1
|
Godínez-Oviedo A, Arvizu-Medrano SM, Bowman JP, Tamplin ML, Garcés-Vega FJ, Cabrera-Diaz E, Gómez-Baltazar A, Hernández-Iturriaga M. Linking intraspecies variability of Salmonella enterica isolates under acidic conditions to genotype. J Food Sci 2024; 89:7907-7915. [PMID: 39363210 DOI: 10.1111/1750-3841.17362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 10/05/2024]
Abstract
There is a lack of information about Salmonella enterica strains under acidic conditions and their association with their genome. This study characterized intraspecies variability in the growth of 167 S. enterica isolates under two acid conditions (pH 4 and 5) and linked to the whole genome sequencing (WGS) data. A total of 1002 curves for each condition were obtained using turbidimetry measurements, and Baranyi and Roberts model was used to estimate the maximum rate of change (rcmax; OD600 nm h-1). Strains were categorized into slow, intermediate, and fast; and associations with their WGS data were performed. Huge variability inr c max ¯ $\overline {{\mathrm{r}}{{{\mathrm{c}}}_{{\mathrm{max}}}}} $ was observed at both conditions (pH 5 = 0.016-0.066 OD600nm h-1 and pH 4 = 0.003-0.028 OD600nm h-1). The majority of isolates was classified as intermediater c max ¯ $\overline {{\mathrm{r}}{{{\mathrm{c}}}_{{\mathrm{max}}}}} $ (59.5% at pH 5 and 46.1% at pH 4). Strains classified as fast had a low frequency of allABCD genes at both pHs, and any of them having the presence of pefABCD, spvBCR, aadA2, dfrA12, and gyrA_D87G genes were linked to virulence or antimicrobial resistance. This study suggests that strains with fast capacity for growth under acidic conditions could have a fitness cost in their virulence or resistance potential. PRACTICAL APPLICATION: Data presented in this study could be used to select representative strains to evaluate the exposure assessment in different food items, mainly the growth and survival in acidic foods.
Collapse
Affiliation(s)
- Angélica Godínez-Oviedo
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Food Safety and Innovation Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Sofia M Arvizu-Medrano
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - John P Bowman
- Food Safety and Innovation Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Mark L Tamplin
- Food Safety and Innovation Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | | | - Elisa Cabrera-Diaz
- Departamento de Salud Pública, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Adrián Gómez-Baltazar
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Montserrat Hernández-Iturriaga
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| |
Collapse
|
2
|
Phaneuf PV, Kim SH, Rychel K, Rode C, Beulig F, Palsson BO, Yang L. Meta-analysis Driven Strain Design for Mitigating Oxidative Stresses Important in Biomanufacturing. ACS Synth Biol 2024; 13:2045-2059. [PMID: 38934464 PMCID: PMC11264330 DOI: 10.1021/acssynbio.3c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
As the availability of data sets increases, meta-analysis leveraging aggregated and interoperable data types is proving valuable. This study leveraged a meta-analysis workflow to identify mutations that could improve robustness to reactive oxygen species (ROS) stresses using an industrially important melatonin production strain as an example. ROS stresses often occur during cultivation and negatively affect strain performance. Cellular response to ROS is also linked to the SOS response and resistance to pH fluctuations, which is important to strain robustness in large-scale biomanufacturing. This work integrated more than 7000 E. coli adaptive laboratory evolution (ALE) mutations across 59 experiments to statistically associate mutated genes to 2 ROS tolerance ALE conditions from 72 unique conditions. Mutant oxyR, fur, iscR, and ygfZ were significantly associated and hypothesized to contribute fitness in ROS stress. Across these genes, 259 total mutations were inspected in conjunction with transcriptomics from 46 iModulon experiments. Ten mutations were chosen for reintroduction based on mutation clustering and coinciding transcriptional changes as evidence of fitness impact. Strains with mutations reintroduced into oxyR, fur, iscR, and ygfZ exhibited increased tolerance to H2O2 and acid stress and reduced SOS response, all of which are related to ROS. Additionally, new evidence was generated toward understanding the function of ygfZ, an uncharacterized gene. This meta-analysis approach utilized aggregated and interoperable multiomics data sets to identify mutations conferring industrially relevant phenotypes with the least drawbacks, describing an approach for data-driven strain engineering to optimize microbial cell factories.
Collapse
Affiliation(s)
- PV Phaneuf
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220. Kongens Lyngby 2800, Denmark
| | - SH Kim
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220. Kongens Lyngby 2800, Denmark
| | - K Rychel
- Department
of Bioengineering, University of California,
San Diego, La Jolla ,California92093-0412 ,United States
| | - C Rode
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220. Kongens Lyngby 2800, Denmark
| | - F Beulig
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220. Kongens Lyngby 2800, Denmark
| | - BO Palsson
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220. Kongens Lyngby 2800, Denmark
- Department
of Bioengineering, University of California,
San Diego, La Jolla ,California92093-0412 ,United States
- Bioinformatics
and Systems Biology Program, University
of California, San Diego, La Jolla ,California92093-0021, United States
- Department
of Pediatrics, University of California,
San Diego, La Jolla ,California 92093-0412, United States
| | - L Yang
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220. Kongens Lyngby 2800, Denmark
| |
Collapse
|
3
|
Gavriil A, Giannenas I, Skandamis PN. A current insight into Salmonella's inducible acid resistance. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 39014992 DOI: 10.1080/10408398.2024.2373387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Salmonella is a diverse and ubiquitous group of bacteria and a major zoonotic pathogen implicated in several foodborne disease outbreaks worldwide. With more than 2500 distinct serotypes, this pathogen has evolved to survive in a wide spectrum of environments and across multiple hosts. The primary and most common source of transmission is through contaminated food or water. Although the main sources have been primarily linked to animal-related food products, outbreaks due to the consumption of contaminated plant-related food products have increased in the last few years. The perceived ability of Salmonella to trigger defensive mechanisms following pre-exposure to sublethal acid conditions, namely acid adaptation, has renewed a decade-long attention. The impact of acid adaptation on the subsequent resistance against lethal factors of the same or multiple stresses has been underscored by multiple studies. Α plethora of studies have been published, aiming to outline the factors that- alone or in combination- can impact this phenomenon and to unravel the complex networking mechanisms underlying its induction. This review aims to provide a current and updated insight into the factors and mechanisms that rule this phenomenon.
Collapse
Affiliation(s)
- Alkmini Gavriil
- Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Athens, Greece
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Ilias Giannenas
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis N Skandamis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
4
|
Cross-protective effect of acid adaptation on ethanol tolerance in Salmonella Enteritidis. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Li D, He S, Dong R, Cui Y, Shi X. Stress Response Mechanisms of Salmonella Enteritidis to Sodium Hypochlorite at the Proteomic Level. Foods 2022; 11:foods11182912. [PMID: 36141039 PMCID: PMC9498478 DOI: 10.3390/foods11182912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Salmonella Enteritidis (S. Enteritidis) can adapt to sublethal sodium hypochlorite conditions, which subsequently triggers stress resistance mechanisms in this pathogen. Hence, the current work aimed to reveal the underlying stress adaptation mechanisms in S. Enteritidis by phenotypic, proteomic, and physiological analyses. It was found that 130 ppm sodium hypochlorite resulted in a moderate inhibitory effect on bacterial growth and an increased accumulation of intracellular reactive oxygen species. In response to this sublethal treatment, a total of 492 proteins in S. Enteritidis showed significant differential abundance (p < 0.05; fold change >2.0 or <0.5), including 225 more abundant proteins and 267 less abundant proteins, as revealed by the tandem-mass-tags-based quantitative proteomics technology. Functional characterization further revealed that proteins related to flagellar assembly, two-component system, and phosphotransferase system were in less abundance, while those associated with ABC transporters were generally in more abundance. Specifically, the repression of flagellar-assembly-related proteins led to diminished swimming motility, which served as a potential energy conservation strategy. Moreover, altered abundance of lipid-metabolism-related proteins resulted in reduced cell membrane fluidity, which provided a survival advantage to S. Enteritidis. Taken together, these results indicate that S. Enteritidis employs multiple adaptation pathways to cope with sodium hypochlorite stress.
Collapse
|
6
|
Zhao N, Xu J, Jiao L, Liu M, Zhang T, Li J, Wei X, Fan M. Acid adaptive response of Alicyclobacillus acidoterrestris: A strategy to survive lethal heat and acid stresses. Food Res Int 2022; 157:111364. [DOI: 10.1016/j.foodres.2022.111364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
|
7
|
He S, Cui Y, Dong R, Chang J, Cai H, Liu H, Shi X. Global transcriptomic analysis of ethanol tolerance response in Salmonella Enteritidis. Curr Res Food Sci 2022; 5:798-806. [PMID: 35600539 PMCID: PMC9114158 DOI: 10.1016/j.crfs.2022.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/07/2022] [Accepted: 04/26/2022] [Indexed: 11/03/2022] Open
Abstract
Adaptation to sublethal amounts of ethanol enables Salmonella Enteritidis to survive under normally lethal ethanol conditions, which is referred to as the ethanol tolerance response (ETR). To uncover mechanisms underlying this adaptative response, RNA-seq and RT-qPCR techniques were employed to reveal global gene expression patterns in S. Enteritidis after sublethal ethanol treatment. It was observed that 811 genes were significantly differentially expressed in ethanol-treated cells compared with control cells, among which 328 were up-regulated and 483 were down-regulated. Functional analysis revealed that these genes were enriched in different pathways, including signal transduction, membrane transport, metabolism, transcription, translation, and cell motility. Specifically, a couple of genes encoding histidine kinases and response regulators in two-component systems were up-regulated to activate sensing and signaling pathways. Membrane function was also influenced by ethanol treatment since ABC transporter genes for transport of glutamate, phosphate, 2-aminoethylphosphonate, and osmoprotectant were up-regulated, while those for transport of iron complex, manganese, and ribose were down-regulated. Accompanied with this, diverse gene expression alterations related to the metabolism of amino acids, carbohydrates, vitamins, and nucleotides were observed, which suggested nutritional requirements for S. Enteritidis to mount the ETR. Furthermore, genes associated with ribosomal units, bacterial chemotaxis, and flagellar assembly were generally repressed as a possible energy conservation strategy. Taken together, this transcriptomic study indicates that S. Enteritidis employs multiple genes and adaptation pathways to develop the ETR. A total of 811 genes were involved in ethanol tolerance of Salmonella Enteritidis. Certain genes encoding two-component signaling systems were upregulated. Differential expression of many metabolism-related genes was observed. Bacterial chemotaxis and flagellar assembly were repressed by ethanol stress. Diverse membrane transport functions were influenced by ethanol stress.
Collapse
|
8
|
Heat shock in Cronobacter sakazakii induces direct protection and cross-protection against simulated gastric fluid stress. Food Microbiol 2022; 103:103948. [DOI: 10.1016/j.fm.2021.103948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 11/21/2022]
|
9
|
Zhao N, Jiao L, Xu J, Zhang J, Qi Y, Qiu M, Wei X, Fan M. Integrated transcriptomic and proteomic analysis reveals the response mechanisms of Alicyclobacillus acidoterrestris to heat stress. Food Res Int 2022; 151:110859. [PMID: 34980395 DOI: 10.1016/j.foodres.2021.110859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/26/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
Alicyclobacillus acidoterrestris can survive pasteurization and is implicated in pasteurized fruit juice spoilage. However, the mechanisms underlying heat responses remain largely unknown. Herein, gene transcription changes of A. acidoterrestris under heat stress were detected by transcriptome, and an integrated analysis with proteomic and physiological data was conducted. A total of 911 differentially expressed genes (DEGs) was observed. The majority of DEGs and differentially expressed proteins (DEPs) were exclusively regulated at the mRNA and protein level, respectively, whereas only 59 genes were regulated at both levels and had the same change trends. Comparative analysis of the functions of the specifically or commonly regulated DEGs and DEPs revealed that the heat resistance of A. acidoterrestris was primarily based on modulating peptidoglycan and fatty acid composition to maintain cell envelope integrity. Low energy consumption strategies were established with attenuated glycolysis, decreased ribosome de novo synthesis, and activated ribosome hibernation. Terminal oxidases, cytochrome bd and aa3, in aerobic respiratory chain were upregulated. Meanwhile, the MarR family transcriptional regulator was upregulated, reactive oxygen species (ROS) was discovered, and the concentration of superoxide dismutase (SOD) increased, indicating that the accompanied oxidative stress was induced by high temperature. Additionally, DNA and protein damage repair systems were activated. This study provided a global perspective on the response mechanisms of A. acidoterrestris to heat stress, with implications for better detection and control of its contamination in fruit juice.
Collapse
Affiliation(s)
- Ning Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingxia Jiao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Junnan Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiman Qi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengzhen Qiu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
10
|
Cavestri C, Savard P, Fliss I, Emond-Rhéault JG, Hamel J, Kukavica-Ibrulj I, Boyle B, Daigle F, Malo D, Bekal S, Harris LJ, Levesque RC, Goodridge L, LaPointe G. Salmonella enterica subsp. enterica virulence potential can be linked to higher survival within a dynamic in vitro human gastrointestinal model. Food Microbiol 2021; 101:103877. [PMID: 34579845 DOI: 10.1016/j.fm.2021.103877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/04/2022]
Abstract
Salmonella enterica subsp. enterica is one of the leading causes of human foodborne infections and several outbreaks are now associated with the consumption of fresh fruit and vegetables. This study aims at evaluating whether Salmonella virulence can be linked to an enhanced ability to survive successive digestive environments. Thirteen S. enterica strains were selected according to high and low virulence phenotypes. Lettuce inoculated separately with each S. enterica strain was used as food matrix in the TNO gastrointestinal model (TIM-1) of the human upper gastrointestinal tract. During the passage in the stomach, counts determined using PMA-qPCR were 2-5 logs higher than the cultivable counts for all strains indicating the presence of viable but non-cultivable cells. Bacterial growth was observed in the duodenum compartment after 180 min for all but one strain and growth continued into the ileal compartment. After passage through the simulated gastrointestinal tract, both virulent and avirulent S. enterica strains survived but high virulence strains had a significantly (p = 0.004) better average survival rate (1003 %-3753 %) than low virulence strains (from 25 % to 3730%). The survival rates of S. enterica strains could be linked to the presence of genes associated with acid and bile resistance and their predicted products. The presence of single nucleotide polymorphisms may also impact the function of virulence associated genes and play a role in the resulting phenotype. These data provide an understanding of the relationship between measured virulence potential and survival of S. enterica during dynamic simulated gastrointestinal transit.
Collapse
Affiliation(s)
- Camille Cavestri
- Institute of Nutrition and Functional Foods, Université Laval, Québec, Canada
| | - Patricia Savard
- Institute of Nutrition and Functional Foods, Université Laval, Québec, Canada
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods, Université Laval, Québec, Canada
| | | | - Jérémie Hamel
- Institute for Integrative and Systems Biology, Université Laval, Québec, Canada
| | | | - Brian Boyle
- Institute for Integrative and Systems Biology, Université Laval, Québec, Canada
| | - France Daigle
- Département de Microbiologie Infectiologie et Immunologie, Université de Montréal, Montréal, Canada
| | - Danielle Malo
- Department of Medicine, McGill University, Montreal, Canada
| | - Sadjia Bekal
- Laboratoire de Santé Publique Du Québec, Ste-Anne de Bellevue, Canada
| | - Linda J Harris
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Roger C Levesque
- Institute for Integrative and Systems Biology, Université Laval, Québec, Canada
| | | | - Gisèle LaPointe
- Department of Food Science, University of Guelph, Guelph, Canada.
| |
Collapse
|
11
|
Badie F, Saffari M, Moniri R, Alani B, Atoof F, Khorshidi A, Shayestehpour M. The combined effect of stressful factors (temperature and pH) on the expression of biofilm, stress, and virulence genes in Salmonella enterica ser. Enteritidis and Typhimurium. Arch Microbiol 2021; 203:4475-4484. [PMID: 34137898 DOI: 10.1007/s00203-021-02435-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Salmonella enterica is a major food borne pathogen that creates biofilm. Salmonella biofilm formation under different environmental conditions is a public health problem. The present study was aimed to evaluate the combined effects of stressful factors (temperature and pH) on the expression of biofilm, stress, and virulence genes in Salmonella Enteritidis and Salmonella Typhimurium. In this study, the effect of temperature (2, 8, 22.5, 37, 43 °C) and pH (2.4, 3, 4.5, 6, 6.6) on the expression of biofilm production genes (adr A, bap A), virulence genes (hil A, inv A) and the stress gene (RpoS) of S. Enteritidis and S. Typhimurium was evaluated. The response surface methodology (RSM) approach was used to evaluate the combined effect of the above factors. The highest expression of adr A, bap A, hil A, and RpoS gene for S. Typhimurium was at 22 °C-pH 4.5 (6.39-fold increase), 37 °C-pH 6 (3.92-fold increase), 37 °C-pH 6 (183-fold increase), and 37 °C-pH 3 (43.8-fold increase), respectively. The inv A gene of S. Typhimurium was decreased in all conditions. The adr A, bap A, hil A, inv A, and RpoS gene of S. Enteritidis had the highest expression level at 8 °C-pH 3 (4.09-fold increase), 22 °C-pH 6 (2.71-fold increase), 8 °C pH 3 (190-fold increase), 22 °C-pH 4.5 (9.21-fold increase), and 8 °C-pH 3 (16.6-fold), respectively. Response surface methodology (RSM) indicated that the temperature and pH had no significant effect on the expression level of adr A, bap A, hil A, Inv A, and RpoS gene in S. Enteritidis and S. Typhimurium. The expression of biofilm production genes (adr A, bap A), virulence genes (hil A, inv A) and the stress gene (RpoS) of S. Enteritidis and S. Typhimurium is not directly and exclusively associated with temperature and pH conditions.
Collapse
Affiliation(s)
- Fereshteh Badie
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmood Saffari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Rezvan Moniri
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Anatomical Science Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Behrang Alani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Atoof
- Department of Biostatistics and Epidemiology, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Khorshidi
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mohammad Shayestehpour
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran. .,Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
12
|
Wu J, Yan X, Weng P, Chen G, Wu Z. Homology- and cross-resistance of Lactobacillus plantarum to acid and osmotic stress and the influence of induction conditions on its proliferation by RNA-Seq. J Basic Microbiol 2021; 61:576-590. [PMID: 33945164 DOI: 10.1002/jobm.202100051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/23/2021] [Accepted: 04/18/2021] [Indexed: 12/27/2022]
Abstract
In this study, homology- and cross-resistance of Lactobacillus plantarum L1 and Lactobacillus plantarum L2 to acid and osmotic stress were investigated. Meanwhile, its proliferation mechanism was demonstrated by transcriptomic analysis using RNA sequencing. We found that the homologous-resistance and cross-resistance of L. plantarum L1 and L. plantarum L2 increased after acid and osmotic induction treatment by lactic acid and sodium lactate solution in advance, and the survival rate of live bacteria was improved. In addition, the count of viable bacteria of L. plantarum L2 significantly increased cultivated at a pH 5.0 with a 15% sodium lactate sublethal treatment, compared with the control group. Further study revealed that genes related to membrane transport, amino acid metabolism, nucleotide metabolism, and cell growth were significantly upregulated. These findings will contribute to promote high-density cell culture of starter cultures production in the fermented food industry.
Collapse
Affiliation(s)
- Jingyi Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xu Yan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Peifang Weng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Gong Chen
- Sichuan Food Fermentation Industry Research and Design Institute, Chengdu, Sichuan, China
| | - Zufang Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
13
|
RNA-seq-based transcriptomic comparison of Saccharomyces cerevisiae during spontaneous and inoculated fermentations of organic and conventional grapes. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Bai H, Zhou D, Zhang X, Cao Y, Xiao X, Zhang Y, Yu Y. The responses of Salmonella enterica serovar Typhimurium to vanillin in apple juice through global transcriptomics. Int J Food Microbiol 2021; 347:109189. [PMID: 33838479 DOI: 10.1016/j.ijfoodmicro.2021.109189] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022]
Abstract
Salmonella enterica serovar Typhimurium can survive some extreme environment in food processing, and vanillin generally recognized as safe is bactericidal to pathogens. Thus, we need to explore the responses of S. Typhimurium to vanillin in order to apply this antimicrobial agent in food processing. In this study, we exposed S. Typhimurium to commercial apple juice with/without vanillin (3.2 mg/mL) at 45 °C for 75 min to determine the survival rate. Subsequently, the 10-min cultures were selected for transcriptomic analysis. Using high-throughput RNA sequencing, genes related to vanillin resistance and their expression changes of S. Typhimurium were identified. The survival curve showed that S. Typhimurium treated with vanillin were inactivated by 5.5 log after 75 min, while the control group only decreased by 2.3 log. Such a discrepancy showed the significant antibacterial effect of vanillin on S. Typhimurium. As a result, 265 differentially expressed genes (DEGs) were found when coping with vanillin, among which, 225 showed up-regulation and 40 DEGs were down-regulated. Treated with vanillin, S. Typhimurium significantly up-regulated genes involved in cell membrane, acid tolerance response (ATR) and oxidative stress response, cold shock cross-protection, DNA repair, virulence factors and some key regulators. Firstly, membrane-related genes, including outer membrane (bamE, mepS, ygdI, lolB), inner membrane (yaiY, yicS) and other proteins (yciC, yjcH), were significantly up-regulated because of the damaged cell membrane. Then, up-regulated proteins associated with arginine synthesis (ArgABCDIG) and inward transportation (ArtI, ArtJ, ArtP and HisP), participated in ATR to pump out the protons inside the cell in this scenario. Next, superoxide stress response triggered by vanillin was found to have a significant up-regulation as well, which was controlled by SoxRS regulon. Besides, NADH-associated (nuoA, nuoB, nuoK, nadE, fre and STM3021), thioredoxin (trxA, trxC, tpx and bcp) and glutaredoxin (grxC and grxD) DEGs led to the increase of the oxidative stress response. Cold shock proteins such as CspA and CspC showed an up-regulation, suggesting it might play a role in cross-protecting S. Typhimurium from vanillin stress. Furthermore, DEGs in DNA repair and virulence factors, including flagellar assembly, adhesins and type III secretion system were up-regulated. Some regulators like fur, rpoE and csrA played a pivotal role in response to the stress caused by vanillin. Therefore, this study sounds an alarm for the risks caused by stress tolerance of S. Typhimurium in food industry.
Collapse
Affiliation(s)
- Hong Bai
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Donggen Zhou
- Ningbo International Travel Healthcare Center, No.336 LiutingStreet, Haishu District, Ningbo City, Zhejiang Province 315012, China
| | - Xiaowei Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Yifang Cao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Xinglong Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China.
| | - Yan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Yigang Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China.
| |
Collapse
|
15
|
Expression and functionality of allergenic genes regulated by simulated gastric juice in Anisakis pegreffii. Parasitol Int 2020; 80:102223. [PMID: 33137497 DOI: 10.1016/j.parint.2020.102223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/31/2020] [Accepted: 09/13/2020] [Indexed: 11/24/2022]
Abstract
To better understand the molecular mechanisms underlying allergens and parasite immunity and discover the stage-enriched gene expression of fish-borne zoonotic nematodes in the stomach, we used RNA-seq to study the transcriptome profiles of Anisakis pegreffii (Nematoda: Anisakidae, AP) in simulated gastric juice. Mobile L3 larvae were incubated in simulated medium at 37 °C in 5% CO2 (AP-GJ) and the control group larvae were collected in PBS under the same conditions (AP-PBS). We found that the sequences of A. pegreffii were highly similar to Toxocara canis sequences. Among the transcripts, there would be 138 up-regulated putative genes and 251 down-regulated putative genes in AP-GJ group. Several lipid binging-related genes were more highly expressed in AP-GJ larvae. Moreover, 17 allergen genes were up-regulated and 29 were down-regulated in AP-GJ larvae. Eleven allergen genes belonged to one or more of the following three categories: biological process, cellular component, and molecular function. According to KEGG analysis, the main pathways that were represented included protein processing in transcription, immune system, cancer, and infectious disease. In particular, the most significant changes in the expression of parasite-derived allergen products occurred in AP-GJ larvae. This study helps us to extend our understanding of the biology of the fish-borne zoonotic parasite A. pegreffii and could be helpful for more precise risk assessment and providing guidelines for allergic consumers.
Collapse
|
16
|
New insights into thermo-acidophilic properties of Alicyclobacillus acidoterrestris after acid adaptation. Food Microbiol 2020; 94:103657. [PMID: 33279082 DOI: 10.1016/j.fm.2020.103657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 12/31/2022]
Abstract
Alicyclobacillus acidoterrestris has unique thermo-acidophilic properties and is the main cause of fruit juice deterioration. Given the acidic environment and thermal treatment during juice processing, the effects of acid adaptation (pH 3.5, 3.2, and 3.0) on the resistance of A. acidoterrestris to heat (65 °C, 5 min) and acid (pH = 2.2, 1 h) stresses were investigated for the first time. The results showed that acid adaptation induced cross-protection against heat stress of A. acidoterrestris and acid tolerance response, and the extent of induced tolerance was increased with the decrease of adaptive pH values. Acid adaptation treatments did not disrupt the membrane potential stability and intracellular pH homeostasis, but reduced intracellular ATP concentration, increased cyclic fatty acids content, and changed the acquired Fourier transform infrared spectra. Transcription levels of stress-inducible (dnaK, grpE, clpP, ctsR) genes and genes related to spore formation (spo0A, ctoX) were up-regulated after acid adaptation, and spore formation was observed by scanning electron microscopy. This study revealed that the intracellular microenvironment homeostasis, expression of chaperones and proteases, and spore formation played a coordinated role in acid stress adaptive responses, with implications for applications in fruit juice processing.
Collapse
|
17
|
Mourão J, Rebelo A, Ribeiro S, Peixe L, Novais C, Antunes P. Atypical Non-H 2S-Producing Monophasic Salmonella Typhimurium ST3478 Strains from Chicken Meat at Processing Stage Are Adapted to Diverse Stresses. Pathogens 2020; 9:E701. [PMID: 32859122 PMCID: PMC7557518 DOI: 10.3390/pathogens9090701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 01/23/2023] Open
Abstract
Poultry products are still an important cause of Salmonella infections worldwide, with an increasingly reported expansion of less-frequent serotypes or atypical strains that are frequently multidrug-resistant. Nevertheless, the ability of Salmonella to survive antimicrobials promoted in the context of antibiotic reducing/replacing and farming rethinking (e.g., organic acids and copper in feed/biocides) has been scarcely explored. We investigated Salmonella occurrence (conventional and molecular assays) among chicken meat at the processing stage (n = 53 batches/29 farms) and characterized their tolerance to diverse stress factors (antibiotics, copper, acid pH, and peracetic acid). Whole-genome sequencing was used to assess adaptive features and to perform comparative analysis. We found a low Salmonella occurrence (4%) and identified S. Enteritidis/ST11 plus atypical non-H2S-producing S. 1,4,[5],12:i:-/ST3478. The ST3478 presented the ability to grow under diverse stresses (antibiotics, copper, and acid-pH). Comparative genomics among ST3478 isolates showed similar antibiotic/metal resistance gene repertoires and identical nonsense phsA thiosulfate reductase mutations (related to H2S-negative phenotype), besides their close phylogenetic relationship by cgMLST and SNPs. This study alerts for the ongoing national and international spread of an emerging monophasic Salmonella Typhimurium clonal lineage with an enlarged ability to survive to antimicrobials/biocides commonly used in poultry production, being unnoticed by conventional Salmonella detection approaches due to an atypical non-H2S-producing phenotype.
Collapse
Affiliation(s)
- Joana Mourão
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.M.); (A.R.); (S.R.); (L.P.); (C.N.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Andreia Rebelo
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.M.); (A.R.); (S.R.); (L.P.); (C.N.)
- Scientific Area of Environmental Health, School of Health, Polytechnic Institute of Porto, 4200-465 Porto, Portugal
| | - Sofia Ribeiro
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.M.); (A.R.); (S.R.); (L.P.); (C.N.)
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.M.); (A.R.); (S.R.); (L.P.); (C.N.)
- ESCMID Food- and Water-borne Infections Study Group (EFWISG), 4010 Basel, Switzerland
| | - Carla Novais
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.M.); (A.R.); (S.R.); (L.P.); (C.N.)
- ESCMID Food- and Water-borne Infections Study Group (EFWISG), 4010 Basel, Switzerland
| | - Patrícia Antunes
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.M.); (A.R.); (S.R.); (L.P.); (C.N.)
- ESCMID Food- and Water-borne Infections Study Group (EFWISG), 4010 Basel, Switzerland
- Faculty of Nutrition and Food Sciences, University of Porto, 4150-180 Porto, Portugal
| |
Collapse
|
18
|
Hu S, Yu Y, Lv Z, Shen J, Ke Y, Xiao X. Proteomics study unveils ROS balance in acid-adapted Salmonella Enteritidis. Food Microbiol 2020; 92:103585. [PMID: 32950169 DOI: 10.1016/j.fm.2020.103585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022]
Abstract
Salmonella Enteritidis is a major cause of foodborne gastroenteritis and is thus a persistent threat to global public health. The acid adaptation response helps Salmonella survive exposure to gastric environment during ingestion. In a previous study we highlighted the damage caused to cell membrane and the regulation of intracellular reactive oxygen species (ROS) in S. Enteritidis. In this study, we applied both physiologic and iTRAQ analyses to explore the regulatory mechanism of acid resistance in Salmonella. It was found that after S. Enteritidis was subject to a 1 h period of acid adaptation at pH 5.5, an additional 1 h period of acid shock stress at pH 3.0 caused less Salmonella cell death than in non-acid adapted Salmonella cells. Although there were no significant differences between adapted and non-adapted cells in terms of cell membrane damage (e.g., membrane permeability or lipid peroxidation) after 30 min, intracellular ROS level in acid adapted cells was dramatically reduced compared to that in non-acid adapted cells, indicating that acid adaption promoted less ROS generation or increased the ability of ROS scavenging with little reduction in the integrity of the cell membrane. These findings were confirmed via an iTRAQ analysis. The adapted cells were shown to trigger incorporation of exogenous long-chain fatty acids into the cellular membrane, resulting in a different membrane lipid profile and promoting survival rate under acid stress. S. Enteritidis experiences oxidative damage and iron deficiency under acid stress, but after acid adaption S. Enteritidis cells were able to balance their concentrations of intracellular ROS. Specifically, SodAB consumed the free protons responsible for forming reactive oxygen intermediates (ROIs) and KatE protected cells from the toxic effects of ROIs. Additionally, acid-labile proteins released free unbound iron promoting ferroptotic metabolism, and NADH reduced GSSH to G-SH, protecting cells from acid/oxidative stress.
Collapse
Affiliation(s)
- Shuangfang Hu
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen City, Guangdong Province, 518055, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, PR China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 10083, PR China
| | - Yigang Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, PR China
| | - Ziquan Lv
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen City, Guangdong Province, 518055, PR China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 10083, PR China
| | - Yuebin Ke
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen City, Guangdong Province, 518055, PR China.
| | - Xinglong Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, PR China.
| |
Collapse
|
19
|
Ma Y, Li L, Awasthi MK, Tian H, Lu M, Megharaj M, Pan Y, He W. Time-course transcriptome analysis reveals the mechanisms of Burkholderia sp. adaptation to high phenol concentrations. Appl Microbiol Biotechnol 2020; 104:5873-5887. [PMID: 32415321 DOI: 10.1007/s00253-020-10672-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 01/02/2023]
Abstract
Microbial tolerance to phenolic pollutants is the key to their efficient biodegradation. However, the metabolic mechanisms that allow some microorganisms to adapt to high phenol concentrations remain unclear. In this study, to reveal the underlying mechanisms of how Burkholderia sp. adapt to high phenol concentrations, the strain's tolerance ability and time-course transcriptome in combination with cell phenotype were evaluated. Surprisingly, Burkholderia sp. still grew normally after a long adaptation to a relatively high phenol concentration (1500 mg/L) and exhibited some time-dependent changes compared to unstressed cells prior to the phenol addition. Time-course transcriptome analysis results revealed that the mechanism of adaptations to phenol was an evolutionary process that transitioned from tolerance to positive degradation through precise gene regulation at appropriate times. Specifically, basal stress gene expression was upregulated and contributed to phenol tolerance, which involved stress, DNA repair, membrane, efflux pump and antioxidant protein-coding genes, while a phenol degradation gene cluster was specifically induced. Interestingly, both the catechol and protocatechuate branches of the β-ketoadipate pathway contributed to the early stage of phenol degradation, but only the catechol branch was used in the late stage. In addition, pathways involving flagella, chemotaxis, ATP-binding cassette transporters and two-component systems were positively associated with strain survival under phenolic stress. This study provides the first insights into the specific response of Burkholderia sp. to high phenol stress and shows potential for application in remediation of polluted environments. KEY POINTS: • Shock, DNA repair and antioxidant-related genes contributed to phenol tolerance. • β-Ketoadipate pathway branches differed at different stages of phenol degradation. • Adaptation mechanisms transitioned from negative tolerance to positive degradation.
Collapse
Affiliation(s)
- Yinghui Ma
- Microbiology Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, 710043, Shaanxi, PR China.,College of Natural Resources and Environment, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Lijun Li
- Microbiology Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, 710043, Shaanxi, PR China.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Haixia Tian
- College of Natural Resources and Environment, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Meihuan Lu
- Microbiology Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, 710043, Shaanxi, PR China
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Yalei Pan
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China
| | - Wenxiang He
- College of Natural Resources and Environment, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
20
|
Cronobacter sakazakii CICC 21544 responds to the combination of carvacrol and citral by regulating proton motive force. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Zhou A, Cao Y, Zhou D, Hu S, Tan W, Xiao X, Yu Y, Li X. Global transcriptomic analysis of Cronobacter sakazakii CICC 21544 by RNA-seq under inorganic acid and organic acid stresses. Food Res Int 2019; 130:108963. [PMID: 32156398 DOI: 10.1016/j.foodres.2019.108963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 01/07/2023]
Abstract
Cronobacter sakazakii is a common foodborne pathogen that can tolerate various stress conditions. Acidic environment is a common stress condition encountered by bacteria in food processing and gastrointestinal digestion, including both inorganic and organic acids. In order to elucidate the Acid Tolerance Response (ATR) of C. sakazakii, we performed high-throughput RNA-seq to compare gene expression under hydrochloric acid and citric acid stresses. In this study, 107 differentially expressed genes (DEGs) were identified in both acids, of which 85 DEGs were functionally related to the regulation of acid tolerance. Multiple layers of mechanisms may be applied by C. sakazakii in response to acid stress: Firstly, in order to reduce excessive intracellular protons, C. sakazakii pumps them out through trans-membrane proteins or consumes them through metabolic reactions. Secondly, under acidic conditions, a large amount of reactive oxygen species and hydroxyl radicals accumulate in the cells, resulting in oxidative damage. C. sakazakii protects cells by up-regulating the antioxidant stress genes such as soxS and madB. Thirdly, C. sakazakii chooses energy efficient metabolic pathways to reduce energy consumption and maintain necessary processes. Finally, genes involved in chemotaxis and motility were differentially expressed to respond to different acidic conditions. This study systematically analyzed the acid-resistant mechanism of C. sakazakii under the stress of organic and inorganic acids, and provided a theoretical basis for better control of its contamination in food.
Collapse
Affiliation(s)
- Ailian Zhou
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Yifang Cao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Donggen Zhou
- Ningbo International Travel Healthcare Center. No. 336 Liuting Street, Haishu District, Ningbo City, Zhejiang Province 315012, China
| | - Shuangfang Hu
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen City, Guangdong Province 518055, China
| | - Wanjing Tan
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Xinglong Xiao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China.
| | - Yigang Yu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Xiaofeng Li
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Sciences, South China University of Technology, 381 Wusan Road, Tianhe District, Guangzhou City 510640, Guangdong Province, China.
| |
Collapse
|
22
|
Transcriptomics: A powerful tool to evaluate the behavior of foodborne pathogens in the food production chain. Food Res Int 2019; 125:108543. [DOI: 10.1016/j.foodres.2019.108543] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023]
|
23
|
|
24
|
Ye B, He S, Zhou X, Cui Y, Zhou M, Shi X. Response to Acid Adaptation in Salmonella enterica Serovar Enteritidis. J Food Sci 2019; 84:599-605. [PMID: 30730584 DOI: 10.1111/1750-3841.14465] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/01/2019] [Accepted: 01/15/2019] [Indexed: 11/26/2022]
Abstract
Acid adaptation in Salmonella Enteritidis was characterized by phenotypic and gene-expression analyses. S. Enteritidis cells at log-phase and stationary-phase were kept at pH 4.5 to 6.0 for 1 to 4 hours. All treatments induced various levels of acid tolerance response that were dependent on pH, exposure time and growth phase. This acid adaptation resulted in tolerance to 50 °C and 8% NaCl regardless of the growth phase. However, the tolerance of log-phase and stationary-phase cells to low temperatures (4 and -20 °C) was increased and decreased, respectively. RT-qPCR analysis revealed that genes involved in tolerance to acid (SEN1564A and cfa), heat (rpoH, uspB, and htrA), salt (proP, proV, and osmW), and cold (cspA, cspC, and csdA) stress were generally upregulated after acid adaptation. These results provide an initial insight into mechanisms of acid adaptation and induced cross protection in S. Enteritidis. PRACTICAL APPLICATION: Stress tolerance acquisition resulting from acid adaptation in foodborne pathogens poses a great threat to food safety. The current work showed that acid adaptation induced direct tolerance and cross-tolerance to high temperature, low temperature, and salt in Salmonella Enteritidis, possibly due to the upregulation of stress tolerance-related genes. These results provide key insights into acid adaptation mechanisms and efficient control of S. Enteritidis.
Collapse
Affiliation(s)
- Beining Ye
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Shoukui He
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Xiujuan Zhou
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Yan Cui
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Min Zhou
- School of Food Science and Engineering, Wuhan Polytechnic Univ., Wuhan, 430023, Hubei, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| |
Collapse
|