1
|
Shi W, Li H, Fu Y, Tang X, Yu J, Wang X. Preparation of functional oils rich in phytosterol esters and diacylglycerols by enzymatic transesterification. Food Chem 2024; 448:139100. [PMID: 38552457 DOI: 10.1016/j.foodchem.2024.139100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 04/24/2024]
Abstract
Phytosterol esters (PEs) and diacylglycerols (DAGs) have various health benefits in humans. In this study, PEs and DAGs were synthesized by lipase-catalyzed transesterification between a natural oil and phytosterols. First, commercial lipases were screened for transesterification and were further verified using multiple-ligand molecular docking. AYS "Amano" (a lipase from Candida rugosa) was found to be the optimum lipase. Subsequently, the enzymatic transesterification conditions were optimized. The optimized conditions were determined to be a 1:2 M ratio of phytosterols to oil, 100 mmol/L phytosterols, and 9 % AYS "Amano", and 50 °C for 24 h in 20 mL n-hexane. Under these conditions, over 70 % of phytosterols were converted to PEs. In this study, an efficient enzymatic process was developed to produce value-added functional oils rich in PEs and DAGs, with PEs content ≥ 31.6 %, DAGs content ≥ 11.2 %, acid value ≤ 0.91 mg KOH/g, and peroxide value ≤ 2.38 mmol/kg.
Collapse
Affiliation(s)
- Wangxu Shi
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Houyue Li
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Yijie Fu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Xiao Tang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Junwen Yu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Xiaosan Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Shanxi Agricultural University, Taigu, Taiyuan, Shanxi 030801, PR China.
| |
Collapse
|
2
|
Nguyen PC, Nguyen MTT, Ban SY, Choi KO, Park JH, Tran PL, Pyo JW, Kim J, Park JT. Enzymatic synthesis and characterization of novel lipophilic inotodiol-oleic acid conjugates. Food Chem 2024; 437:137897. [PMID: 37918158 DOI: 10.1016/j.foodchem.2023.137897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
In this study, we establish an efficient enzymatic approach for producing novel inotodiyl-oleates (IOs) from pure inotodiol and oleic acid to improve the properties of inotodiol. For the esterification between inotodiol and oleic acid, CALA and n-hexane were the optimal biocatalyst and solvents for forming IOs with 80.17% conversion yield. These IOs comprised two distinct monoesters, the C3 or C22 ester forms of inotodiol. Intriguingly, no diesters were detected. The IOs had a melting point of 53.48 °C, much lower than that of inotodiol (192.06 °C). The in vitro digestion rate of IOs (25-28%) was significantly (p < 0.05) lower than that of cholesteryl-oleate (60%). Additionally, IOs exhibited much lower in vivo absorption than inotodiol when orally administered using different formulations (p < 0.05). The results indicated that IOs were resistant to enzymatic digestion in the small intestine, which could be advantageous in targeting the large intestine for disease treatments.
Collapse
Affiliation(s)
- Phu Cuong Nguyen
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - My Tuyen Thi Nguyen
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea; Department of Food Technology, Can Tho University, Can Tho 94000, Viet Nam
| | - So-Young Ban
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea; CARBOEXPERT Inc., Daejeon 34134, Republic of Korea
| | - Kyeong-Ok Choi
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji-Hyun Park
- CARBOEXPERT Inc., Daejeon 34134, Republic of Korea
| | - Phuong Lan Tran
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea; Department of Food Technology, An Giang University, Long Xuyen 880000, Viet Nam; Vietnam National University of Ho Chi Minh City, Ho Chi Minh 700000, Viet Nam
| | - Jang-Won Pyo
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaehan Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea; CARBOEXPERT Inc., Daejeon 34134, Republic of Korea.
| |
Collapse
|
3
|
Wang Y, Wang T, Wang Z, Guo Y, Liu R, Chang M. Application of small angle X-ray scattering in exploring the effect of edible oils with different unsaturation FAs on bioaccessibility of stigmasterol oleate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7764-7774. [PMID: 37482970 DOI: 10.1002/jsfa.12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 07/22/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Phytosterol can improve its lipid solubility, lipophilic/hydrophilic balance and bioaccessibility by esterification with fatty acids, which increases its practical application range in the food industry. In the present study, small angle X-ray scattering combined with the pH-stat in vitro digestion model was applied to continuously monitor the molecular structure evolution of mixed micelles during digestion and investigate the effect of three edible oils (olive oil with 72.41 ± 0.57% oleic, sunflower seed oil with 63.45 ± 0.78% linoleic, refined linseed oil with 51.74 ± 0.34% linolenic) on bioaccessibility of stigmasterol oleate in vitro. RESULTS The release degree and rate of fatty acids in the three edible oil systems (kOO+ST-OA = 0.0501, kSO+ ST-OA = 0.0357, kLO+ST-OA = 0.0323) was compared. The three different edible oils had similar impact on the formation of dietary mixed micelles during the simulatedin vitro digestion of stigmasterol oleate, although there were significant differences in molecular morphology and composition of mixed micelles. The results showed that the vesicles formed by linoleic oil (SO system) or linolenic oil (LO system) were easy to dissociate. The largest average number and diameter of vesicles (5.55 × 1016 cm-3 and 2230.75 Å), the most stable vesicle structure and the fastest fatty acid release rate were observed in the OO system. CONCLUSION Compared to linoleic (SO system) or linolenic (LO system), the oleic (OO system) could facilitate the transformation of micelles to vesicles and maintain the stability of its membrane, significantly promotin the dissolution of stigmasterol and improving bioaccessibility. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tao Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhangtie Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yiwen Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruijie Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ming Chang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Zhang Y, Ma G, Wang S, Nian B, Hu Y. Study on the synthesis of pine sterol esters in solvent-free systems catalyzed by Candida rugosa lipase immobilized on hydrophobic macroporous resin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7849-7861. [PMID: 37467367 DOI: 10.1002/jsfa.12869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Pine sterol ester is a type of novel food source nutrient with great advantages in lowering blood cholesterol levels, inhibiting tumors, preventing prostate enlargement, and regulating immunity. Macroporous resins with large specific surface area, stable structures, and various functional groups (epoxy, amino, and octadecyl groups) have been selected for immobilization of Candida rugosa lipase (CRL) to improve its stability and efficiency in the synthesis of pine sterol esters. A solvent-free strategy using oleic acid (substrate) as an esterification reaction medium is an important alternative for avoiding the use of organic solvents. RESULTS The immobilization conditions of CRL immobilized on several types of commercial macroporous resins were optimized. Fortunately, by adsorption (hydrophobic interaction), a high immobilization efficiency of CRL was obtained using macroporous resins with hydrophobic octadecyl groups with an immobilization efficiency of 86.5%, enzyme loading of 138.5 mg g-1 and enzyme activity of 34.7 U g-1 . The results showed that a 95.1% yield could be obtained with a molar ratio of oleic acid to pine sterol of 5:1, an enzyme amount of 6.0 U g-1 (relative to pine sterol mass) at 50 °C for 48 h. CONCLUSION The hydrophobic macroporous resin (ECR8806M) with a large specific surface area and abundant functional groups was used to achieve efficient immobilization of CRL. CRL@ECR8806M is an efficient catalyst for the synthesis of phytosterol esters and has the potential for further large-scale applications. Therefore, this simple, green, and low-cost strategy for lipase immobilization provides new possibilities for the high-efficiency production of pine sterol esters and other food source nutrients. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yifei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Guangzheng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Shushu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| |
Collapse
|
5
|
Huang X, Wang P, Xue W, Cheng J, Yang F, Yu D, Shi Y. Preparation of meaty flavor additive from soybean meal through the Maillard reaction. Food Chem X 2023; 19:100780. [PMID: 37780247 PMCID: PMC10534126 DOI: 10.1016/j.fochx.2023.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/25/2023] [Accepted: 07/02/2023] [Indexed: 10/03/2023] Open
Abstract
Meaty flavor additive was prepared from soybean meal hydrolysate and xylose in the method of Maillard reaction. Under the conditions of reaction temperature 120 ℃, time 120 min and cysteine addition 10%, the Maillard products had strong flavor of meat. The content of free amino acids was 4.941 μ mol/mL in the products. There were 50 volatile flavor substances in Maillard reaction products according to GC-MS analysis. 4 mercaptans, 4 sulfur substituted furans, 3 thiophenes, 7 furans, 6 pyrazine, 3 pyrrole, 1 pyrimidine, 7 aldehydes, 4 ketones, 7 esters, 2 alcohols and 2 acids were included. The Maillard reaction products also have strong antioxidant activity. The scavenging ability of FRAP, DPPH radical, hydroxyl radical and ABTS+ radical was 1.82%, 69.8%, 68.7% and 71.6% respectively. The products of Mailard reaction have potential to be used in food additives.
Collapse
Affiliation(s)
- Xianhui Huang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Peng Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wenlin Xue
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jie Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Fuming Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Dianyu Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yongge Shi
- Jiusan Grains and Oils Industrial Group Co., Ltd, Harbin 150090, China
| |
Collapse
|
6
|
Effects of different deodorization methods on the oxidation of sterol components in rice bran oil. Food Chem 2023; 404:134568. [DOI: 10.1016/j.foodchem.2022.134568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/21/2022] [Accepted: 10/08/2022] [Indexed: 11/22/2022]
|
7
|
Hu Y, Ma C, Liu J, Bai G, Guo S, Wang T. Synthesis, Physical Properties, and In Vitro-Simulated Gastrointestinal Digestion of Hydrophilic β-Sitosterol Sugar Esters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8458-8468. [PMID: 35786884 DOI: 10.1021/acs.jafc.2c01847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrophilic β-sitosterol sugar esters were synthesized by a two-step biocatalytic approach using β-sitosterol vinyl adipate as an intermediate. The maximum conversion (above 90%) of β-sitosterol vinyl adipate was achieved using the saccharides glucose, sucrose, and raffinose. The chemical structure of the synthesized esters was confirmed by various techniques. The investigation of physical properties revealed that β-sitosterol sugar esters had enhanced water solubility (3.0-8.0 mM at 35 °C), reduced crystallinity, and high wettability. Their lyotropic liquid crystal properties were observed by polarized light microscopy. Furthermore, β-sitosterol sugar esters could be hydrolyzed into β-sitosterol adipate under simulated intestinal conditions at a low rate (2.83-18.14%). Most β-sitosterol sugar esters probably entered into intestinal bile salt micelles with ester bonds intact and showed up to 10-fold higher in vitro bioaccessibility than free β-sitosterol in non-fat systems. The excellent physical and functional characteristics of β-sitosterol sugar esters suggested their great potential application in the food industry.
Collapse
Affiliation(s)
- Yuyuan Hu
- College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Chuanguo Ma
- College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Jun Liu
- College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
- Institute of Grain and Oil Standardization, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Ge Bai
- College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Shujing Guo
- College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Tong Wang
- College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| |
Collapse
|
8
|
Xu Y, Zhang J, Pan T, Ren F, Luo H, Zhang H. Synthesis, characterization and effect of alkyl chain unsaturation on the antioxidant activities of chlorogenic acid derivatives. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Amaral JBS, Grisi CVB, Vieira EA, Ferreira PS, Rodrigues CG, Diniz NCM, Vieira PPF, Santos NAD, Gonçalves MC, Braga ALM, Cordeiro AMTDM. Light cream cheese spread of goat milk enriched with phytosterols: Physicochemical, rheological, and microbiological characterization. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Hu YY, Ma CG, Zhou TL, Bai G, Guo SJ, Chen XW. Enzymatic synthesis of hydrophilic phytosterol polyol esters and assessment of their bioaccessibility and uptake using an in vitro digestion/Caco-2 cell model. Food Chem 2022; 370:131324. [PMID: 34788959 DOI: 10.1016/j.foodchem.2021.131324] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 09/14/2021] [Accepted: 10/02/2021] [Indexed: 12/25/2022]
Abstract
A novel enzyme-catalyzed method was developed for the synthesis of phytosterol polyol esters from β-sitosterol and polyols (sorbitol, mannitol and xylitol) by two-step transesterification using divinyl adipate (DVA) as a link. A high conversion (exceeding 94%) of β-sitosterol with a vinyl group was achieved, in the presence of Candida rugosa lipase (CRL), at low temperature (35 °C) within 30 min. Subsequently, the maximum conversion of phytosterol polyol esters (>94%) was obtained using alkaline protease from Bacillus subtilis at 65 °C. Phytosterol polyol esters had enhanced thermal stability (up to an above 355 °C) and excellent water solubility (4.6-7.9 mM at 35 °C). Moreover, obvious increases in the bioaccessibility (41.5-63.6%) and intestinal uptake (5.2-6.5%) were observed using a simulated gastrointestinal digestion/Caco-2 cell model. These results highlighted the key role of hydrophilic structural modifications on physicochemical properties and absorption of phytosterols.
Collapse
Affiliation(s)
- Yu-Yuan Hu
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Chuan-Guo Ma
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China.
| | - Tan-Ling Zhou
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Ge Bai
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Shu-Jing Guo
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Xiao-Wei Chen
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| |
Collapse
|
11
|
Abstract
Lipases are versatile enzymes widely used in the pharmaceutical, cosmetic, and food industries. They are green biocatalysts with a high potential for industrial use compared to traditional chemical methods. In recent years, lipases have been used to synthesize a wide variety of molecules of industrial interest, and extraordinary results have been reported. In this sense, this review describes the important role of lipases in the synthesis of phytosterol esters, which have attracted the scientific community’s attention due to their beneficial effects on health. A systematic search for articles and patents published in the last 20 years with the terms “phytosterol AND esters AND lipase” was carried out using the Scopus, Web of Science, Scielo, and Google Scholar databases, and the results showed that Candida rugosa lipases are the most relevant biocatalysts for the production of phytosterol esters, being used in more than 50% of the studies. The optimal temperature and time for the enzymatic synthesis of phytosterol esters mainly ranged from 30 to 101 °C and from 1 to 72 h. The esterification yield was greater than 90% for most analyzed studies. Therefore, this manuscript presents the new technological approaches and the gaps that need to be filled by future studies so that the enzymatic synthesis of phytosterol esters is widely developed.
Collapse
|
12
|
WANG S, YU D, SHI Y, JIANG L, YANG F, YU G. Investigation into the bioavailability of synthesized phytosterol esters in vitro and in vivo using Caco-2 cell model and Wistar rats. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.68620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shirang WANG
- Northeast Agricultural University, China; Heilongjiang Communications Polytechnic, China
| | - Dianyu YU
- Northeast Agricultural University, China
| | - Yongge SHI
- Jiusan Grains and Oils Industrial Group Co., China
| | | | | | - Guoping YU
- Northeast Agricultural University, China
| |
Collapse
|
13
|
Boyd AP, Talbert JN, Acevedo NC. Effect of agitation and added cholesterol esterase on bioaccessibility of phytosterols in a standardized in vitro digestion model. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Oh KK, Adnan M, Cho DH. Network Pharmacology Study on Morus alba L. Leaves: Pivotal Functions of Bioactives on RAS Signaling Pathway and Its Associated Target Proteins against Gout. Int J Mol Sci 2021; 22:9372. [PMID: 34502281 PMCID: PMC8431517 DOI: 10.3390/ijms22179372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/27/2022] Open
Abstract
M. alba L. is a valuable nutraceutical plant rich in potential bioactive compounds with promising anti-gouty arthritis. Here, we have explored bioactives, signaling pathways, and key proteins underlying the anti-gout activity of M. alba L. leaves for the first-time utilizing network pharmacology. Bioactives in M. alba L. leaves were detected through GC-MS (Gas Chromatography-Mass Spectrum) analysis and filtered by Lipinski's rule. Target proteins connected to the filtered compounds and gout were selected from public databases. The overlapping target proteins between bioactives-interacted target proteins and gout-targeted proteins were identified using a Venn diagram. Bioactives-Proteins interactive networking for gout was analyzed to identify potential ligand-target and visualized the rich factor on the R package via the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway on STRING. Finally, a molecular docking test (MDT) between bioactives and target proteins was analyzed via AutoDock Vina. Gene Set Enrichment Analysis (GSEA) demonstrated that mechanisms of M. alba L. leaves against gout were connected to 17 signaling pathways on 26 compounds. AKT1 (AKT Serine/Threonine Kinase 1), γ-Tocopherol, and RAS signaling pathway were selected as a hub target, a key bioactive, and a hub signaling pathway, respectively. Furthermore, three main compounds (γ-Tocopherol, 4-Dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene) tyramine, and Lanosterol acetate) and three key target proteins-AKT1, PRKCA, and PLA2G2A associated with the RAS signaling pathway were noted for their highest affinity on MDT. The identified three key bioactives in M. alba L. leaves might contribute to recovering gouty condition by inactivating the RAS signaling pathway.
Collapse
Affiliation(s)
| | | | - Dong Ha Cho
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (K.K.O.); (M.A.)
| |
Collapse
|
15
|
Highly efficient synthesis of 4,4-dimethylsterol oleates using acyl chloride method through esterification. Food Chem 2021; 364:130140. [PMID: 34175623 DOI: 10.1016/j.foodchem.2021.130140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 11/23/2022]
Abstract
In this study, the 4,4-dimethylsterol oleates were efficiently synthesized through esterification of 4,4-dimethylsterols and oleoyl chloride. The impact of reaction parameters on the 4,4-dimethylsterol conversion were investigated. The 4,4-dimethylsterol conversion increased with pyridine dosage, molar ratio of oleoyl chloride to 4,4-dimethylsterols, and temperature. The highest conversion of 99.27% was obtained with molar ratio of 1.1:1 at 313 K for 60 min. A second-order kinetic model describing acyl chloride esterification featuring high correlation coefficients was established. Arrhenius-Van't Hoff plot suggested activation energy and pre-exponential factor were 15.54 kJ mol-1 and 1.78 × 103 L mol-1 min-1, respectively. The molecular structure of 4,4-dimethylsterol oleates were finally identified by attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR), ultra-performance liquid chromatography system coupled with quadrupole time of flight mass spectrometry (UPLC-Q-TOF-MS), and nuclear magnetic resonance (NMR).
Collapse
|
16
|
Feng S, Wang L, Shao P, Sun P, Yang CS. A review on chemical and physical modifications of phytosterols and their influence on bioavailability and safety. Crit Rev Food Sci Nutr 2021; 62:5638-5657. [PMID: 33612007 DOI: 10.1080/10408398.2021.1888692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phytosterols have been shown to lower cholesterol levels and to have antioxidant, anti-inflammatory and other biological activities. However, the high melting point and poor solubility limit their bioavailability and practical application. It is advantageous to modify phytosterols chemically and physically. This article reviews and discusses the chemical and physical modifications of phytosterols, as well as their effects on the bioavailability and possible toxicity in vivo. The current research on chemical modifications is mainly focused on esterification to increase the oil solubility and water solubility. For physical modifications (mainly microencapsulation), there are biopolymer-based, surfactant-based and lipid-based nanocarriers. Both chemical and physical modifications of phytosterols can effectively increase the absorption and bioavailability. The safety of modified phytosterols is also an important issue. Phytosterol esters are generally considered to be safe. However, phytosterol oxides, which may be produced during the synthesis of phytosterol esters, have shown toxicity in animal models. The toxicity of nanocarriers also needs further studies.
Collapse
Affiliation(s)
- Simin Feng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Beijing, China.,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA
| | - Liling Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ping Shao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Beijing, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Beijing, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
17
|
Pan F, Wang X, Wen B, Wang C, Xu Y, Dang W, Zhang M. Development of walnut oil and almond oil blends for improvements in nutritional and oxidative stability. GRASAS Y ACEITES 2020. [DOI: 10.3989/gya.0920192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
For the increase in oxidative stability and phytonutrient contents of walnut oil (WO), 5, 10, 20 and 30% blends with almond oil (AO) were prepared. The fatty acid compositions and the micronutrients of the oil samples such as tocopherol, phytosterol and squalene were measured by GC-MS and HPLC. It was found that the proportions of PUFAs/SFAs in blended oils with high AO contents were lowered, and the blends contained higher levels of tocopherols, phytosterols and squalene than those of pure WO. The 60 °C oven accelerated oxidation test was used to determine the oxidative stability of the blended oil. The fatty acid composition, micronutrients and oxidation products were determined. The results showed that the oxidation stability of the blended oil increased with an increasing proportion of AO. In addition, a significant negative correlation between micronutrient and oxidation products was observed as the number of days of oxidation increased.
Collapse
|
18
|
Jia C, Xia X, Wang H, Bertrand M, Chen G, Zhang X. Preparation of phytosteryl ornithine ester hydrochloride and improvement of its bioaccessibility and cholesterol-reducing activity in vitro. Food Chem 2020; 331:127200. [DOI: 10.1016/j.foodchem.2020.127200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 12/27/2022]
|
19
|
Chang M, Zhang T, Feng W, Wang T, Liu R, Jin Q, Wang X. Preparation of highly pure stigmasteryl oleate by enzymatic esterification of stigmasterol enriched from soybean phytosterols. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Wang S, Fan J, Xu L, Ye K, Shu T, Liu S. Enhancement of Antioxidant Activity in O/W Emulsion and Cholesterol-Reducing Capacity of Epigallocatechin by Derivatization with Representative Phytosterols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12461-12471. [PMID: 31613618 DOI: 10.1021/acs.jafc.9b04382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, derivatization of epigallocatechin (EGC) by representative phytosterols (stigmasterol and β-sitosterol) was performed employing Steglich esterification. The structural identity and purity of epigallocatechin β-sitosterol (ESi) and epigallocatechin stigmasterol (ESt) were confirmed by NMR, FT-IR, and HPLC-MS. Further evaluation of ESi and ESt revealed their extraordinary antioxidant activities in O/W emulsion. Two different radical sources in oil or aqueous phase were applied to explore the antioxidant behavior in O/W emulsion. The mechanism was further investigated by fluorescent microscopy and transmission electron microscopy (TEM). Furthermore, incorporation of EGC with stigmasterol and β-sitosterol notably enhanced the cholesterol-reducing activity. TEM studies suggested the hydrogen bonding of EGC strengthened the aggregation network of ESi and ESt in the bile salt micelle. The exceptional properties of ESi and ESt signified their intriguing utilization in the food industry.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
| | - Jiawen Fan
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
| | - Lujing Xu
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
| | - Kai Ye
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
| | - Tong Shu
- Qinghai Food Inspection and Testing Institute , 12 Beidajie , Xining 810000 , China
| | - Songbai Liu
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
- Qinghai Food Inspection and Testing Institute , 12 Beidajie , Xining 810000 , China
| |
Collapse
|
21
|
Yuan C, Zhang X, Long X, Jin J, Jin R. Effect of β-sitosterol self-microemulsion and β-sitosterol ester with linoleic acid on lipid-lowering in hyperlipidemic mice. Lipids Health Dis 2019; 18:157. [PMID: 31351498 PMCID: PMC6661088 DOI: 10.1186/s12944-019-1096-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
Background The hypolipidemic effect of phytosterols has been wildely recognized, but its application is limited due to its insolubility in water and low solubility in oil. In this study, β-sitosterol ester with linoleic acids and β-sitosterol self-microemulsions were prepared and their hypolipidemic effects on hyperlipidemia mice were studied. Methods Firstly, the mice were randomly divided into normal group and model group,they were fed with basic diet and high-fat diet for 70 days respectively. After high-fat model mice was successfully established, the model group was further divided into eight groups: HFD (high-fat diet feeding), SELA-TSO(8 ml/kg, SELA:700 mg/kg), TSO (8 ml/kg), SSSM (8 ml/kg,SS:700 mg/kg), NLSM (8 ml/kg), SSHT-TSO (8 ml/kg, SS: 700 mg/kg) and SS-TSO (8 ml/kg, SS: 700 mg/kg) groups, and treated with β-sitosterol ester with linoleic acid, β-sitosterol self-microemulsion, commercial β-sitosterol health tablets and β-sitosterol powder for 35 days, respectively, and blank control groups were established. At the end of the treatment period, the blood lipid level, tissues, cholesterol and lipids in feces of mice in each group were investigated. Statistical and analytical data with SPSS 17.0 Software,statistical significance was set at p* < 0.05 and p** < 0.01 levels . Results The order of lowering blood lipid effect is listed as: SSSM> SELA-TSO > SSHT-TSO > SS-TSO, which shows that β-sitosterolself-microemulsion have the highest treatment effect among the experimental groups. Conclusions In this study, a new formulation of β-sitosterol was developed, and its hypolipidemic effect was investigated. The results showed that β-sitosterol self-microemulsion has a good blood lipid lowering effect.
Collapse
Affiliation(s)
- Chuanxun Yuan
- Hefei University of Technology (South Campus), No. 198 Tunxi Road, Baohe District, Hefei City, Anhui Province, China
| | - Xueru Zhang
- Hefei University of Technology (South Campus), No. 198 Tunxi Road, Baohe District, Hefei City, Anhui Province, China
| | - Xue Long
- Hefei University of Technology (South Campus), No. 198 Tunxi Road, Baohe District, Hefei City, Anhui Province, China
| | - Jing Jin
- Hefei University of Technology (South Campus), No. 198 Tunxi Road, Baohe District, Hefei City, Anhui Province, China
| | - Risheng Jin
- Hefei University of Technology (South Campus), No. 198 Tunxi Road, Baohe District, Hefei City, Anhui Province, China.
| |
Collapse
|