Northeast Agricultural University , Harbin 150030 , China
| | - Jingnan Liu
- College of Food Science , Northeast Agricultural University , Harbin 150030 , China
| | - Qiang Cui
- College of Food Science , Northeast Agricultural University , Harbin 150030 , China
| | - Xiaodan Wang
- College of Food Science , Northeast Agricultural University , Harbin 150030 , China
| | - Shuang Chen
- College of Food Science , Northeast Agricultural University , Harbin 150030 , China
| | - Lianzhou Jiang
- College of Food Science , Northeast Agricultural University , Harbin 150030 , China
| |
Collapse
|
44
|
Zang X, Yue C, Liu M, Zheng H, Xia X, Yu G. Improvement of freeze-thaw stability of oil-in-water emulsions prepared with modified soy protein isolates. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
Jiang B, Na J, Wang L, Li D, Liu C, Feng Z. Eco-Innovation in Reusing Food By-Products: Separation of Ovalbumin from Salted Egg White Using Aqueous Two-Phase System of PEG 1000/(NH₄)₂SO₄. Polymers (Basel) 2019; 11:E238. [PMID: 30960222 PMCID: PMC6419032 DOI: 10.3390/polym11020238] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 12/11/2022] Open
Abstract
For the purpose of reducing pollution and the rational use of salted egg white, which is a byproduct of the manufacturing process of salted egg yolk, an aqueous two-phase system (ATPS) composed of polyethylene glycols (PEG 1000) and (NH₄)₂SO₄ was investigated to selectively separate ovalbumin (OVA) from salted egg white. With the aim of optimizing the selective separation of OVA using ATPS, a response surface method (RSM) experiment was carried out on the basis of a single-factor experiment. The OVA was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS⁻PAGE), reversed-phase high-performance liquid chromatography (RP-HPLC), liquid chromatography-nano electrospray ionization mass spectrometry (Nano LC-ESI-MS/MS), and Fourier transform infrared spectroscopy (FT-IR). Under the optimal conditions, the recovery yield of OVA through ATPS (Y) and the purity of OVA (P) could reach 89.25% and 96.28%, respectively. In conclusion, OVA was successfully separated from the salted egg white by PEG/(NH₄)₂SO₄ ATPS.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Applied Chemistry, Northeast Agricultural University, NO.600 Changjiang Road Xiangfang, Harbin 150030, China.
| | - Jiaxin Na
- Department of Applied Chemistry, Northeast Agricultural University, NO.600 Changjiang Road Xiangfang, Harbin 150030, China.
| | - Lele Wang
- Department of Applied Chemistry, Northeast Agricultural University, NO.600 Changjiang Road Xiangfang, Harbin 150030, China.
| | - Dongmei Li
- Department of Applied Chemistry, Northeast Agricultural University, NO.600 Changjiang Road Xiangfang, Harbin 150030, China.
| | - Chunhong Liu
- Department of Applied Chemistry, Northeast Agricultural University, NO.600 Changjiang Road Xiangfang, Harbin 150030, China.
| | - Zhibiao Feng
- Department of Applied Chemistry, Northeast Agricultural University, NO.600 Changjiang Road Xiangfang, Harbin 150030, China.
| |
Collapse
|
46
|
Zhang C, Wang Z, Li Y, Yang Y, Ju X, He R. The preparation and physiochemical characterization of rapeseed protein hydrolysate-chitosan composite films. Food Chem 2019; 272:694-701. [DOI: 10.1016/j.foodchem.2018.08.097] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 01/06/2023]
|
47
|
Zang X, Yue C, Wang Y, Shao M, Yu G. Effect of limited enzymatic hydrolysis on the structure and emulsifying properties of rice bran protein. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2018.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
48
|
López DN, Galante M, Ruggieri G, Piaruchi J, Dib ME, Duran NM, Lombardi J, de Sanctis M, Boeris V, Risso PH, Spelzini D. Peptidase from Aspergillus niger NRRL 3: Optimization of its production by solid-state fermentation, purification and characterization. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|