1
|
García-García FA, Cristiani-Urbina E, Morales-Barrera L, Rodríguez-Peña ON, Hernández-Portilla LB, Campos JE, Flores-Ortíz CM. Study of Bacillus cereus as an Effective Multi-Type A Trichothecene Inactivator. Microorganisms 2024; 12:2236. [PMID: 39597625 PMCID: PMC11596695 DOI: 10.3390/microorganisms12112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Type A trichothecenes are common mycotoxins in stored cereal grains, where co-contamination is likely to occur. Seeking new microbiological options capable of inactivating more than one type A trichothecene, this study aimed to analyze facultative anaerobe bacteria isolated from broiler proventriculus. For this purpose, type A trichothecenes were produced in vitro, and a facultative anaerobic bacterial consortium was obtained from a broiler's proventriculus. Then, the most representative bacterial strains were purified, and trichothecene inactivating assays were performed. Finally, the isolate with the greatest capacity to remove all tested mycotoxins was selected for biosorption assays. The results showed that when the consortium was tested, neosolaniol (NEO) was the most degraded mycotoxin (64.55%; p = 0.008), followed by HT-2 toxin (HT-2) (22.96%; p = 0.008), and T-2 toxin (T-2) (20.84%; p = 0.014). All isolates were bacillus-shaped and Gram-positive, belonging to the Bacillus and Lactobacillus genera, of which B. cereus was found to remove T-2 (28.35%), HT-2 (32.84%), and NEO (27.14%), where biosorption accounted for 86.10% in T-2, 35.59% in HT-2, and 68.64% in NEO. This study is the first to prove the capacity of B. cereus as an effective inactivator and binder of multi-type A trichothecenes.
Collapse
Affiliation(s)
- Fernando Abiram García-García
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico; (F.A.G.-G.); (L.B.H.-P.)
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico;
| | - Eliseo Cristiani-Urbina
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico;
| | - Liliana Morales-Barrera
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico;
| | - Olga Nelly Rodríguez-Peña
- Laboratorio de Biogeoquímica, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico;
| | - Luis Barbo Hernández-Portilla
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico; (F.A.G.-G.); (L.B.H.-P.)
| | - Jorge E. Campos
- Laboratorio de Bioquímica Molecular, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico;
| | - Cesar Mateo Flores-Ortíz
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico; (F.A.G.-G.); (L.B.H.-P.)
- Laboratorio de Fisiología Vegetal, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico
| |
Collapse
|
2
|
Lee SW, Lim JM, Jang TH, Park JH, Seralathan KK, Oh BT. Lactiplantibacillus sp. D10-2: potential bacteria for eliminating bisphenol A and reducing BpA-induced lipid accumulation. Int Microbiol 2024; 27:707-718. [PMID: 37659056 DOI: 10.1007/s10123-023-00425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Bisphenol A (BpA) is an endocrine-disrupting substance commonly found in plastics and resins. It is reported that BpA exposure induces lipid accumulation in humans, similar to obesogenic compounds. The main objective of this study is to investigate the removal of BpA using Lactiplantibacillus sp. D10-2, and to examine its potential for reducing BpA-induced lipid accumulation in 3T3-L1 cell line model. The heat-dried cells of Lactiplantibacillus sp. D10-2 showed 69.7% removal efficiency for initial BpA concentration of 10 μg/mL, which was 30.5% higher than the live cells. The absence of metabolites or intermediates in BpA removal studies indicates that the Lactiplantibacillus sp. D10-2 strain removed BpA by adsorption process. The hydrophobic interactions of heat-dried Lactiplantibacillus sp. D10-2 cells were observed to be higher with 33.7% compared to live cells (15.0%), suggesting a stronger ability to bind with BpA. Although the BpA binding onto Lactiplantibacillus sp. D10-2 was not affected by pH, it was confirmed that as the temperature increases, the binding ability got decreased due to mass transfer and diffusion of BpA molecules. Treatment with Lactiplantibacillus sp. D10-2 (0.1, 0.25, 0.5, 1%) reduced lipid accumulation by 61.7, 58.0, 52.7 and 60.4% in 3T3-L1 cells exposed with BpA. In addition, it was confirmed that Lactiplantibacillus sp. D10-2 treatment suppressed the protein expression levels of lipogenesis-related PPARγ and C/EBPα in 3T3-L1 cells. The results of the study suggest that the Lactiplantibacillus sp. D10-2 strain can remove BpA and reduce BpA-accelerated lipid accumulation in 3T3-L1 cells.
Collapse
Affiliation(s)
- Se-Won Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea
| | - Jeong-Muk Lim
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea
| | - Tae-Hu Jang
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea
| | - Jung-Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea.
| |
Collapse
|
3
|
Zavistanaviciute P, Ruzauskas M, Antanaitis R, Televicius M, Lele V, Santini A, Bartkiene E. Antimicrobial and Mycotoxin Reducing Properties of Lactic Acid Bacteria and Their Influence on Blood and Feces Parameters of Newborn Calves. Animals (Basel) 2023; 13:3345. [PMID: 37958101 PMCID: PMC10648343 DOI: 10.3390/ani13213345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study was to evaluate the influence of in acid whey (AW) multiplied Lactiplantibacillus plantarum LUHS135 (L.pl135), Lacticaseibacillus paracasei LUHS244 (L.pc244), and their biomass combination on newborn calves' feces and blood parameters. Additionally, the antimicrobial and mycotoxin-reducing properties and the resistance to antibiotics of the tested lactic acid bacteria (LAB) strains were analyzed. In order to ensure effective biomass growth in AW, technological parameters for the supplement preparation were selected. Control calves were fed with a standard milk replacer (SMR) and treated groups (from the 2nd day of life until the 14th day) were supplemented with 50 mL of AWL.pl135, AWL.pc244, and AWL.pl135×L.pc244 (25 mL AWL.pl135 + 25 mL AWL.pc244) in addition to SMR. It was established that L.pl135 and L.pc244 possess broad antimicrobial activities, are non-resistant to the tested antibiotics, and reduce mycotoxin concentrations in vitro. The optimal duration established for biomass growth was 48 h (LAB count higher than 7.00 log10 CFU mL-1 was found after 48 h of AW fermentation). It was established that additional feeding of newborn calves with AWL.pl135, AWL.pc244, and AWL.pl135×L.pc244 increased lactobacilli (on average by 7.4%), and AWL.pl135 and AWL.pc244 reduced the numbers of Enterobacteriaceae in calves' feces. The tested supplements also reduced the lactate concentration (on average, by 42.5%) in calves' blood. Finally, the tested supplements had a positive influence on certain health parameters of newborn calves; however, further research is needed to validate the mechanisms of the beneficial effects.
Collapse
Affiliation(s)
- Paulina Zavistanaviciute
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (P.Z.); (V.L.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Modestas Ruzauskas
- Faculty of Veterinary, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania;
- Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Ramunas Antanaitis
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (R.A.); (M.T.)
| | - Mindaugas Televicius
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (R.A.); (M.T.)
| | - Vita Lele
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (P.Z.); (V.L.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Elena Bartkiene
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (P.Z.); (V.L.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
4
|
Ndiaye S, Zhang M, Fall M, Ayessou NM, Zhang Q, Li P. Current Review of Mycotoxin Biodegradation and Bioadsorption: Microorganisms, Mechanisms, and Main Important Applications. Toxins (Basel) 2022; 14:729. [PMID: 36355979 PMCID: PMC9694041 DOI: 10.3390/toxins14110729] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 01/26/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by fungi. Food/feed contamination by mycotoxins is a great threat to food safety. The contamination can occur along the food chain and can cause many diseases in humans and animals, and it also can cause economic losses. Many detoxification methods, including physical, chemical, and biological techniques, have been established to eliminate mycotoxins in food/feed. The biological method, with mycotoxin detoxification by microorganisms, is reliable, efficient, less costly, and easy to use compared with physical and chemical ones. However, it is important to discover the metabolite's toxicity resulting from mycotoxin biodegradation. These compounds can be less or more toxic than the parent. On the other hand, mechanisms involved in a mycotoxin's biological control remain still unclear. Mostly, there is little information about the method used by microorganisms to control mycotoxins. Therefore, this article presents an overview of the most toxic mycotoxins and the different microorganisms that have a mycotoxin detoxification ability. At the same time, different screening methods for degradation compound elucidation are given. In addition, the review summarizes mechanisms of mycotoxin biodegradation and gives some applications.
Collapse
Affiliation(s)
- Seyni Ndiaye
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratoire D’Analyses et D’Essai, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, Fann-Dakar 5085, Senegal
| | - Minhui Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Mouhamed Fall
- Key Laboratory of Agro-Products Processing, Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100193, China
| | - Nicolas M. Ayessou
- Laboratoire D’Analyses et D’Essai, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, Fann-Dakar 5085, Senegal
| | - Qi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
5
|
Emadi A, Eslami M, Yousefi B, Abdolshahi A. In vitro strain specific reducing of aflatoxin B1 by probiotic bacteria: a systematic review and meta-analysis. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.1929323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Alireza Emadi
- Semnan University of Medical Sciences and Health Services, Semnan, Iran
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Anna Abdolshahi
- Semnan University of Medical Sciences and Health Services, Semnan, Iran
| |
Collapse
|
6
|
Zavistanaviciute P, Zokaityte E, Starkute V, Ruzauskas M, Viskelis P, Bartkiene E. Berry By-Products in Combination with Antimicrobial Lactic Acid Bacteria Strains for the Sustainable Formulation of Chewing Candies. Foods 2022; 11:foods11091177. [PMID: 35563900 PMCID: PMC9102268 DOI: 10.3390/foods11091177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this research was to develop formulations of chewing candies (CCs) in a sustainable manner by using berry by-products in combination with antimicrobial lactic acid bacteria (LAB) strains. To implement this aim, the optimal quantities of by-products from lyophilised raspberry (Rasp) and blackcurrant (Bcur) from the juice production industry were selected. Prior to use, Lactiplantibacillus plantarum LUHS135, Liquorilactobacillusuvarum LUHS245, Lacticaseibacillusparacasei LUHS244, and Pediococcus acidilactici LUHS29 strains were multiplied in a dairy industry by-product-milk permeate (MP). The antimicrobial activity of the selected ingredients (berry by-products and LAB) was evaluated. Two texture-forming agents were tested for the CC formulations: gelatin (Gl) and agar (Ag). In addition, sugar was replaced with xylitol. The most appropriate formulation of the developed CCs according to the product's texture, colour, total phenolic compound (TPC) content, antioxidant activity, viable LAB count during storage, overall acceptability (OA), and emotions (EMs) induced in consumers was selected. It was established that the tested LAB inhibited three pathogens out of the 11 tested, while the blackcurrant by-products inhibited all 11 tested pathogens. The highest OA was shown for the CC prepared with gelatin in addition to 5 g of Rasp and 5 g of Bcur by-products. The Rasp and LUHS135 formulation showed the highest TPC content (147.16 mg 100 g-1 d.m.), antioxidant activity (88.2%), and LAB count after 24 days of storage (6.79 log10 CFU g-1). Finally, it was concluded that Gl, Rasp and Bcur by-products, and L. plantarum LUHS135 multiplied in MP are promising ingredients for preparing CCs in a sustainable manner; the best CC formula consisted of Gl, Rasp by-products, and LUHS135 and showed the highest OA (score 9.52) and induced the highest intensity of the EM 'happy' (0.231).
Collapse
Affiliation(s)
- Paulina Zavistanaviciute
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (E.Z.); (V.S.); (E.B.)
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-655-06461
| | - Egle Zokaityte
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (E.Z.); (V.S.); (E.B.)
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Vytaute Starkute
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (E.Z.); (V.S.); (E.B.)
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Modestas Ruzauskas
- Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania;
- Institute of Microbiology and Virology, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Pranas Viskelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno Str. 30, LT-54333 Babtai, Lithuania;
| | - Elena Bartkiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (E.Z.); (V.S.); (E.B.)
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
7
|
Li Y, Wang J, Wang T, Lv Z, Liu L, Wang Y, Li X, Fan Z, Li B. Differences between Kazak Cheeses Fermented by Single and Mixed Strains Using Untargeted Metabolomics. Foods 2022; 11:966. [PMID: 35407053 PMCID: PMC8997636 DOI: 10.3390/foods11070966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Mixed fermentation improves the flavor quality of food. Untargeted metabolomics were used to evaluate the impact of mixed fermentation and single-strain fermentation on the volatile and non-volatile compound profiles of Kazak cheese. Lacticaseibacillus paracasei SMN-LBK and Kluyveromyces marxianus SMN-S7-LBK were used to make mixed-fermentation cheese (M), while L. paracasei SMN-LBK was applied in single-strain-fermentation cheese (S). A higher abundances of acids, alcohols, and esters were produced via mixed fermentation. Furthermore, 397 differentially expressed non-volatile metabolites were identified between S and M during ripening. The flavor compounds in mixed-fermentation cheese mainly resulted from ester production (ethyl butanoate, ethyl acetate, ethyl octanoate, and ethyl hexanoate) and amino acid biosynthesis (Asp, Glu, Gln, and Phe). The metabolites were differentially expressed in nitrogen metabolism, D-glutamine and D-glutamate metabolism, phenylalanine metabolism, D-alanine metabolism, and other metabolic pathways. The amount of flavor compounds was increased in M, indicating that L. paracasei SMN- LBK and K. marxianus SMN-S7-LBK had synergistic effects in the formation of flavor compounds. This study comprehensively demonstrated the difference in metabolites between mixed-fermentation and single-strain-fermentation cheese and provided a basis for the production of Kazak cheese with diverse flavor characteristics.
Collapse
Affiliation(s)
- Yandie Li
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Jianghan Wang
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Tong Wang
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Zhuoxia Lv
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Linting Liu
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Yuping Wang
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Xu Li
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
- Guangdong Yikewei Biotech Co., Ltd., Guangzhou 510520, China
| | - Zhexin Fan
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Baokun Li
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| |
Collapse
|
8
|
Tolpeznikaite E, Ruzauskas M, Pilkaityte R, Bartkevics V, Zavistanaviciute P, Starkute V, Lele V, Zokaityte E, Mozuriene E, Ruibys R, Klupsaite D, Santini A, Bartkiene E. Influence of fermentation on the characteristics of Baltic Sea macroalgae, including microbial profile and trace element content. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
9
|
Pimentel TC, Gomes de Oliveira LI, de Lourdes Chaves Macedo E, Costa GN, Dias DR, Schwan RF, Magnani M. Understanding the potential of fruits, flowers, and ethnic beverages as valuable sources of techno-functional and probiotics strains: Current scenario and main challenges. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Pammi N, Bhukya KK, Lunavath RK, Bhukya B. Bioprospecting of Palmyra Palm ( Borassus flabellifer) Nectar: Unveiling the Probiotic and Therapeutic Potential of the Traditional Rural Drink. Front Microbiol 2021; 12:683996. [PMID: 34262545 PMCID: PMC8274697 DOI: 10.3389/fmicb.2021.683996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/04/2021] [Indexed: 01/27/2023] Open
Abstract
The present study investigates the therapeutic and probiotic attributes of traditional Toddy Palm Nectar (TPN). Glucose was found to be the highest with 4.37 mg/ml and arabinose was the least with 2.85 mg/ml. The average ethanol concentration of fresh TPN was found to be 0.3 mg/ml. The nutritional profile of TPN revealed 18 volatile fatty acids, the major one being hexadecenoic acid (M/Z 74). Amino acid profiling showed 26 amino acids, with OH-lysine-2 the highest (12.86%). About 120 morphologically distinct lactic acid bacteria (LAB) were isolated from 26 TPN samples, based on differential growth and in vitro probiotic characteristics. After 16S rRNA sequencing, four indigenous LAB strains were identified as Lactobacillus plantarum group OUBN1, Enterococcus faecium OUBN3, Pediococcus acidilactici OUBN4, and Pediococcus pentosaceous OUBN5 and their sequences were deposited to NCBI. Microbiological safety evaluation studies showed the absence of hemolytic, gelatinolytic and proteolytic activity. The bacterial isolate OUBN3 showed a maximum survival rate of 6.91 ± 0.04 log cfu/ml at acidic pH 2.5 and isolate OUBN5 showed 6.94 ± 0.02 log cfu/ml at pH 3.0. Similarly, the isolate OUBN5 showed 7.92 ± 0.03 log cfu/ml to 0.3% ox-bile after 4 h and 8.94 ± 0.03 log cfu/ml to simulated gastric juice after 3 h of treatments. OUBN1 expressed the highest autoaggregation (81.76 ± 1.25%), cell surface hydrophobicity (79.71 ± 3.42%), and displayed the maximum coaggregation with E. coli MTCC452 (76.96%), K. pneumoniae MTCC109 (75.62%), and S. aureus MTCC902 (70.69%). All strains showed significant antibiotic and antimicrobial activity. Isolate OUBN1 displayed hydroxyl radical scavenging activity (68.71 ± 1.0%) with an IC50 value of 75.62 μg/ml and the highest anti-cancer activity (percentage inhibition of 88.55) against HT-29 cells. Based on the characteristics observed, L. plantarum group OUBN1 and P. pentosaceous OUBN5 were found to be potential isolates to employ as probiotic microbiota in food and forage preparations. These findings reinforce the fact that LAB isolated from TPN could be exploited as an alternative means toward potential therapeutic applications.
Collapse
Affiliation(s)
| | | | | | - Bhima Bhukya
- Centre for Microbial and Fermentation Technology, Department of Microbiology, University College of Science, Osmania University, Hyderabad, India
| |
Collapse
|
11
|
Wang Y, Liu Y, Huang X, Xiao Z, Yang Y, Yu Q, Chen S, He L, Liu A, Liu S, Zou L, Yang Y. A Review on Mechanistic Overview on the Formation of Toxic Substances during the Traditional Fermented Food Processing. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1933021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yilun Wang
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Yuxuan Liu
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Xiaohong Huang
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Zihan Xiao
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Yifang Yang
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Qinxin Yu
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Likou Zou
- College of Resource, Sichuan Agricultural University, Chengdu PR China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| |
Collapse
|
12
|
Garcia-Gonzalez N, Battista N, Prete R, Corsetti A. Health-Promoting Role of Lactiplantibacillus plantarum Isolated from Fermented Foods. Microorganisms 2021; 9:349. [PMID: 33578806 PMCID: PMC7916596 DOI: 10.3390/microorganisms9020349] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Fermentation processes have been used for centuries for food production and preservation. Besides the contribution of fermentation to food quality, recently, scientific interest in the beneficial nature of fermented foods as a reservoir of probiotic candidates is increasing. Fermented food microbes are gaining attention for their health-promoting potential and for being genetically related to human probiotic bacteria. Among them, Lactiplantibacillus (Lpb.) plantarum strains, with a long history in the food industry as starter cultures in the production of a wide variety of fermented foods, are being investigated for their beneficial properties which are similar to those of probiotic strains, and they are also applied in clinical interventions. Food-associated Lpb. plantarum showed a good adaptation and adhesion ability in the gastro-intestinal tract and the potential to affect host health through various beneficial activities, e.g., antimicrobial, antioxidative, antigenotoxic, anti-inflammatory and immunomodulatory, in several in vitro and in vivo studies. This review provides an overview of fermented-associated Lpb. plantarum health benefits with evidence from clinical studies. Probiotic criteria that fermented-associated microbes need to fulfil are also reported.
Collapse
Affiliation(s)
| | | | - Roberta Prete
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, 64100 Teramo, Italy; (N.G.-G.); (N.B.); (A.C.)
| | | |
Collapse
|
13
|
Fraberger V, Ammer C, Domig KJ. Functional Properties and Sustainability Improvement of Sourdough Bread by Lactic Acid Bacteria. Microorganisms 2020; 8:microorganisms8121895. [PMID: 33265943 PMCID: PMC7760938 DOI: 10.3390/microorganisms8121895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
Preventing food spoilage without the addition of chemical food additives, while increasing functional properties of wheat-based bakery products, is an increasing demand by the consumers and a challenge for the food industry. Within this study, lactic acid bacteria (LAB) isolated from sourdough were screened in vitro for the ability to utilize the typical wheat carbohydrates, for their antimicrobial and functional properties. The dual culture overlay assay revealed varying levels of inhibition against the examined fungi, with Lactiplantibacillus plantarum S4.2 and Lentilactobacillusparabuchneri S2.9 exhibiting the highest suppression against the indicator strains Fusarium graminearum MUCL43764, Aspergillus fumigatus, A. flavus MUCL11945, A. brasiliensis DSM1988, and Penicillium roqueforti DSM1079. Furthermore, the antifungal activity was shown to be attributed mainly to the activity of acids produced by LAB. The antibacillus activity was evaluated by the spot-on-the-lawn method revealing a high inhibition potential of the majority of LAB isolated from sourdough against Bacillus cereus DSM31, B. licheniformis DSM13, B. subtilis LMG7135, and B. subtilis S15.20. Furthermore, evaluating the presence of the glutamate decarboxylase gen in LAB isolates by means of PCR showed a strain dependency of a potential GABA production. Finally, due to improved functional activities, LAB isolated from sourdoughs exhibit promising characteristics for the application as natural preservatives in wheat-based bakery products.
Collapse
|
14
|
Klupsaite D, Zavistanaviciute P, Sakiene V, Lele V, Mozuriene E, Klementaviciute J, Sidlauskiene S, Buckiuniene V, Tolpeznikaite E, Ruibys R, Bartkiene E. Evaluation of the use of lactic acid bacteria and
Thymus vulgaris
essential oil on Suffolk and Ile de France lamb breed (
MuscuIus gluteus
) quality parameters. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Dovile Klupsaite
- Institute of Animal Rearing Technologies Lithuanian University of Health Sciences Tilzes str. 18LT‐47181Kaunas Lithuania
| | - Paulina Zavistanaviciute
- Institute of Animal Rearing Technologies Lithuanian University of Health Sciences Tilzes str. 18LT‐47181Kaunas Lithuania
| | - Vytaute Sakiene
- Institute of Animal Rearing Technologies Lithuanian University of Health Sciences Tilzes str. 18LT‐47181Kaunas Lithuania
| | - Vita Lele
- Institute of Animal Rearing Technologies Lithuanian University of Health Sciences Tilzes str. 18LT‐47181Kaunas Lithuania
| | - Erika Mozuriene
- Institute of Animal Rearing Technologies Lithuanian University of Health Sciences Tilzes str. 18LT‐47181Kaunas Lithuania
| | - Jolita Klementaviciute
- Institute of Animal Rearing Technologies Lithuanian University of Health Sciences Tilzes str. 18LT‐47181Kaunas Lithuania
| | - Sonata Sidlauskiene
- Institute of Animal Rearing Technologies Lithuanian University of Health Sciences Tilzes str. 18LT‐47181Kaunas Lithuania
| | - Vilija Buckiuniene
- Institute of Animal Rearing Technologies Lithuanian University of Health Sciences Tilzes str. 18LT‐47181Kaunas Lithuania
| | - Ernesta Tolpeznikaite
- Institute of Animal Rearing Technologies Lithuanian University of Health Sciences Tilzes str. 18LT‐47181Kaunas Lithuania
| | - Romas Ruibys
- Institute of Agricultural and Food Sciences Agriculture Academy Vytautas Magnus University K. Donelaicio str. 58LT‐44244Kaunas Lithuania
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies Lithuanian University of Health Sciences Tilzes str. 18LT‐47181Kaunas Lithuania
| |
Collapse
|
15
|
Štěpánová H, Hlavová K, Šťastný K, Gopfert E, Levá L, Faldyna M. Maternal Exposure Results in Long-Term Deoxynivalenol Persistence in Piglets' Plasma and Modulates the Immune System. Toxins (Basel) 2020; 12:toxins12100615. [PMID: 32992825 PMCID: PMC7600455 DOI: 10.3390/toxins12100615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 01/02/2023] Open
Abstract
Deoxynivalenol (DON)-contaminated feed represents a serious problem for pigs due to their high sensitivity to its toxicological effects. The aim of the present study was to evaluate the impact of intrauterine DON exposure on the immune system of piglets. Pure DON was intravenously administered to sows at the end of gestation (during the last 2–3 days of gestation, one dose of 300 µg per day). The plasma concentration of DON was analyzed using liquid chromatography combined with high-resolution Orbitrap-based mass spectrometry (LC–MS/MS (HR)) and selected immune parameters were monitored six times in piglets from birth to 18 weeks. DON was found in the plasma of 90% of newborn piglets at a mean concentration of 6.28 ng/mL and subsequently, at one, three, and seven weeks after birth with decreasing concentrations. Trace amounts were still present in the plasma 14 weeks after birth. Flow cytometry revealed a significant impact of DON on T lymphocyte subpopulations during the early postnatal period. Lower percentages of regulatory T cells, T helper lymphocytes, and their double positive CD4+CD8+ subset were followed by increased percentages of cytotoxic T lymphocytes and γδ T cells. The capacity to produce pro-inflammatory cytokines was also significantly lower after intrauterine DON exposure. In conclusion, this study revealed a long-term persistence of DON in the plasma of the piglets as a consequence of short-term intrauterine exposure, leading to altered immune parameters.
Collapse
|
16
|
Bartkiene E, Ruzauskas M, Bartkevics V, Pugajeva I, Zavistanaviciute P, Starkute V, Zokaityte E, Lele V, Dauksiene A, Grashorn M, Hoelzle LE, Mendybayeva A, Ryshyanova R, Gruzauskas R. Study of the antibiotic residues in poultry meat in some of the EU countries and selection of the best compositions of lactic acid bacteria and essential oils against Salmonella enterica. Poult Sci 2020; 99:4065-4076. [PMID: 32731994 PMCID: PMC7597929 DOI: 10.1016/j.psj.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 11/18/2022] Open
Abstract
In this study, the presence of antibiotics (ANB) residues was evaluated in poultry meat purchased from German and Lithuanian markets. In addition, the antimicrobial activity of 13 lactic acid bacteria (LAB) strains, 2 essential oils (EO) (Thymus vulgaris and Origanum vulgare L.), and their compositions were tested for the purpose of inhibiting antibiotic-resistant Salmonella spp. ANB residues were found in 3 out of the 20 analyzed poultry meat samples: sample no. 8 contained enrofloxacin (0.46 μg/kg), sample no. 14 contained both enrofloxacin and doxycycline (0.05 and 16.8 μg/kg, respectively), and sample no. 18 contained enrofloxacin (2.06 μg/kg). The maximum residue limits (MRLs) for the sum of enrofloxacin and ciprofloxacin and for doxycycline in the poultry muscle are 100 μg/kg. Finally, none of the tested poultry meat samples exceeded the suggested MRLs; however, the issue of ANB residues still requires monitoring of the poultry industry in Germany, Poland, and Lithuania, despite the currently established low ANB concentrations. These findings can be explained by the increased use of alternatives to ANB in the poultry industry. Our results showed that an effective alternative to ANB, which can help to reduce the occurrence of antibiotic-resistant salmonella, is a composition containing 1.0% of thyme EO and the following LAB strains: Lactobacillus plantrum LUHS122, Enteroccocus pseudoavium LUHS242, Lactobacillus casei LUHS210, Lactobacillus paracasei LUHS244, Lactobacillus plantarum LUHS135, Lactobacillus coryniformins LUHS71, and Lactobacillus uvarum LUHS245, which can be recommended for poultry industry as components of feed or for the treatment of surfaces, to control the contamination with Salmonella strains. However, it should be mentioned that most of the tested LAB strains were inhibited by thyme EO at the concentrations of 0.5 and 1.0%, except for LUHS122, LUHS210, and LUHS245. Finally, it can be noted that the agents responsible for the inhibitory effect on Salmonella are not the viable LAB strains but rather their metabolites, and further studies are needed to identify which metabolites are the most important.
Collapse
Affiliation(s)
- Elena Bartkiene
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, 47181, Kaunas, Lithuania; Department of Food Safety and Quality, Lithuanian University of Health Sciences, 47181, Kaunas, Lithuania.
| | - Modestas Ruzauskas
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, 47181, Kaunas, Lithuania; Department of Anatomy and Physiology, Lithuanian University of Health Sciences, 47181, Kaunas, Lithuania
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment BIOR, 1076 Riga, Latvia
| | - Iveta Pugajeva
- Institute of Food Safety, Animal Health and Environment BIOR, 1076 Riga, Latvia
| | - Paulina Zavistanaviciute
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, 47181, Kaunas, Lithuania; Department of Food Safety and Quality, Lithuanian University of Health Sciences, 47181, Kaunas, Lithuania
| | - Vytaute Starkute
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, 47181, Kaunas, Lithuania; Department of Food Safety and Quality, Lithuanian University of Health Sciences, 47181, Kaunas, Lithuania
| | - Egle Zokaityte
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, 47181, Kaunas, Lithuania; Department of Food Safety and Quality, Lithuanian University of Health Sciences, 47181, Kaunas, Lithuania
| | - Vita Lele
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, 47181, Kaunas, Lithuania; Department of Food Safety and Quality, Lithuanian University of Health Sciences, 47181, Kaunas, Lithuania
| | - Agila Dauksiene
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, 47181, Kaunas, Lithuania; Department of Anatomy and Physiology, Lithuanian University of Health Sciences, 47181, Kaunas, Lithuania
| | - Michael Grashorn
- Institute of Animal Science at University of Hohenheim, 70599 Stuttgart, Germany
| | - Ludwig E Hoelzle
- Institute of Animal Science at University of Hohenheim, 70599 Stuttgart, Germany
| | - Anara Mendybayeva
- Research Institute of Applied Biotechnology, Kostanay State University, 110000 Kostanay, Kazakhstan
| | - Raushan Ryshyanova
- Research Institute of Applied Biotechnology, Kostanay State University, 110000 Kostanay, Kazakhstan
| | - Romas Gruzauskas
- Department of Food Science and Technology, Kaunas University of Technology, 50254, Kaunas, Lithuania
| |
Collapse
|
17
|
Shoukat S. Potential anti-carcinogenic effect of probiotic and lactic acid bacteria in detoxification of benzo[a]pyrene: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Bartkiene E, Lele V, Ruzauskas M, Domig KJ, Starkute V, Zavistanaviciute P, Bartkevics V, Pugajeva I, Klupsaite D, Juodeikiene G, Mickiene R, Rocha JM. Lactic Acid Bacteria Isolation from Spontaneous Sourdough and Their Characterization Including Antimicrobial and Antifungal Properties Evaluation. Microorganisms 2019; 8:E64. [PMID: 31905993 PMCID: PMC7023352 DOI: 10.3390/microorganisms8010064] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
This research effort aimed at isolating and phenotypically characterizing lactic acid bacteria (LAB) isolates from a spontaneous rye sourdough manufactured following traditional protocols, as well as at evaluating their antimicrobial and antifungal properties as key features for future industrial applications. Thirteen LAB strains of potential industrial interest were isolated and identified to species-level via PCR. Most of the sourdough isolates showed versatile carbohydrate metabolisms. The Leuconostoc mesenteroides No. 242 and Lactobacillus brevis No. 173 demonstrated to be gas producers; thus, revealing their heterofermenter or facultative homofermenter features. Viable counts higher than 7.0 log10 (CFU/mL) were observed for Lactobacillus paracasei No. 244, Lactobacillus casei No. 210, L. brevis No. 173, Lactobacillus farraginis No. 206, Pediococcus pentosaceus No. 183, Lactobacillus uvarum No. 245 and Lactobacillus plantarum No. 135 strains, after exposure at pH 2.5 for 2 h. Moreover, L. plantarum No. 122, L. casei No. 210, Lactobacillus curvatus No. 51, L. paracasei No. 244, and L. coryniformins No. 71 showed growth inhibition properties against all the tested fifteen pathogenic strains. Finally, all LAB isolates showed antifungal activities against Aspergillus nidulans, Penicillium funiculosum, and Fusarium poae. These results unveiled the exceptionality of spontaneous sourdough as a source of LAB with effective potential to be considered in the design of novel commercial microbial single/mixed starter cultures, intended for application in a wide range of agri-food industries, where the antimicrobial and antifungal properties are often sought and necessary. In addition, metabolites therefrom may also be considered as important functional and bioactive compounds with high potential to be employed in food and feed, as well as cosmetic and pharmaceutical applications.
Collapse
Affiliation(s)
- Elena Bartkiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania; (V.L.); (V.S.); (P.Z.); (R.M.)
- Institute of Animal Rearing Technologies, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania;
| | - Vita Lele
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania; (V.L.); (V.S.); (P.Z.); (R.M.)
- Institute of Animal Rearing Technologies, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania;
| | - Modestas Ruzauskas
- Microbiology and Virology Institute, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania;
- Department of Anatomy and Physiology, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania
| | - Konrad J. Domig
- Institute of Food Science, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Wien, Austria;
| | - Vytaute Starkute
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania; (V.L.); (V.S.); (P.Z.); (R.M.)
- Institute of Animal Rearing Technologies, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania;
| | - Paulina Zavistanaviciute
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania; (V.L.); (V.S.); (P.Z.); (R.M.)
- Institute of Animal Rearing Technologies, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania;
| | - Vadims Bartkevics
- Department of Chemistry, University of Latvia, Jelgavas iela 1, LV-1004 Riga, Latvia; (V.B.); (I.P.)
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupesiela 3, LV-1076 Riga, Latvia
| | - Iveta Pugajeva
- Department of Chemistry, University of Latvia, Jelgavas iela 1, LV-1004 Riga, Latvia; (V.B.); (I.P.)
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania;
| | - Grazina Juodeikiene
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu str. 19, LT-50254 Kaunas, Lithuania;
| | - Ruta Mickiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Mickeviciaus str. 9, LT–44307 Kaunas, Lithuania; (V.L.); (V.S.); (P.Z.); (R.M.)
- Instrumental Analysis Open Access Centre, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania
| | - João Miguel Rocha
- REQUIMTE–Rede de Química e Tecnologia, Laboratório de Química Verde (LAQV), Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre, s/n. P-4169-007 Porto, Portugal;
| |
Collapse
|
19
|
Bartkiene E, Lele V, Sakiene V, Zavistanaviciute P, Ruzauskas M, Stankevicius A, Grigas J, Pautienius A, Bernatoniene J, Jakstas V, Zadeike D, Viskelis P, Juodeikiene G. Fermented, ultrasonicated, and dehydrated bovine colostrum: Changes in antimicrobial properties and immunoglobulin content. J Dairy Sci 2019; 103:1315-1323. [PMID: 31864741 DOI: 10.3168/jds.2019-16357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
This study evaluated the influence of fermentation with Lactobacillus plantarum LUHS135 and Lactobacillus paracasei LUHS244, ultrasonication, and different methods of dehydration on the content of IgG, IgA, and IgM in bovine colostrum (BC), as well as the antimicrobial activity of the treated and fresh BC samples [fresh = BC; freeze dried = BClyoph; vacuum dried (+45°C) = BCvacdried; BC fermented with LUHS135 = BCLUHS135; BC fermented with LUHS244 = BCLUHS244; BC fermented with LUHS135 and freeze dried = BCLUHS135lyoph; BC fermented with LUHS244 and freeze dried = BCLUHS244 lyoph; BC fermented with LUHS135 and vacuum dried = BCLUHS135 vacdried; BC fermented with LUHS244 and vacuum dried = BCLUHS244 vacdried; BC ultrasonicated and freeze dried = BCultr lyoph; BC ultrasonicated and vacuum dried = BCultr vacdried]. The antimicrobial activity was assessed against Klebsiella pneumoniae, Salmonella enterica, Pseudomonas aeruginosa, Acinetobacter baumanni, Proteus mirabilis, methicillin-resistant Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Bacillus cereus, Streptococcus mutans, Enterobacter cloacae, Citrobacter freundii, Staphylococcus epidermis, Staphylococcus haemolyticus, and Pasteurella multocida using the agar well diffusion method, as well as in liquid medium. In liquid medium analysis showed that the fermented BC samples had the broadest antimicrobial spectrum (of 15 tested pathogenic strains, BCLUHS135 vacdried and BCLUHS135lyoph inhibited 13; BCLUHS244 vacdried inhibited 12; and BCLUHS135, BCLUHS244, and BCLUHS244 lyoph inhibited 11). Based on the inhibition zones, BCLUHS135lyoph samples exhibited the broadest inhibition spectrum, inhibiting the growth of 12 of the 15 tested pathogenic strains). According to the lactic acid bacteria strain selected for BC fermentation, different properties of the BC will be obtained. To ensure a broad antimicrobial spectrum and high IgG content, fermentation with LUHS135 can be recommended (IgG concentration in BCLUHS135 was retained), whereas fermentation with LUHS244 will provide a high IgM concentration (IgM concentration increased by 48.8 and 21.6% in BCLUHS244 and BCLUHS244lyoph samples, respectively). However, IgA is very sensitive for fermentation, and further studies are needed to increase IgA stability in BC. Finally, fermented BC can be recommended as a food/beverage ingredient, providing safety, as well as improved functionality through displaying a broad spectrum of antimicrobial activities.
Collapse
Affiliation(s)
- Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania.
| | - Vita Lele
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania
| | - Vytaute Sakiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania
| | - Paulina Zavistanaviciute
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania
| | - Modestas Ruzauskas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania; Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - Arunas Stankevicius
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania; Department of Anatomy and Physiology, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - Juozas Grigas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania; Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; Department of Anatomy and Physiology, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - Arnoldas Pautienius
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania; Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; Department of Anatomy and Physiology, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania; Department of Drug Technology and Social Pharmacy, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania
| | - Valdas Jakstas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania
| | - Daiva Zadeike
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania; Department of Food Science and Technology, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania
| | - Pranas Viskelis
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania; Biochemistry and Technology Laboratory, Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno St. 30, LT-54333 Babtai, Lithuania
| | - Grazina Juodeikiene
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-5016 Kaunas, Lithuania; Department of Food Science and Technology, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania
| |
Collapse
|
20
|
Rabaioli Rama G, Kuhn D, Beux S, Jachetti Maciel M, Volken de Souza CF. Cheese Whey and Ricotta Whey for the Growth and Encapsulation of Endogenous Lactic Acid Bacteria. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02395-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Rama GR, Kuhn D, Beux S, Maciel MJ, Volken de Souza CF. Potential applications of dairy whey for the production of lactic acid bacteria cultures. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.06.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Sadiq FA, Yan B, Tian F, Zhao J, Zhang H, Chen W. Lactic Acid Bacteria as Antifungal and Anti-Mycotoxigenic Agents: A Comprehensive Review. Compr Rev Food Sci Food Saf 2019; 18:1403-1436. [PMID: 33336904 DOI: 10.1111/1541-4337.12481] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/21/2019] [Accepted: 07/05/2019] [Indexed: 12/18/2022]
Abstract
Fungal contamination of food and animal feed, especially by mycotoxigenic fungi, is not only a global food quality concern for food manufacturers, but it also poses serious health concerns because of the production of a variety of mycotoxins, some of which present considerable food safety challenges. In today's mega-scale food and feed productions, which involve a number of processing steps and the use of a variety of ingredients, fungal contamination is regarded as unavoidable, even good manufacturing practices are followed. Chemical preservatives, to some extent, are successful in retarding microbial growth and achieving considerably longer shelf-life. However, the increasing demand for clean label products requires manufacturers to find natural alternatives to replace chemically derived ingredients to guarantee the clean label. Lactic acid bacteria (LAB), with the status generally recognized as safe (GRAS), are apprehended as an apt choice to be used as natural preservatives in food and animal feed to control fungal growth and subsequent mycotoxin production. LAB species produce a vast spectrum of antifungal metabolites to inhibit fungal growth; and also have the capacity to adsorb, degrade, or detoxify fungal mycotoxins including ochratoxins, aflatoxins, and Fusarium toxins. The potential of many LAB species to circumvent spoilage associated with fungi has been exploited in a variety of human food and animal feed stuff. This review provides the most recent updates on the ability of LAB to serve as antifungal and anti-mycotoxigenic agents. In addition, some recent trends of the use of LAB as biopreservative agents against fungal growth and mycotoxin production are highlighted.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,National Engineering Research Center for Functional Food, Jiangnan Univ., Wuxi, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,National Engineering Research Center for Functional Food, Jiangnan Univ., Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,National Engineering Research Center for Functional Food, Jiangnan Univ., Wuxi, 214122, China
| |
Collapse
|
23
|
Somashekaraiah R, Shruthi B, Deepthi BV, Sreenivasa MY. Probiotic Properties of Lactic Acid Bacteria Isolated From Neera: A Naturally Fermenting Coconut Palm Nectar. Front Microbiol 2019; 10:1382. [PMID: 31316477 PMCID: PMC6611078 DOI: 10.3389/fmicb.2019.01382] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/03/2019] [Indexed: 12/23/2022] Open
Abstract
Probiotic bacteria were isolated from different traditional fermented foods as there are several such foods that are not well explored for their probiotic activities. Hence, the present study was conducted to find the potential of lactic acid bacteria (LAB) as probiotics that were isolated from the sap extract of the coconut palm inflorescence - Neera, which is a naturally fermented drink consumed in various regions of India. A total of 75 isolates were selected from the Neera samples collected aseptically in the early morning (before sunrise). These isolates were initially screened for cultural, microscopic, and biochemical characteristics. The initial screening yielded 40 Gram-positive, catalase-negative isolates that were further subjected to acid - bile tolerance with resistance to phenol. Among 40 isolates, 16 survived screening using analysis of cell surface hydrophobicity, auto aggregation with adhesion to epithelial cells, and gastric-pancreatic digestion for gastrointestinal colonization. The isolates were also assessed for antimicrobial, antibiotic sensitivity, and anti-oxidative potential. The safety of these isolates was evaluated by their hemolytic and deoxyribonuclease (DNase) activities. Based on these results, seven isolates with the best probiotic attributes were selected and presented in this study. These LAB isolates, with 51.91-70.34% survival at low pH, proved their resistance to gastric conditions. The cell surface hydrophobicity of 50.32-77.8% and auto aggregation of 51.02-78.95% represented the adhesion properties of these isolates. All the seven isolates exhibited good antibacterial and antifungal activity, showing hydroxyl-scavenging activity of 32.86-77.87%. The results proved that LAB isolated from Neera exhibited promising probiotic properties and seem favorable for use in functional fermented foods as preservatives.
Collapse
Affiliation(s)
| | - B. Shruthi
- Department of Biotechnology, Sahyadri Science College, Kuvempu University, Shimoga, India
| | - B. V. Deepthi
- Department of Studies in Microbiology, University of Mysore, Mysuru, India
| | - M. Y. Sreenivasa
- Department of Studies in Microbiology, University of Mysore, Mysuru, India
| |
Collapse
|
24
|
Preventive Effect of Lactobacillus fermentum CQPC08 on 4-Nitroquineline-1-Oxide Induced Tongue Cancer in C57BL/6 Mice. Foods 2019; 8:foods8030093. [PMID: 30861992 PMCID: PMC6463013 DOI: 10.3390/foods8030093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/25/2022] Open
Abstract
Lactobacillus fermentum CQPC08 (LF-CQPC08) is a newly discovered strain of bacteria isolated and identified from traditional pickled vegetables in Sichuan, China. We used 4-nitroquinoline 1-oxide to establish an experimental tongue cancer mouse model to evaluate the preventive effect of LF-CQPC08 on tongue cancer in vivo. Lactobacillus delbruechii subsp. bulgaricus, is a common commercial strain and is used as a positive control to compare the effect with LF-CQPC08. The preventive strength and mechanism of LF-CQPC08 on tongue cancer were determined by measuring the biochemical indicators in mouse serum and tissues. Our results showed LF-CQPC08 inhibits the decline of splenic index, thymus index, percentage of phagocytic macrophages, and phagocytic index effectively. LF-CQPC08 also increased levels of mouse serum granulocyte-colony stimulating factor (G-CSF), granulocyte-macrophage-CSF (GM-CSF), immunoglobulin (Ig)G, IgM levels of serum interleukin (IL)-4, IL-12, tumor necrosis factor-alpha, and interferon-gamma levels, thereby inhibiting the decline in immunity caused by tongue cancer. It also increased the activity levels of superoxide dismutase and glutathione peroxidase and decreased the levels of malondialdehyde in the tissues of the tongue cancer mouse model, thereby suppressing the oxidative stress damage in the tissue caused by tongue cancer. Through quantitative PCR, LF-CQPC08 upregulated the mRNA expression of nuclear factor-erythroid 2 related factor 2 (Nrf2), heme oxygenase-1 (HO-1), glutathione-S-transferases-π (GST-π), and Bcl-2-associated X protein (Bax), and downregulated the mRNA expression of p53, p63, p73, phosphatase and tensin homolog (PTEN), B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xL) in the tongue tissues of the tongue cancer mouse. These results indicated that LF-CQPC08 reduced the influence of tongue cancer on the immune system and oxidative balance and improved the immunity and enhanced antioxidant capacity of the mouse model, thereby preventing tongue cancer. LF-CQPC08 could be used as a microbial resource with a preventive effect on tongue cancer.
Collapse
|
25
|
Toxins in Fermented Foods: Prevalence and Preventions-A Mini Review. Toxins (Basel) 2018; 11:toxins11010004. [PMID: 30586849 PMCID: PMC6356804 DOI: 10.3390/toxins11010004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/08/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Fermented foods (FF) are widely consumed around the world, and FF are one of the prime sources of toxins and pathogenic microbes that are associated with several foodborne outbreaks. Mycotoxins (aflatoxins, fumonisins, sterigmatocystin, nivalenol, deoxynivalenol, zearalenone, ochratoxin, and alternariol), bacterial toxins (shiga toxin and botulinum), biogenic amines, and cyanogenic glycosides are the common toxins found in FF in addition to the pathogenic microbes. Fermented milk products and meat sausages are extremely vulnerable to contamination. Cumulative updated information about a specific topic such as toxins in FF is essential for the improvement of safer preparation and consumption of fermented foods. Accordingly, the current manuscript summarizes the reported mycotoxins, bacterial toxins, and/or toxins from other sources; detection methods and prevention of toxins in FF (use of specific starter culture, optimized fermentation process, and pre- and post-processing treatments); and major clinical outbreaks. This literature survey was made in Scopus, Web of Science, NCBI-PubMed, and Google Scholar using the search terms "Toxins" and "Fermented Foods" as keywords. The appropriate scientific documents were screened for relevant information and they were selected without any chronological restrictions.
Collapse
|